Сетевая модель это в информатике кратко

Обновлено: 18.05.2024

На заре создания компьютерных сетей были разработаны модели взаимодействия сетевых устройств, которые описывали программную и аппаратную реализации. Среди разработанных моделей наибольшее распространение получили:

  • Сетевая модель OSI (Open Systems Interconnection).
  • Модель DOD (Семейство TCP/IP).
  • Модель SPX/IPX.

Сетевая модель — это описание принципов работы протоколов сетевого взаимодействия, спецификация которых закреплена в стандартах связи и используется для передачи данных в цифровом виде.

Сетевая модель OSI

Для того чтобы корректно описать совместную работу сетевых устройств необходимо рассмотреть разные аспекты организации связи между ними. Модель OSI разбивает систему построения связи между сетевыми устройствами на уровни:

  1. Физический.
  2. Канальный.
  3. Сетевой.
  4. Транспортный.
  5. Сеансовый.
  6. Представления.
  7. Прикладной.

Первые три уровня описывают среду передачи данных.

Физический уровень

Физический уровень (physical layer) отвечает за аппаратную реализацию передачи битов информации, то есть обеспечивает работу физических устройств: сетевых адаптеров, концентраторов, повторителей, медиаконвертеров (устройств для преобразования сигнала при переходе из сети с одной средой передачи данных в сеть с другой средой).

На физическом уровне рассматривают среды передачи данных: последовательный или параллельный порт, коаксиальный кабель, витая пара, радиоканал, оптоволокно, спутниковый интернет и т.д. Для передачи данных на физическом уровне существуют свои протоколы, то есть правила, по которым должен быть преобразован и передан сигнал с данными. Вы наверняка встречались с такими протоколами: IEEE 802.15 (Bluetooth), 802.11 Wi-Fi, GSM, DSL.

Канальный уровень

Канальный уровень (data link layer) используется для организации передачи данных по сети между устройствами и для контроля ошибок целостности данных. Если на физическом уровне обеспечивается передача битов информации, то на канальном — передача кадров (фреймов).

Каждый кадр позволяет передать 1446 байтов информации и содержит кроме служебной информации контрольную сумму кадра — хэш-сумма, которая рассчитывается по данным перед передачей и после передачи позволяет проверить сохранность данных. После получения хэш-сумма вновь рассчитывается по пришедшим данным и должна совпасть с той, которая передаётся в кадре. Если совпадает, можно считать, что данные переданы верно.

Сетевой уровень

Сетевой уровень (network layer) позволяет прокладывать путь данных по сети от одного сетевого устройства к другому, то есть определяет маршрут.

Создатели интернета спроектировали работу сетевых устройств как распределённой системы. Работу такой системы очень сложно парализовать. Путь внутри сети определяется для каждого пакета отдельно. Такая архитектура системы сложна, но обеспечивает устойчивое взаимодействие устройств, которые соединены любым образом в единую сеть.

Транспортный уровень

Транспортный уровень (transport layer) обеспечивает необходимую целостность данных и выстраивает пакеты в правильный порядок.

Веб-разработчикам чаще всего приходится сталкиваться с протоколами TCP и UDP. TCP используется для данных, целостность и порядок которых должны быть гарантирована, UDP — для данных, целостность которых важна только в конкретный момент времени внутри небольшого блока.

Вы наверняка знакомы с подёргиванием видео или небольшими прерываниями звука, если пользовались потоковыми сервисами (например, YouTube, Apple Music, Spotify и другими), которые используют под капотом в основном UDP. Зато, когда загружается страничка какого-то сайта, потерь нет. Это как раз проверка целостности на уровне протокола TCP.

Сеансовый уровень

Сеансовый уровень (session layer) позволяет организовать сеанс связи между устройствами сети. Это необходимо для работы приложений.

Вы можете знать протокол RPC (Remote Procedure Call Protocol — удалённый вызов процедур), если пользовались API на его основе (например, JSON-RPC, GraphQL или gRPC). Однако более распространённый протокол PPTP (Point-to-Point Tunneling Protocol) менее известен широкой аудитории, при этом используется он, например, для организации работы VPN (Virtual Private Network), обеспечивая туннель между компьютером и локальной сетью, имеющей подключение к интернету.

Уровень представления

Уровень представления (presentation layer) служит для организации преобразования данных (кодирования и декодирования), преобразования протоколов и прочих служебных задач высокого уровня.

С помощью протоколов этого уровня данные в форматах, которые используются на более низких уровнях, преобразуются к формату, который подходит для работы приложений. На этом уровне появляются абстракции представления данных — форматы и структуры данных, что позволяет подготовить данные к пересылке по сети и произвести обратное преобразование.

Например, преобразование изображений от битов, которые путешествуют по сети, к форматам типа JPEG или TIFF происходит именно на этом уровне.

Прикладной уровень

Прикладной уровень (application layer) — уровень приложений, то есть уровень, который обеспечивает максимальный уровень абстракции данных.

Другие модели

Безусловно модель OSI очень сложна и не раз подвергалась критике. В то же время эта модель предоставляет наиболее полное представление о том, как передаются данные по сети — от физической среды для передачи данных до особенностей организаций данных в специальные структуры, форматы и системы.

Иногда из модели OSI выделяют несколько уровней или отдельные семейства протоколов, которые могут использоваться для конкретных практических задач на программном уровне, в отрыве от конкретной на уровне аппаратной реализации. Примером могут служить модели DOD, IPX/SPX или AppleTalk. Но это удобно лишь с практической точки зрения: отсечь всё лишнее, чтобы вести разработку программного обеспечения наиболее эффективным способом.

Модель TCP/IP разрабатывалась для описания протоколов передачи данных в распределённых сетях и использовалась при проектировании оборудования и создания программного обеспечения для прообраза современного интернета. Четыре уровня этой модели соответствуют семи уровням модели OSI следующим образом:

  1. Уровень сетевого доступа TCP/IP (Network Access Layer) включает:
    • Физический уровень OSI.
    • Канальный уровень OSI.
  2. Межсетевой уровень TCP/IP (Internet Layer) соответствует:
    • Сетевому уровню OSI.
  3. Транспортный уровень TCP/IP (Transport Layer) соответствует:
    • Транспортному уровню OSI.
  4. Прикладной уровень TCP/IP (Application layer) включает:
    • Прикладной уровень OSI.
    • Представления уровень OSI.
    • Сеансовый уровень OSI.

Модель IPX/SPX была разработана изначально для организации сетей в операционной системе DOS. Протоколы IPX для маршрутизации и SPX для передачи данных были широко распространены в 90-х годах прошлого века, а потом уступили пальму первенства стеку TCP/IP, поскольку не обладали достаточной эффективностью при передаче данных в глобальных сетях. Сейчас количество операционных систем, в которых реализован стек протоколов IPX/SPX стремительно сокращается. Модель IPX/SPX использует три уровня, аналогичных модели OSI:

  1. Сетевой.
  2. Транспортный.
  3. Сеансовый.

На практике

Игорь Коровченко

Мониторинг пакетов

Существуют специальные утилиты, которые позволяют просматривать пакеты в сетевом трафике, что позволяет разобраться с работой того или иного сетевого устройства. В Linux и большинстве Unix-подобных систем есть консольная утилита tcpdump, есть и кросс-платформенная утилита Wireshark с графическим интерфейсом. Эти две утилиты в основном и используются для мониторинга пакетов.

Wireshark

Утилиту Wireshark можно скачать и установить с официального сайта. Она опенсорсная и имеет графический интерфейс, который состоит из трёх частей (сверху вниз):

  • список пакетов, пересылаемых по сети;
  • пакет, представленный в текстовом виде;
  • пакет, представленный в бинарном виде.

Рабочее окно утилиты Wireshark

В Wireshark есть предустановленные фильтры, но можно формировать и собственные с помощью мастера или вручную в строке фильтрации в самом верху окна. Утилита Wireshark поможет веб-разработчику детально разобраться с пакетами, которые отправляются серверу или приходят от сервера. Если веб-сервер установлен на компьютере с Wireshark, можно посмотреть, как пользователи работают с сайтом.

Мониторинг пакетов также может помочь выявить аномальный трафик и проанализировать безопасность компьютера с точки зрения его работы с сетью. Данные можно сохранять в текстовый файл для последующего анализа в Wireshark или любым другим способом.

Tcpdump

Если графический интерфейс не доступен, например, вы настраиваете удалённый сервер, можно использовать tcpdump. Чтобы просмотреть трафик, надо набрать команду:

Не забывайте, что на некоторых операционных системах, утилиту необходимо запускать от имени администратора.

Пакеты можно фильтровать. Например, чтобы вывести пакеты, которые приходят на 80-й порт по протоколам транспортного уровня TCP или UDP, нужно выполнить команду:

Информацию можно выводить в файл, а не в терминал. Для этого нужно указать соответствующий ключ:

Чтобы прочитать этот файл, можно использовать Wireshark, который поддерживает данные в формате PCAP, или тот же tcpdump:

Сетевые информационные модели применяются для отражения систем со сложной структурой, в которых связи между элементами имеют произвольный характер.

Например, различные региональные части глобальной компьютерной сети Интернет (американская, европейская, российская, австралийская и так далее) связаны между собой высокоскоростными линиями связи. При этом одни части (например, американская) имеют прямые связи со всеми региональными частями Интернета, а другие могут обмениваться информацией между собой только через американскую часть (например, российская и австралийская).

Построим граф, который отражает структуру глобальной сети Интернет (рис. 2.7). Вершинами графа являются региональные сети. Связи между вершинами носят двусторонний характер и поэтому изображаются ненаправленными линиями (ребрами), а сам граф поэтому называется неориентированным.

Представленная сетевая информационная модель является статической моделью. С помощью сетевой динамической модели можно, например, описать процесс передачи мяча между игроками в коллективной игре (футболе, баскетболе и так далее).

Рис. 2.7. Сетевая структура глобальной сети Интернет

Объект-оригинал можно заменить набором его свойств: названий (величин) и значений. Набор свойств, содержащий всю необходимую информацию об исследуемых объектах и процессах, называют информационной моделью.

В табл. 2.1 приведен пример информационной модели дачного дома — карточка из каталога, по которому заказчик строительной компании может выбрать подходящий проект. Каждая карточка в каталоге содержит названия (величины) свойств дома (слева) и значения этих свойств (справа).

Внешний вид
Длина 10м
Ширина 8 м
Количествоэтажей
Материал стен Кирпич
Толщина стен 0,6 м
Внутренняяотделка стен Доска
Материалкрыши Шифер

Информационные модели представляют объекты и процессы в образной или знаковой форме. По способу представления различают следующие виды информационных моделей — рис. 2.1.


Образные модели (рисунки, фотографии и др.) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке и др.).

Много информации дают специалистам полученные со спутников фотографии поверхности Земли (рис. 2.2).


Рис. 2.2. Полученная со спутника фотография территории в районе Черного моря

Широко используются образные информационные модели в образовании (иллюстрации в учебниках (рис. 2.3), учебные плакаты по различным предметам) и науках, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.).


Рис. 2.3. Построение римского легиона в три линии

Знаковые информационные модели строятся с использованием различных языков (знаковых систем). Знаковая информационная модель может быть представлена в форме текста на естественном языке или программы на языке программирования, формулы (например, площади прямоугольника S = аb) и т. д.

Во многих моделях сочетаются образные и знаковые элементы. На рис. 2.4 приведен пример модели одноклеточной водоросли хламидомонады. Нарисованные части водоросли — образные элементы этой модели, а надписи снизу и справа от рисунка — знаковые элементы.


Примерами смешанных информационных моделей могут служить географические карты, графики, диаграммы и пр. Во всех этих моделях используются одновременно и графические элементы, и символьный язык.




Сетевые информационные модели применяются для отражения систем со сложной структурой, в которых связи между элементами имеют произвольный характер.

Например, различные региональные части глобальной компьютерной сети Интернет (американская, европейская, российская, австралийская и так далее) связаны между собой высокоскоростными линиями связи. При этом одни части (например, американская) имеют прямые связи со всеми региональными частями Интернета, а другие могут обмениваться информацией между собой только через американскую часть (например, российская и австралийская).

Построим граф, который отражает структуру глобальной сети Интернет (рис. 2.7). Вершинами графа являются региональные сети. Связи между вершинами носят двусторонний характер и поэтому изображаются ненаправленными линиями (ребрами), а сам граф поэтому называется неориентированным.

Представленная сетевая информационная модель является статической моделью. С помощью сетевой динамической модели можно, например, описать процесс передачи мяча между игроками в коллективной игре (футболе, баскетболе и так далее).

Рис. 2.7. Сетевая структура глобальной сети Интернет

Объект-оригинал можно заменить набором его свойств: названий (величин) и значений. Набор свойств, содержащий всю необходимую информацию об исследуемых объектах и процессах, называют информационной моделью.

В табл. 2.1 приведен пример информационной модели дачного дома — карточка из каталога, по которому заказчик строительной компании может выбрать подходящий проект. Каждая карточка в каталоге содержит названия (величины) свойств дома (слева) и значения этих свойств (справа).

Внешний вид
Длина 10м
Ширина 8 м
Количествоэтажей
Материал стен Кирпич
Толщина стен 0,6 м
Внутренняяотделка стен Доска
Материалкрыши Шифер

Информационные модели представляют объекты и процессы в образной или знаковой форме. По способу представления различают следующие виды информационных моделей — рис. 2.1.


Образные модели (рисунки, фотографии и др.) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке и др.).

Много информации дают специалистам полученные со спутников фотографии поверхности Земли (рис. 2.2).


Рис. 2.2. Полученная со спутника фотография территории в районе Черного моря

Широко используются образные информационные модели в образовании (иллюстрации в учебниках (рис. 2.3), учебные плакаты по различным предметам) и науках, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.).


Рис. 2.3. Построение римского легиона в три линии

Знаковые информационные модели строятся с использованием различных языков (знаковых систем). Знаковая информационная модель может быть представлена в форме текста на естественном языке или программы на языке программирования, формулы (например, площади прямоугольника S = аb) и т. д.

Во многих моделях сочетаются образные и знаковые элементы. На рис. 2.4 приведен пример модели одноклеточной водоросли хламидомонады. Нарисованные части водоросли — образные элементы этой модели, а надписи снизу и справа от рисунка — знаковые элементы.


Примерами смешанных информационных моделей могут служить географические карты, графики, диаграммы и пр. Во всех этих моделях используются одновременно и графические элементы, и символьный язык.

Сетевая модель данных - это логическая модель данных, представляющая их сетевыми структурами типов записей и связанные отношениями мощности один-к-одному или один-ко-многим.
В отличие от реляционной модели, связи в ней моделируются наборами, которые реализуются с помощью указателей. Сетевые модели данных являются расширенной версией иерархической модели, однако основным отличием является то, что в сетевых моделях данных имеются указатели в обоих направлениях, которые соединяют родственную информацию.
Сетевую модель можно представить как граф узлами, которого является запись, а ребрами - набор. Сегменты данных в сетевых БД могут иметь множественные связи с сегментами старшего уровня. При этом направление и характер связи в сетевых БД не являются столь очевидными, как в случае иерархических БД. Поэтому имена и направление связей должны идентифицироваться при описании БД.

Содержание

Историческая справка

В 1971 группа DTBG (Database Task Group) представила в американский национальный институт стандартов отчет, который послужил в дальнейшем основой для разработки сетевых систем управления базами данных. Стандарт сетевой модели был создан в 1975 году организацией CODASYL (Conference of Data System Languages), которая определила базовые понятия модели и формальный язык описания.

Типичным представителем систем, основанных на сетевой модели данных, является СУБД IDMS (Integrated Database Management System), разработанная компанией Cullinet Software, Inc. и изначально ориентированная на использования на мейнфреймах компании IBM. Архитектура системы основана на предложениях DBTG организации CODASYL. В настоящее время IDMS принадлежит компании Computer Associates.

Основные элементы сетевой модели данных

Особенности построения сетевой модели данных

  • База данных может состоять из произвольного количества записей и наборов различных типов.
  • Связь между двумя записями может выражаться произвольным количеством наборов.
  • В любом наборе может быть только один владелец.
  • Тип записи может быть владельцем в одних типах наборов и членом в других типах наборов.
  • Тип записи может не входить ни в какой тип наборов.
  • Допускается добавление новой записи в качестве экземпляра владельца, если экземпляр-член отсутствует.
  • При удалении записи-владельца удаляются соответствующие указатели на экземпляры-члены, но сами записи-члены не уничтожаются (сингулярный набор).

Реализация групповых отношений в сетевой модели осуществляется с использованием указателей (адресов связи или ссылок), которые устанавливают связь между владельцем и членом группового отношения. Запись может состоять в отношениях разных типов (1:1, 1:N, M:N). Заметим, что если один из вариантов установления связи 1:1 очевиден (в запись – владелец отношения, поля которой соответствуют атрибутам сущности, включается дополнительное поле – указатель на запись – член отношения), то возможность представления связей 1:N и M:N таким же образом весьма проблематична. Поэтому наиболее распространенным способом организации связей в сетевых СУБД является введение дополнительного типа записей, полями которых являются указатели.

Преимущества

  1. Стандартизация. Появление стандарта CODASYL, который определил базовые понятия модели и формальный язык описания.
  2. Быстродействие. Быстродействие сетевых баз данных сравнимо с быстродействием иерархических баз данных.
  3. Гибкость. Множественные отношения предок/потомок позволяют сетевой базе данных хранить данные, структура которых была сложнее простой иерархии.
  4. Универсальность. Выразительные возможности сетевой модели данных являются наиболее обширными в сравнении с остальными моделями.
  5. Возможность доступа к данным через значения нескольких отношений (например, через любые основные отношения).

Недостатки

  1. Жесткость. Наборы отношений и структуру записей необходимо задавать наперёд. Изменение структуры базы данных ведет за собой перестройку всей базы данных.. Связи закреплены в записях в виде указателей. При появлении новых аспектов использования этих же данных может возникнуть необходимость установления новых связей между ними. Это требует введения в записи новых указателей, т.е. изменения структуры БД, и, соответственно, переформирования всей базы данных.
  2. Сложность. Сложная структура памяти.

Операции над данными сетевой модели

  • Операция ЗАПОМНИТЬ позволяет занести в БД новую запись и автоматически включить эту запись в групповые отношения, где она объявлена подчиненной с соответствующим режимом включения.
  • Операция ВКЛЮЧИТЬ В ГРУППОВОЕ ОТНОШЕНИЕ позволяет существующю запись связать с с записью-владельцем.
  • Операция ПЕРЕКЛЮЧИТЬ дает возможность подчиненную запись связать с записью-владельцем в том же групповом отношении.
  • Операция ОБНОВИТЬ изменять значения элементов записей, существующих в БД. Перед выполнением этого оператора соответствующая запись предварительно должна быть извлечена.
  • Операция ИЗВЛЕЧЬ позволяет последовательно (т.е. перебирая) извлечь запись. Запись можно извлечь по значению первичного ключа или используя групповые отношения, в которых они участвуют. Так, от владельца можно перейти к записям – членам, а от записи-члена перейти к владельцу группового отношения.
  • Операция УДАЛИТЬ дает возможность убрать из БД ненужную запись. Если удаляемая запись объявлена владельцем в групповом отношении , то анализируется класс членства подчиненных записей. Обязательные члены должны быть предварительно откреплены от этого владельца, т.е. удалены из группового отношения, фиксированные будут удалены вместе с ним, а необязательные останутся в БД.
  • Операция ИСКЛЮЧИТЬ ИЗ ГРУППОВОГО ОТНОШЕНИЯ позволяет разорвать связь между записью-владельцем и записью-членом группового отношения, сохранив обе в БД.

Использования сетевой модели

Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из "наборов" – поименованных двухуровневых деревьев. "Наборы" соединяются с помощью "записей-связок", образуя цепочки и т.д. При разработке сетевых моделей было выдумано множество "маленьких хитростей", позволяющих увеличить производительность СУБД, но существенно усложнивших последние. Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал "Сетевая база – это самый верный способ потерять данные".

СУБД, поддерживающие сетевую модель, широко использовались на вычислительных системах серии IBM 360/370 (ЕС ЭВМ). В качестве примеров таких систем можно указать IDMS, UNIBAD (БАНК), аналоги СЕДАН, СЕТОР. На персональных компьютерах сетевые СУБД не получили широкого распространения. Примером сетевой СУБД для персонального компьютера является db_VISTA III. Отметим, что система db_VISTA реализована на языке С и поэтому является переносимой. Система может эксплуатироваться на ПЭВМ типа IBM PC, SUN, Macintosh.

Пример сетевой базы данных

На рисунке показан простой пример схемы сетевой БД.

На этом рисунке показаны три типа записи: Отдел, Служащие и Руководитель и три типа связи: Состоит из служащих, Имеет руководителя и Является служащим.

В типе связи Состоит из служащих типом записи-предком является Отдел, а типом записи-потомком – Служащие (экземпляр этого типа связи связывает экземпляр типа записи Отдел со многими экземплярами типа записи Служащие, соответствующими всем служащим данного отдела).

В типе связи Имеет руководителя типом записи-предком является Отдел, а типом записи-потомком – Руководитель (экземпляр этого типа связи связывает экземпляр типа записи Отдел с одним экземпляром типа записи Руководитель, соответствующим руководителю данного отдела).

Наконец, в типе связи Является служащим типом записи-предком является Руководитель, а типом записи-потомком – Служащие (экземпляр этого типа связи связывает экземпляр типа записи Руководитель с одним экземпляром типа записи Служащие, соответствующим тому служащему, которым является данный руководитель).

Сетевая модель — теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня (точнее, данные протокола вышестоящего уровня передавались бы с помощью нижележащих протоколов — этот процесс называют инкапсуляцией, процесс извлечения данных вышестоящего уровня из данных нижестоящего — деинкапсуляцией). Модели бывают как практические (использующиеся в сетях, иногда запутанные и/или не полные, но решающие поставленные задачи), так и теоретические (показывающие принципы реализации сетевых моделей, приносящие в жертву наглядности производительность/возможности).

Наиболее известные сетевые модели:

    , она же Модель ВОС, Взаимосвязь открытых систем. Эталонная модель. — теоретическая модель, описанная в международных стандартах и ГОСТах. — практически использующаяся модель, принятая для работы в Интернете.
  • Модель SPX/IPX — модель стека SPX/IPX (семейство протоколов для ЛВС) — модель для сетей AppleTalk (протоколы для работы сетей с оборудованием Apple)
  • Модель Fibre Channel — модель для высокоскоростных сетей Fibre Channel

Литература

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Сетевая модель" в других словарях:

СЕТЕВАЯ МОДЕЛЬ — информац. модель комплекса взаимосвязанных работ, представленная в виде схемы (сети), таблицы, цифрового кода или в к. л. ином виде и отображающая распределение этих работ во времени. Наиболее распространённой формой С. м. является сетевой график … Большой энциклопедический политехнический словарь

СЕТЕВАЯ МОДЕЛЬ — интерпретация программы (плана) реализации нек рого комплекса взаимосвязанных работ в виде графа ориентированного без контуров, отражающего естественный порядок выполнения работ во времени с нек рыми дополнительными данными комплекса (стоимость,… … Математическая энциклопедия

Сетевая модель данных — логическая модель данных в виде произвольного графа. См. также: Структуры баз данных Финансовый словарь Финам … Финансовый словарь

СЕТЕВАЯ МОДЕЛЬ OSI — Open Systems Interconnection Basic Reference Model базовая эталонная модель взаимодействия открытых систем абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к сети. Каждый уровень… … Словарь бизнес-терминов

сетевая модель данных — Модель данных, предназначенная для представления данных сетевой структуры и манипулирования ими. [ГОСТ 20886 85] Тематики организация данных в сист. обраб. данных … Справочник технического переводчика

Сетевая модель данных — Необходимо перенести в эту статью содержимое статьи Сетевая СУБД и поставить оттуда перенаправление. Вы можете помочь проекту, объединив статьи (cм. инструкцию по объединению). В случае необходимости обсуждения целесообразности объединения,… … Википедия

Сетевая модель OSI — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Сетевая модель данных — 60. Сетевая модель данных Модель данных, предназначенная для представления данных сетевой структуры и манипулирования ими Источник: ГОСТ 20886 85: Организация данных в системах обработки данных. Термины и определения … Словарь-справочник терминов нормативно-технической документации

Сетевая модель ВОС — … Википедия

СЕТЕВАЯ МОДЕЛЬ ДЕЯТЕЛЬНОСТИ ОПЕРАТОРА — представление деятельности оператора решению той или иной задачи управления в виде сетевой модели. Для ее построения деятельность оператора разбивается на ряд отдельных действий, имеющих вполне определенный смысл. Такими действиями могут быть… … Энциклопедический словарь по психологии и педагогике

Читайте также: