Силикатные материалы и изделия кратко

Обновлено: 02.07.2024

Силикатные материалы и изделия
Силикатные изделия представляют собой искусственный каменный материал, изготовленный из смеси извести, песка и воды, отформованный путем прессования под большим давлением и прошедший автоклавную обработку.

В 1880 г. Немецкий ученый В. Михаэлис изобрел метод, который был использован для производства силикатного (известково-песчаного) кирпича. К началу двадцатого века в России было уже пять заводов, выпускающих силикатный кирпич. До 50-х годов единственным видом силикатных автоклавных изделий были силикатный кирпич и небольшие камни из ячеистого силикатного бетона. Однако благодаря работам российских ученых впервые в мире было создано производство крупноразмерных силикатобетонных автоклавных изделий для сборного строительства. В настоящие время почти все элементы зданий и сооружений ( панели, плиты перекрытий, элементы лестниц и др.) могут быть изготовлены из армированного силикатного бетона, который по своим свойствам почти не уступает железобетонным, а благодаря применению местных сырьевых материалов и промышленных отходов обходится на 15…20% дешевле, чем аналогичные железобетонные элементы на портландцементе.
В строительстве широкое распространение получили силикатный кирпич; силикатный плотный бетон и изделия из него; ячеистые силикатные бетоны и изделия; силикатный бетон с пористыми заполнителями.

Силикатный кирпич прессуют из известково-песчаной смеси следующего состава (%): чистый кварцевый песок 92—94; воздушная известь 6—8 и вода 7—8. Подготовленную в смесителях известково-песчаную массу формуют на прессах под давлением 15—20 МПа и запаривают в автоклавах при давлении насыщенного пара 0,8 МПа и температуре примерно 175 °С.

При запаривании известь, песок и вода вступают в реакцию, в результате которой образуется гидросиликат кальция, цементирующий массу и придающий ей высокую прочность. Продолжительность цикла автоклавной обработки 10—14 ч, а всего процесса изготовления силикатного кирпича 16—18 ч, в то время как процесс изготовления обычного глиняного кирпича длится 5—6 сут.

Силикатный кирпич выпускается двух видов: одинарный размером 250 X 120 X 65 мм и модульный размером 250 X 120 X 88 мм. Объемная масса силикатного кирпича 1800—1900 кг/м3, морозостойкость не ниже Мрз 15, водопоглощение 8—16% по массе. По прочности при сжатии силикатный кирпич делится на пять марок : 75, 100, ’25, 150 и 200. По теплопроводности силикатный кирпич незначительно отличается от обычного- глиняного и вполне заменяет последний при кладке стен любых зданий, кроме стен, маледящнхея в условиях высокой влажности или подвергающихся воздействию высоких температур (печи, дымовые трубы). По цвету силикатный кирпич светло-серый, но может быть и цветным, окрашенным в массе введением в нее минеральных пигментов.

Изделия из плотного силикатного бетона. Мелкозернистый плотный силикатный бетон — бесцементный бетон автоклавного твердения на основе известково-кремнеземистых или известково-зольных вяжущих — получают по следующей технологической схеме: часть кварцевого песка (8—15%) смешивается с негашеной известью (6—10%) и подвергается тонкому помолу в шаровых мельницах, затем измельченное известково-песчаное вяжущее и обычный песок (75—85%) затворяют водой (7—8%), перемешивают в бетономешалках и затем смесь поступает на формовочный стенд. Отформованные изделия запаривают в автоклавах при температуре 175—190° С и давлении пара 0,8 и 1,2 МПа.

Изделия из плотного силикатного бетона имеют объемную массу 1800—2200 кг/м3, морозостойкость 25—50 циклов, прочность при сжатии 10—60 МПа.

Из плотного силикатного бетона изготовляют крупные полнотелые стеновые блоки, армированные плиты перекрытий, колонны, балки, фундаментные и цокольные блоки, конструкции лестниц и перегородок.

Силикатные блоки для наружных стен и стен во влажных помещениях должны иметь марку не ниже 250.

Изделия из ячеистого силикатного бетона. По способу образования пористой структуры ячеистые силикатные бетоны бывают пеносиликатные и газосиликатные.

Основным вяжущим для приготовления этих бетонов является молотая известь. В качестве кремнеземистых компонентов вяжущего и мелких заполнителей используют молотые пески, вулканический туф, пемзу, золу-унос, трепел, диатомит, трас, шлаки.

При изготовлении ячеистых силикатных изделий пластичную известково-песчаную массу смешивают с устойчивой пеной, приготовленной из препарата ГК, мыльного корня и др., или с газообразователями — алюминиевой пудрой, а затем смесь заливают в формы и подвергают автоклавной обработке.
Объемная масса пеносиликатных изделий и газосиликатных изделий 300—1200 кг/м3, прочность при сжатии 1—20 МПа.

По назначению ячеистые силикатные изделия делятся на теплоизоляционные объемной массой до 500 кг/м3 и конструктивно-теплоизоляционные объемной массой более 500 кг/м3.

Теплоизоляционные ячеистые силикаты находят применение в качестве утеплителей, а из конструктивно-теплоизоляционных силикатов изготовляют наружные стеновые блоки и панели, а также комплексные плиты покрытий здания.

Силикатные изделия – это бесцементные материалы приготовленные с сырьевой смеси содержащие известь, кварцевый песок и воду, который в процессе автоклавной обработки образует силикат. Ca(OH)2+nSiO2*(m-1)H2O = CaO*nSiO2*mH20. В условиях автоклавной обработки можно получить различные разноосновные силикаты в зависимости от состава сырьевой смеси.

Автоклав представляет собой горизонтально расположенный полый цилиндр с герметически закрывающимися с торцов крышками(L=21-30cm, d=2,6-3,6cm).Они оборудованы предохранительным клапаном позволяющим регулировать давление. В нижней части уложены рельсы и передвигаются вагонетки с изделиями. Для снижения теплопотерь корпус покрывают теплоизоляцией. После загрузки изделий крышки закрываются и под давлением поддаётся пар. Высокая температура и наличие в изделиях воды создаёт благоприятные условия для протикания химических реакций между Ca(OH)2 и кремнезёмистой составляющей SiO2. Прочность автоклавных мат. формируется в процессах структурообразования при формировании гидросиликатов кальция и деструкция связанная с высокими напряжениями в результате автоклавной обработки. Для того чтобы снизить деструктивные процессы автоклавную обработку производят при след. режимах: -постепенный подъём температуры 1,5-2ч. –изотермическая выдержка 4-8ч. –снижение температуры и давления 2-4ч.

Силикатный кирпич. Состав, св-ва, применение.

Силикатный кирпич изготавливают из жёсткой смеси кварцевого песка 92-94%, извести 6-8%(в пересчёте на активный СаО) и воды до 9%. Путём прессования под давлением 15-20Мпа и последующего твердения в автоклаве. Цвет: светло-серый, варьируется. Выпускают кирпич одинарный 250х120х65, модульный модульный 250х120х88 изготавливают с пустотами. Марки 100, 150, 200, 250. Теплопроводность 0,7-0,75 Вт/(м°С). Водопоглощение лицевой стороны не должно быть больше 14%. Применяется для строительства несущих и ненесущих стен, реконструкции зданий и т.д. Не рекомендуется применять для цокольных зданий и при больших температурах.

Силикатный бетон. Виды, св-ва, области применения.

Виды: -тяжёлые (в качестве заполнителя: песок, щебень и песчано-гравийная смесь), -лёгкие(заполнитель керамзит), -ячеистые

В качестве вяжущего применяют известково-кремнезёмистый компонент в состав которого входит воздушная известь и тонко помолотый песок. Прочность зависит от активности извести в соотношении CaO/SiO2 , тонкости измельчения песка и параметром автоклавной обработки. Оптималиными считаются такие параметры и характеристики бетонной смеси при которых весь СаО связывается с низкоосновным силикат кальцием. Тяжёлый силикатный бетон плотность 1700 кг/м3, прочность 15-80Мпа применяют для изготовления сборных бетонных и железобетонных конструкций, в том числе предварительно напряжённых.

К силикатным материалам автоклавного тверденияотносятся материалы, получение которых основано на гидротермальном синтезе минеральной смеси (основное сырье, вяжущее вещество и заполнители), осуществляемом при повышенных значениях давления (до 1,5 МПа) и температуры (174. 200 °С) водяного пара.

В качестве основных сырьевых компонентов для материалов автоклавного твердения применяют преимущественно известково-песчаные смеси и промышленные отходы — доменные шлаки, топливные золы, нефелиновый шлам и др. Наиболее распространены известково-песчаные <силикатные) материалы.

Основным вяжущим компонентом материалов автоклавного твердения является известь. Для производства силикатных изделий рекомендуется применение быстрогасящейся извести с суммарным содержанием активных оксидов кальция и магния более 70%. При этом содержание MgO должно быть не более 5%. Наряду с известью возможно применение портландцемента, в частности в производстве ячеистых бетонов. Применение портландцемента способствует повышению морозостойкости изделий.

Наиболее распространенный заполнитель силикатных материалов — кварцевые пески. При применении полевошпатовых и карбонатных песков физико-механические свойства изделий ухудшаются.

При тепловой обработке основных сырьевых компонентов в автоклавах идет взаимодействие между гидрооксидом кальция, кремнеземом и водой, сопровождающееся образованием труднорастворимых продуктов реакции — гидросиликатов кальция:

аСа(ОН)2 + Si02 + (n-а20 → aCaO . Si02 . nH20,

причем величина коэффициента а определяется соотношением концентраций СаО и Si02 в жидкой фазе.

Высокую реакционную способность при автоклавной обра­ботке имеют аморфные и стеклообразные сырьевые материалы. К ним относятся вулканические эффузивные горные породы, гранули­рованные шлаки, топливные золы и др.

Интенсификация твердения и улучшение основных свойств ав­токлавных материалов достигаются применением высокодисперсных сырьевых материалов. При изготовлении высокопрочных известково-песчаных изделий негашеную известь размалывают с песком до удельной поверхности 3000. 5000 см 2 /г и используют как вяжущее.

По назначению изделия из силикатных материалов различают­ся на конструкционные и теплоизоляционные изделия, а по форме изго­товления — на штучные и крупноразмерные изделия.

По объему выпуска изделий из материалов автоклавного твер­дения ведущее место занимает силикатный кирпич, а за ним — стено­вые изделия из плотного и ячеистого бетонов.

Силикатный кирпичпредставляет собой искусственный безоб­жиговый стеновой строительный материал, изготовленный прессова­нием из смеси кварцевого песка (90. 92 %) и гашеной извести (8. 10 %) с последующим твердением в автоклаве.

В составе сырьевой смеси для получения силикатного кирпича содержание извести колеблется от 7 до 10 % в пересчете на активную роль СаО. Для повышения прочности силикатного кирпича в качест­ва вяжущего компонента применяют тонкомолотые известково-кремнеземистые, известково-шлаковые и известково-зольные смеси.

При производстве силикатного кирпича наиболее желательны кваревые пески с зернами размером 0,2. 2 мм, имеющие минималь­ное количество пустот. Содержание глинистых примесей допускается не более 10 %, так как при большем содержании глинистых увеличивается водопоглощение, снижается прочность и морозостойкость кирпича. Наличие органических примесей в сырьевой смеси для про­изводства кирпича снижает его прочность и может привести к обра­зованию трещин за счет выделения газов при автоклавном твердении.

Силикатный кирпич применяют наряду с керамическим кирпичом для кладки каменных и армировано-каменных наружных и внутренних конструкций в надземной части зданий с нормальным и влажным режимом эксплуатации. Вследствие более низкой стойкости к воде и к растворенным в ней веществам силикатный кирпич в отличие от керамического нельзя применять для кладки фундаментов и цоколей зданий ниже гидроизоляционного слоя. Не допускается использовать силикатный кирпич для стен зданий с мокрым режимом эксплуатации (бань, прачечных и др.) без специальных мер защиты стен от увлажнения. Не разрешается использовать для кладки печей, труб, т.к. он не выдерживает длительного воздействия высокой температуры.




Силикатным бетоном называют затвердевшую в автоклаве уплотненную смесь, состоящую из кварцевого песка (70…80%), молотого песка (8…15%) и молотой негашеной извести (6…10%). Для него характерна более низкая коррозионная стойкость арматуры, что обусловлено слабой щелочностью среды. Стойкость арматуры надежно обеспечивается при влажности воздуха 60%. Как и цементные, силикатные бетоны классифицируются в зависимости от плотности, особенностей структуры, максимальной крупности и вида заполнителей, а также области применения.

К силикатным материалам автоклавного тверденияотносятся материалы, получение которых основано на гидротермальном синтезе минеральной смеси (основное сырье, вяжущее вещество и заполнители), осуществляемом при повышенных значениях давления (до 1,5 МПа) и температуры (174. 200 °С) водяного пара.

В качестве основных сырьевых компонентов для материалов автоклавного твердения применяют преимущественно известково-песчаные смеси и промышленные отходы — доменные шлаки, топливные золы, нефелиновый шлам и др. Наиболее распространены известково-песчаные <силикатные) материалы.

Основным вяжущим компонентом материалов автоклавного твердения является известь. Для производства силикатных изделий рекомендуется применение быстрогасящейся извести с суммарным содержанием активных оксидов кальция и магния более 70%. При этом содержание MgO должно быть не более 5%. Наряду с известью возможно применение портландцемента, в частности в производстве ячеистых бетонов. Применение портландцемента способствует повышению морозостойкости изделий.

Наиболее распространенный заполнитель силикатных материалов — кварцевые пески. При применении полевошпатовых и карбонатных песков физико-механические свойства изделий ухудшаются.

При тепловой обработке основных сырьевых компонентов в автоклавах идет взаимодействие между гидрооксидом кальция, кремнеземом и водой, сопровождающееся образованием труднорастворимых продуктов реакции — гидросиликатов кальция:

аСа(ОН)2 + Si02 + (n-а20 → aCaO . Si02 . nH20,

причем величина коэффициента а определяется соотношением концентраций СаО и Si02 в жидкой фазе.

Высокую реакционную способность при автоклавной обра­ботке имеют аморфные и стеклообразные сырьевые материалы. К ним относятся вулканические эффузивные горные породы, гранули­рованные шлаки, топливные золы и др.

Интенсификация твердения и улучшение основных свойств ав­токлавных материалов достигаются применением высокодисперсных сырьевых материалов. При изготовлении высокопрочных известково-песчаных изделий негашеную известь размалывают с песком до удельной поверхности 3000. 5000 см 2 /г и используют как вяжущее.

По назначению изделия из силикатных материалов различают­ся на конструкционные и теплоизоляционные изделия, а по форме изго­товления — на штучные и крупноразмерные изделия.

По объему выпуска изделий из материалов автоклавного твер­дения ведущее место занимает силикатный кирпич, а за ним — стено­вые изделия из плотного и ячеистого бетонов.

Силикатный кирпичпредставляет собой искусственный безоб­жиговый стеновой строительный материал, изготовленный прессова­нием из смеси кварцевого песка (90. 92 %) и гашеной извести (8. 10 %) с последующим твердением в автоклаве.

В составе сырьевой смеси для получения силикатного кирпича содержание извести колеблется от 7 до 10 % в пересчете на активную роль СаО. Для повышения прочности силикатного кирпича в качест­ва вяжущего компонента применяют тонкомолотые известково-кремнеземистые, известково-шлаковые и известково-зольные смеси.

При производстве силикатного кирпича наиболее желательны кваревые пески с зернами размером 0,2. 2 мм, имеющие минималь­ное количество пустот. Содержание глинистых примесей допускается не более 10 %, так как при большем содержании глинистых увеличивается водопоглощение, снижается прочность и морозостойкость кирпича. Наличие органических примесей в сырьевой смеси для про­изводства кирпича снижает его прочность и может привести к обра­зованию трещин за счет выделения газов при автоклавном твердении.

Силикатный кирпич применяют наряду с керамическим кирпичом для кладки каменных и армировано-каменных наружных и внутренних конструкций в надземной части зданий с нормальным и влажным режимом эксплуатации. Вследствие более низкой стойкости к воде и к растворенным в ней веществам силикатный кирпич в отличие от керамического нельзя применять для кладки фундаментов и цоколей зданий ниже гидроизоляционного слоя. Не допускается использовать силикатный кирпич для стен зданий с мокрым режимом эксплуатации (бань, прачечных и др.) без специальных мер защиты стен от увлажнения. Не разрешается использовать для кладки печей, труб, т.к. он не выдерживает длительного воздействия высокой температуры.

Силикатным бетоном называют затвердевшую в автоклаве уплотненную смесь, состоящую из кварцевого песка (70…80%), молотого песка (8…15%) и молотой негашеной извести (6…10%). Для него характерна более низкая коррозионная стойкость арматуры, что обусловлено слабой щелочностью среды. Стойкость арматуры надежно обеспечивается при влажности воздуха 60%. Как и цементные, силикатные бетоны классифицируются в зависимости от плотности, особенностей структуры, максимальной крупности и вида заполнителей, а также области применения.


Общие сведения о силикатных материалах


Общие сведения о силикатных материалах

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким будет измельченный песок, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

Полный цикл автоклавной обработки, по данным П.И. Божено-ва, слагается из пяти этапов: впуск пара и установление температуры 100°С; дальнейшее повышение температуры среды и давления пара до назначенного максимума; изотермическая выдержка при постоянном давлении (чем выше давление, тем короче режим авто-клавизации); медленное и постепенное нарастание скорости снижения давления пара до атмосферного, а температуры — до 100°С; окончательное остывание изделий в автоклаве или после выгрузки их из автоклава. Оптимальный режим, т. е. наилучшие условия по величине давления пара, температуры и продолжительности всех стадий обработки, обусловливается видом сырья, хотя по экономическим соображениям всегда стремятся к быстрому подъему и медленному спуску давления.

Формирование микро- и макроструктуры силикатного изделия в автоклаве происходит на различных стадиях обработки. Механизм отвердевания известково-песчаного сырца до камневидного состояния выражается в том, что вначале образуется известково-кремнеземистое цементирующее вещество как продукт химического взаимодействия основных компонентов в смеси в условиях повышенных давлений и температур. Согласно одной из теорий (П.П. Будникова, Ю.М. Бутта и др.), образование цементирующего вещества происходит через предварительное растворение извести в воде. Так как растворимость извести с повышением температуры понижается, то постепенно раствор становится насыщенным. Но с повышением температуры возрастает растворимость тонкодисперсного кремнезема. Так, например, с повышением температуры с 80 до 120°С растворимость кремнезема возрастает (по данным Кеннеди) почти в 3 раза. Поэтому при температуре 120—130°С известь и кремнезем, находясь в растворе, взаимодействуют с образованием гелеобразных гидросиликатов кальция. По мере дальнейшего повышения температуры новообразования укрупняются с возникновением зародышей и кристаллической фазы, а затем и кристаллических сростков. При избытке извести возникают сравнительно крупнокристаллические двуосновные гидросиликаты кальция типа C2SH и C2SH2, а после полного связывания извести и в процессе перекристаллизации возникают более устойчивые микрокристаллические низкоосновные гидросиликаты кальция типа CSH и C5S6H5 (то берморит). Кристаллизация происходит вокруг зерен кварца и в межзерновом пространстве; сопровождается срастанием кристаллических новообразований в каркас с дальнейшим его упрочнением и обрастанием.

Согласно другой теории, образование микроструктуры вяжущего происходит не через растворение извести и кремнезема, а в твердой фазе под влиянием процесса самодиффузии молекул в условиях 1 водной среды и повышенной температуры. Имеется и третья теория (А.В. Саталкин, П.Г. Комохов и др.), допускающая образование микроструктуры вяжущего в результате реакций в жидкой и твердой фазах.

Большую пользу в формировании структуры и свойств силикатных камня и материалов оказывают вводимые в смеси добавочные вещества (добавки), выполняющие функции ускорителей процессов образования гидросиликатов кальция или магния, кристаллизации новообразований, модификаторов свойств и структуры. В целом в составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение CSH и тоберморит C5S6H5. В высокоизвестковых смесях в результате синтеза образуется гиллебрандит 2СаО • Si02 • Н20 (т. е. C2SH).

Оптимальная структура силикатного материала формируется при определенном количестве известковр-кремнеземи-стого цемента и минимальном соотношении его фазовых составляющих. В свежеизготовленном конгломерате дисперсионной средой (с) служит известковое тесто (Ит), а в качестве твердой дисперсной фазы (ф) выступает молотый кремнеземистый (песчаный) компонент (Пм). Активность (прочность) известково-кремне-земистого вяжущего вещества оптимальной структуры после автоклавной обработки, как и другие свойства силикатного материала, зависит от величины соотношения Ит: Пм (по массе). Результаты экспериментальных исследований показали, что пределы прочности при сжатии, на растяжение при изгибе, средняя плотность и другие показатели свойств силикатного камня принимают экстремальные значения при R МПа некотором минимальном соотношении с7ф = И^./Пм (рис. 9.28). В полном соответствии с формулой (3.4) прочность силикатного конгломерата Rc = R*lxy где R* — прочность автоклавного силикатного камня оптимальной структуры; ^ х = ШПм : И7ПМ = – 8/5* — отношение усредненных толщин пленок известкового теста соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры; п—показатель степени, зависит от качества исходных материалов.

Выполненные исследования силикатного камня и силикатного конгломерата на примерах бетонов мелко- и крупнозернистых показали, что при оптимальных структурах их свойства полностью подчиняются общим закономерностям ИСК.

Кроме кремнеземистого сырьевого материала, можно использовать в производстве автоклавных изделий распространенные малокварцевые виды сырья — полевошпатовые, глинистые, карбонатные пески, а также шлаки и другие побочные продукты промышленности. Минералы малокварцевого сырья, растворившись в условиях авто-клавирования, становятся активными компонентами, не уступающими по растворимости кварцу. Их активность зависит от размеров радиусов анионов и катионов, входящих в их состав. В автоклаве формируется новое вяжущее (безобжиговое солешлаковое вяжущее), по свойствам превосходящее известково-кремнеземистое автоклавное твердение. Оно состоит из низкоосновных слабозакристаллизован-ных гидросиликатов кальция, а в присутствии ионов алюминия — из высокоосновных гидросиликатов кальция.

Читайте также: