Шкала это в физике кратко

Обновлено: 04.07.2024

Материал данной статьи дает представление о таком важном понятии как температура. Дадим определение, рассмотрим принцип изменения температуры и схему построения температурных шкал.

Что такое температура

Температура – это скалярная физическая величина, описывающая состояние термодинамического равновесия макроскопической системы тел.

Понятие температуры также применяют в качестве физической величины, определяющей степень нагретости тела, однако лишь такой трактовки для понимания смысла термина недостаточно. Все физические понятия находятся в связи с определенными фундаментальными законами и наделяются смыслом только в соответствии с этими законами. В данном случае термин температура связан с понятием теплового равновесия и с законом макроскопической необратимости.

Изменение температуры

Явление термодинамического равновесия тел, составляющих систему, говорит о наличии одинаковой температуры этих тел. Произвести замер температуры можно лишь косвенно, взяв за основу зависимость от температуры таких физических свойств тел, которые можно измерить непосредственно.

Вещества или тела, применяемые для получения значения температуры, называют термометрическими.

  1. t 1 > t 2 , когда происходит теплопередача от первого тела ко второму;
  2. t 1 ' = t 2 ' = t , t 1 > t > t 2 , при установлении теплового равновесия может приниматься за температуру.

Также отметим, что тепловое равновесие тел подчинено закону транзитивности.

Закон транзитивности: когда два тела находятся в равновесии с третьим, то и между собой они пребывают в тепловом равновесии.

Важной чертой указанного определения температуры является его неоднозначность. Выбрав по-разному величины, отвечающие установленным требованиям (что отразится на способах измерения температуры), возможно получить несовпадающие шкалы температур.

Температурная шкала – это способ деления на части интервала температуры.

Общеизвестным устройством для измерения температуры является термометр. Для рассмотрения возьмем термометры различного устройства. Первый представлен ртутным столбиком в капилляре термометра, и значение температуры здесь определяется длиной этого столбика, отвечающей условиям 1 и 2 , указанным выше.

И еще один способ измерить температуру: используя термопару – электрическую цепь с гальванометром и двумя спаями разнородных металлов (рисунок 1 ).

Изменение температуры

Один спай находится в среде с фиксированной температурой (в нашем примере это тающий лед), другой – в среде, температуру которой необходимо определить. Здесь признаком температуры является ЭДС термопары.

Указанные способы измерения температуры не дадут одинаковых результатов. И для перехода одной температуры к другой следует построить градуировочную кривую, которая установит зависимость ЭДС термопары от длины ртутного столбика. В этом случае равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы измерения температур ртутного термометра и термопары создают две абсолютно различные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Также возможно рассмотреть одинаковые по устройству термометры, но имеющие разные "термические тела" (к примеру, ртуть и спирт): мы не будем наблюдать совпадения температурных шкал и в этом случае. График зависимости длины ртутного столбика от длины спиртового столбика не будет линейным.

Температурные шкалы

Для того, чтобы построить температурную шкалу для измерения, двум числовым значениям температуры присваивают две фиксированные реперные точки. После этого разность числовых значений, присвоенных реперным точкам, делится на выбранное произвольным образом необходимое количество частей, получая в результате единицу измерения температуры.

За исходные значения, используемые в качестве начала отсчета и единицы измерения, принимают температуры перехода химически чистых веществ из одного агрегатного состояния в другое, к примеру, температуру плавления льда t 0 и кипения воды t k при нормальном атмосферном давлении ( П а ≈ 10 5 П а ) . Величины t 0 и t k имеют разные значения в различных видах шкал измерения температуры:

  • Согласно шкале Цельсия (стоградусная шкала): температура кипения воды t k = 100 ° C , температура плавления льда t 0 = 0 ° С . В шкале Цельсия температура тройной точки воды равна 0 , 01 ° С при давлении 0 , 06 а т м .

Тройная точка воды - такие температура и давление, при которых могут существовать в равновесии одновременно все три агрегатных состояния воды: жидкое, твердое (лед) и пар.

  • Согласно шкале Фаренгейта: температура кипения воды t k = 212 ° F ; температура плавления льда t 0 = 32 ° С .

Разница температур, выраженных в градусах по шкале Цельсия и шкале Фаренгейта, нивелируется согласно следующему выражению:

t ° C 100 = t ° F - 32 180 или t ° F = 1 , 8 ° C + 32 .

Ноль на этой шкале определен как температура замерзания смеси воды, нашатыря и соли, взятых в пропорции 1 : 1 : 1 .

  • Согласно шкале Кельвина: температура кипения воды t k = 373 К ; температура плавления льда t 0 = 273 К . Здесь температура отсчитывается от абсолютного нуля ( t = 273 , 15 ° С ) и ее называют термодинамической или абсолютной температурой. Т = 0 К – такому значению температуры соответствует абсолютное отсутствие тепловых колебаний.

Значения температур по шкале Цельсия и по шкале Кельвина связаны между собой согласно следующему выражению:

T ( K ) = t ° C + 273 , 15 ° C .

  • Согласно шкале Реомюра: температура кипения воды t k = 80 ° R ; температура плавления льда t 0 = 0 ° R . В термометре Реомюра использовался спирт; на данный момент шкала почти не используется.

Температуры, выраженные в градусах Цельсия и градусах по Реомюру, связаны так:

  • Согласно шкале Ранкина: температура кипения воды t k = 671 , 67 ° R a ; температура плавления льда t 0 = 491 , 67 ° R a . Начало шкалы соответствует абсолютному нулю. Количество градусов между реперными точками замерзания и кипения воды в шкале Ранкина идентично шкале Фаренгейта и равно 180 .

Температуры по Кельвину и Ранкину связаны выражением:

° R a = ° F + 459 , 67 .

Градусы по Фаренгейту возможно перевести в градусы по Ранкину согласно формуле:

° R a = ° F + 459 , 67 .

Наиболее применима в быту и технических устройствах шкала Цельсия (единица шкалы – градус Цельсия, обозначаемый как ° C ).

В физике же используют термодинамическую температуру, которая не просто удобна, но и несет глубокую физическую смысловую нагрузку, поскольку определена как средняя кинетическая энергия молекулы. Единица термодинамической температуры - градус Кельвина (до 1968 г.) или сейчас просто Кельвин ( К ) , являющийся одной из основных единиц в С И . Температура T = 0 К называется абсолютным нулем температуры, как уже упоминалось выше.

Вообще современная термометрия опирается на шкалу идеального газа: за термометрическую величину принимают давление. Шкала газового термометра абсолютна ( T = 0 , p = 0 ) . При решении практических задач чаще всего приходится применять именно эту шкалу температур.

Принято, что комфортная для человека температура в помещении находится в интервале от + 18 ° С до + 22 ° С . Необходимо рассчитать границы интервала температуры комфорта согласно термодинамической шкале.

Решение

Возьмем за основу соотношение T ( K ) = t ° C + 273 , 15 ° C .

Произведем расчет нижней и верхней границ температуры комфорта по термодинамической шкале:

T = 18 + 273 ≈ 291 ( K ) ; T = 22 + 273 ≈ 295 ( K ) .

Ответ: границы интервала температуры комфорта по термодинамической шкале находятся в интервале от 291 К до 295 К .

Необходимо определить, при какой температуре показания термометров по шкале Цельсия и по шкале Фаренгейта будут одинаковы.

Решение

Возьмем за основу соотношение t ° F = 1 , 8 t ° C + 32 .

По условию задачи температур равны, тогда возможно составить следующее выражение:

Определим из полученной записи переменную x :

x = - 32 0 , 8 = - 40 ° C .

Ответ: при температуре - 40 ° С (или - 40 ° F ) показания термометров по шкалам Цельсия и Фаренгейта будут одинаковы.

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

Шкала измерений Измерительная шкала на приборе

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

Классификация измерительных шкал

Классификация измерительных шкал

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
    • интервалов;
    • отношений;
    • абсолютная .

    Шкалы измерения по Стивенсу

    Шкалы измерения по Стивенсу

    Шкалы измерений

    Рассмотрим шкалы измерений подробнее.

    Номинальная

    Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

    Порядковая

    По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

    Шкала порядка

    Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

    Интервалов

    Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

    Шкалы интервалов

    Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

    Отношений

    Шкала отношений

    Отношений – наиболее информативная. На ней возможны все арифметические операции-

    • сложение;
    • вычитание;
    • умножение ;
    • деление.

    Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

    Разностей

    Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

    • единицы измерений и точка отсчета определяется по соглашению;
    • существует понятие размерности;
    • доступны операции линейных преобразований;
    • осуществляется путем создания системы эталонов.

    Циферблат часов

    Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

    Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

    Абсолютная

    Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

    Абсолютная шкала

    Абсолютные подразделяют на

    • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
    • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

    Иерархия шкал измерений

    Условная иерархия составляется по признаку силы.

    • Количественные:
      • абсолютная;
      • разностей;
      • отношений;
      • интервалов;
      • порядковая;
      • наименований.

      По мере возрастания силы увеличивается конкретность информации об объекте.

      ШКАЛА, -ы, мн. шкалы, шкал, шкалам, ж. 1. Линейка или таблица сотметками и цифрами на отсчетном устройстве измерительного прибора. Ш.приемника. 2. Ряд величии, цифр в восходящем или нисходящем порядке (спец.).Тарифная ш. II прил. шкальный, -ая, -ое (к 1 знач.; спец.). смотреть

      ШКАЛА

      шкала ж. 1) Линейка или циферблат с делениями в различных измерительных приборах. 2) Последовательность чисел, служащая для количественной оценки каких-л. величин.

      ШКАЛА

      шкала ж.scale шкала термометра — scale of a thermometer шкала зарплаты — scale of wages

      ШКАЛА

      шкала масштаб; микрошкала, сетка, нониус, лимб, верньер, сенситограмма Словарь русских синонимов. шкала сущ., кол-во синонимов: 9 • верньер (4) • лимб (5) • микрошкала (1) • нониус (3) • рейтинг (10) • сенситограмма (1) • сетка (33) • скала (15) • фаренгейт (1) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: верньер, лимб, микрошкала, нониус, сенситограмма, сетка, фаренгейт. смотреть

      ШКАЛА

      bar, (прибора) face, scale, (устойчивости окраски) step* * *шкала́ ж.(нормативное значение — совокупность делений, отметок, оцифровки у измерительного . смотреть

      ШКАЛА

      ж.scale; (циферблат) dial- абсолютная шкала- аддитивная шкала- аналитическая шкала- априорная шкала- биполярная рейтинговая шкала- Вайнлендская шкала с. смотреть

      ШКАЛА

      (от лат. skale — лестница) — 1. Составная часть измерительного прибора, предназначенн 1. для отсчета значений измеряемой величины. Отсчет определяется положением индикаторной метки (указателя), которое она (он) занимает или в которое она (он) устанавливается в процессе работы. Ш. содержат градуировочные отметки, которые непосредственно (Ш. с прямым отсчетом) или косвенно (Ш. косвенных значений) соответствуют последовательным значениям измеряемой величины, а также соответствующие надписи и обозначения. В зависимости от способа выполнения градуировочных отметок различают аналоговую, цифровую и комбинированные Ш. Все Ш. должны быть наглядно скомпонованы. Их деления должны позволять проводить оценку показаний с большого расстояния, а также точное считывание вблизи. Нанесенные наряду с делениями обозначения на Ш. характеризуют измерительный прибор и его применение. Обозначения должны выполняться таким образом, чтобы не отвлекать внимание оператора в процессе работы. На аналоговой Ш. градуировочные отметки изображаются штрихами, точками или другими метками. Такая Ш. обеспечивает непрерывные аналоговые показания. Градуировочные отметки (см. рис. 25) располагаются на шкальной пластинке вдоль опорной линии. В отношении линейности градуировки различают линейные и нелинейные Ш. Аналоговые Ш. могут быть различных типов (см. Тип шкалы). На цифровой Ш. градуировочные отметки образуются последовательностью десятичных цифр. Такая Ш. обеспечивает не непрерывные, а дискретные показания. Цифры от 0 до 9 располагаются на механически перемещающихся счетных роликах за смотровыми окошками или изображаются электрически с помощью цифровых индикаторов. Показание осуществляется в виде нескольких десятичных разрядов. Разность значений измеряемой величины, показания которых отличаются на единицу младшего разряда, называются шагом дискретизации. Комбинированная Ш. состоит из 754 цифровой и аналоговой Ш. Цифры старшего разряда отображаются в цифровом виде, а цифры младшего разряда — в аналоговом виде (рис. 26 — 28). Это дает возможность считывать интервалы делений между последовательными числами (старших разрядов). Если для отображения информации на рабочем месте используется несколько шкальных приборов, они образуют приборную панель. При конструировании аналоговых и цифровых шкал, их расположении на рабочем месте оператора должны соблюдаться инженерно-психологические требования соответственно к стрелочной и знаковой индикации. 2. Последовательность чисел, служащих для количественной оценки каких-либо величин; служат инструментом для измерения количественных свойств объекта. В психологии различные Ш. используются для изучения различных характеристик психологических явлений (процессов, свойств, состояний). Выделяются четыре типа числовых систем, которые определяют соответственно четыре уровня, или Ш. измерения: Ш. наименований (номинальная), порядка (ординальная) , интервалов (интервальная) и отношений (пропорциональная) . Их разделение осуществляется на основе тех математических преобразований, которые допускаются каждой Ш. Различие уровней измерения какого-либо качества можно проиллюстрировать простым примером. Если подразделять людей только на удовлетворенных или не удовлетворенных своей работой, то тем самым получим номинальную Ш. Если можно также установить степень удовлетворенности, то строится ординальная Ш. Если фиксируется, на сколько и во сколько раз удовлетворенность одних больше удовлетворенности других, то можно получить соответственно интервальную и пропорциональную Ш. удовлетворенности работой. Ш. различаются не только своими метрическими свойствами, но и разными способами сбора информации. В каждой Ш. применяются строго определенные методы анализа данных. В зависимости от типа задач, решаемых с помощью шкалирования, строят либо Ш. оценок, либо Ш. установок (последние обычно применяются в социально-психологи-ческих исследованиях). В практике социологического и психологического исследования каждая Ш. (вне зависимости от уровня измерения) имеет свое специальное название, связанное с наименованием изучаемого свойства объекта. смотреть

      ШКАЛА

      ШКАЛАсм. СКАЛА.Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф.,1907.ШКАЛА, или СКАЛАт. е. линейка с делениями на термометре, . смотреть

      Проблема обеспечения высокого качества продукции тесным образом связана с проблемой качества измерений. Между ними явно прослеживается непосредственная связь: там, где качество измерений не соответствует требованиям технологического процесса, невозможно достичь высокого уровня качества продукции. Поэтому качество продукции в значительной степени зависит от успешного решения вопросов, связанных с точностью измерений параметров качества материалов и комплектующих изделий и поддержания заданных технологических режимов. Иными словами, технический контроль качества осуществляется путем замеров параметров технологических процессов, результаты измерений которых необходимы для регулирования процессом.

      Следовательно, качество измерений представляет собой совокупность свойств состояния измерений, обеспечивающих результаты измерений с требуемыми точностными характеристиками, получаемые в необходимом виде за определенный отрезок времени.

      Основные свойства состояния измерений:

      • точность результатов измерений;

      • воспроизводимость результатов измерений;

      • сходимость результатов измерений;

      • быстрота получения результатов;

      При этом под воспроизводимостью результатов измерений понимается близость результатов измерений одной и той же величины, полученные в разных местах, разными методами, разными средствами, разными операторами, в разное время, однако в одних и тех же условиях измерений (температуре, давлении, влажности и т.д.).

      Сходимость результатов измерений — это близость результатов измерений одной и той же величины, проведенных повторно с применением одних и тех же средств, одним и тем же методом в одинаковых условиях и с той же тщательностью.

      Любое измерение или количественное оценивание чего-либо осуществляется, используя соответствующие шкалы.

      Шкала — это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин. Шкалой измерений называется принятая по соглашению последовательность значений одноименных величин различного размера.

      В метрологии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств различных объектов. Практически используют пять видов шкал: шкалу наименований, шкалу порядка, шкалу интервалов, шкалу отношений и шкалу абсолютных значений.

      С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

      Шкала интервалов. Это такая шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть календарное время (начало летоисчисления в разных календарях устанавливалось по случайным причинам, температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.).

      Шкала отношений. Эта шкала отличается от шкалы интервалов только тем, что в ней строго определено положение нулевой точки. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

      По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени — по шкале отношений.

      При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину объекта, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в данном случае) и т.п. Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерения: измерить какую-либо величину — значит найти опытным путем ее отношение к соответствующей единице измерения.

      Шкала абсолютных величин. Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются

      абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений, с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

      Результаты измерений по шкале абсолютных величин имеют наибольшую достоверность, информативность и чувствительность к неточностям измерений.

      Шкалы интервалов, отношений и абсолютных величин называются метрическими, так как при их построении используются некоторые меры, т.е. размеры, принятые в качестве единиц измерений.

      Читайте также: