Рост и размножение микробов кратко

Обновлено: 30.06.2024

Для того чтобы изучать микроорганизмы, определять этиологические факторы инфекционных заболеваний, заниматься вопросами профилактики и лечения инфекционных заболеваний и решать многие другие вопросы, связанные с микроорганизмами, необходимо иметь их в достаточном количестве, а это значит - создавать все условия для нормального роста и размножения микроорганизмов.

Размножение микроорганизмов происходит путем поперечного деления, почкованием, образования спор, репродукции.

Рост микроорганизмов означает увеличение массы микробов в результате синтеза клеточного материала и воспроизведения всех клеточных компонентов и структур.

О бактериях, спирохетах, актиномицетах, грибах, риккетсиях, микоплазмах, простейших, хламидиях говорят, что они размножаются, а вирусы и фаги (вирусы микробов) – репродуцируются.

Размножение микроорганизмов соответствует определенным закономерностям. Скорость деления микроорганизмов различна, она зависит от вида микроба, возраста культуры, особенностей естественной и искусственной питательной среды, температуры, концентрации углекислого газа и многих других факторов.

В процессе размножения микроорганизмы на различных этапах претерпевают морфологические и физиологические изменения (по форме, размерам, окрашиваемости, биохимической активности, чувствительности к физическим и химическим факторам и пр.).

Микроорганизмы обладают возрастной изменчивостью, т.е. особи изменяются на разных стадиях роста, созревания и старения. Эти изменения наблюдаются в нормальном цикле индивидуального развития микроорганизма, который зависит от природы организма, от сложности его строения и последовательности в развитии.

Наиболее простым циклом развития среди микроорганизмов обладают бактерии. Размножаются они простым поперечным делением в различных плоскостях. В зависимости от этого клетки могут располагаться беспорядочно, гроздями, цепочками, пакетами, попарно, по четыре и т.д.

Характерной чертой бактерий, отличающей их от многочисленных животных и растений, является их необыкновенная скорость размножения.

Каждая бактериальная клетка в среднем в течение получаса претерпевает деление, что обусловлено усиленным обменом веществ, скоростью, с которой питательный материал поступает внутрь клетки.

Фактором, тормозящим размножение бактерий, является истощение питательного субстрата и отравление окружающей среды продуктами распада.

У бактерий различают восемь основных фаз размножения.

1. Исходная стационарная фаза, которая представляет собой период времени один – два часа от момента посева бактерий на питательную среду. В этой фазе размножение не происходит

2. Фаза задержки размножения (лаг – фаза), в течение которой размножение бактерий происходит очень медленно, а скорость их роста увеличивается. Продолжительность второй фазы около двух часов.

3. Фаза длится пять – шесть часов. Третья фаза характеризуется максимальной скоростью деления, уменьшением размеров клеток.

4. Фаза отрицательного ускорения (продолжается около двух часов). Скорость размножения бактерий снижается, число делящихся клеток уменьшается.

5. Стационарная фаза, длящаяся около двух часов. Число новых бактерий почти равно числу отмерших особей.

6. Фаза ускорения гибели клеток (длится около трех часов).

7. Фаза логарифмической гибели клеток (длится около пяти часов), при которой гибель клеток происходит с постоянной скоростью

8. Фаза уменьшения скорости отмирания. Оставшиеся в живых особи, переходят в состояние покоя.

Продолжительность фаз размножения не является постоянной величиной. Она может быть различной в зависимости от вида микроорганизмов и условий культивирования.

Цикл развития кокковидных бактерий сводится к росту клетки и последующему ее делению. Палочковидные аспорогенные бактерии в молодом возрасте растут, достигают максимума величины, затем делятся на две дочерние клетки, которые повторяют тот же цикл. У бацилл и клостридий в цикл развития включается при определенных условиях процесс спорообразования.

Спирохеты и риккетсии, как и бактерии, размножаются путем бинарного деления.

Среди микоплазм способностью размножаться обладают все элементарные тела сферической или овоидной формы. В процессе развития на элементарном теле появляется несколько нитевидных выростов, в которых формируются сферические тела. Постепенно нити становятся тоньше и образуются цепочки с четко выраженными сферическими тельцами. Затем происходит деление нитей на фрагменты и освобождение сферических телец.

Размножение некоторых микоплазм происходит путем отпочкования дочерних клеток от более крупных шаровидных тел. Поперечным делением микоплазмы размножаются, если процессы деления микоплазм идут синхронно с репликацией ДНК нуклеоида. При нарушении синхронности образуются нитевидные многонуклеоидные формы, в последующем делящиеся на кокковидные клетки.

Актиномицеты и грибы имеют две различные стадии развития: стадию вегетативного роста, при которой характерным является образования мицелия и стадию образования спор, формирующихся на спороносцах.

Важной особенностью актиномицетов и грибов является значительное разнообразие способов их размножения. Для них характерны вегетативное, бесполое и половое размножение.

Вегетативное размножение осуществляется путем деления на фрагменты гиф с последующим образованием отдельных палочковидныхи кокковидных клеток.

Бесполое размножение происходит вегетативным путем (рост фрагментов гиф или их отдельных клеток) и при помощи более или менее специализированных органов размножения (спор и конидий). Наиболее частый, бесполый, путь размножения проявляется в образовании экзогенных и эндогенных спор. Экзоспоры или конидии образуются на концах плодоносящих гиф, но заключены внутри общего мешочка – спорангия. Гифы, несущие спорангии, называются спорангионосцами. Спорангионосцы могут быть прямыми, волнистыми, спиральными.

Половое размножение происходит при помощи специальных органов – аскоспор, базидиоспор, образованию которых предшествует половой процесс. По биологическому назначению споры актиномицетов и грибов бывают покоящиеся, служащие для сохранения вида в течение определенного периода и служащие для быстрого размножения.

Споры актиномицетов и грибов образуются каждой особью в большом количестве, так как в отличие от спор бактерий служат, в основном, целям размножения. Они менее устойчивы к факторам окружающей среды, чем споры бактерий.

У простейших, так же как у актиномицетов и грибов, наряду с размножением путем деления существует и половой процесс.

Хламидии, вирусы и фаги имеют своеобразные циклы развития.

Размножение хламидий начинается с проникновения элементарных телец в чувствительную тканевую клетку путем эндоцитоза. Эти тельца в вакуоле клетки превращаются в вегетативные формы, называемые инициальными или ретикулярными тельцами, которые обладают способностью делиться. Ретикулярные тельца имеют пластинную клеточную стенку, а в цитоплазме – рыхло расположенные ядерные фибриллы и многочисленные рибосомы. После многократного деления ретикулярные тельца превращаются в промежуточные формы, из которых развивается новое поколение элементарных телец. Весь цикл развития хламидий длится 40 – 48 часов и заканчивается формированием микроколонии хламидий в цитоплазме клетки – хозяина.

После разрыва стенки вакуоли и полного разрушения клетки – хозяина, микроколонии хламидий, оказавшись за пределами целой клетки, распадается на самостоятельные элементарные тельца, и цикл проникновения хламидий в клетку с последующим их размножением повторяется.

Репродукция вирусов характеризуется последовательностью отдельных стадий.

1. Стадия адсорбции. Вирионы адсорбируются на поверхностных структурах клетки. При этом происходит взаимодействие комплементарных структур вириона и клетки, которые называются рецепторами.

3. Стадия разрушения внешней оболочки и капсида вириона при помощи протеолитических ферментов клетки – хозяина. У одних вирионов процесс разрушения их оболочки начинается еще на стадии адсорбции, у других – в пиноцитарной вакуоле, у третьих – непосредственно в цитоплазме клетки при участии тех же протеолитических ферментов.

4. Стадия синтеза вирусных белков и репликации нуклеиновых кислот. После полного или частичного освобождения вирусной нуклеиновой кислоты начинается процесс синтеза вирусных белков и репликация нуклеиновых кислот.

5. Стадия сборки или морфогенез вириона. Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их нуклеиновой кислоты, что обеспечивается самосборкой белковых молекул вокруг нуклеиновой кислоты. У одних вирусов этот процесс происходит в цитоплазме, у других – в ядре клетки хозяина. У сложноорганизованных вирусов, имеющих внешнюю оболочку, дальнейшая сборка происходит в цитоплазме во время выхода их из клетки.

6. Стадия выхода вирионов из клетки – хозяина. Ряд сложных вирусов выходят из клетки – хозяина, при этом клетки в течение некоторого времени сохраняют жизнеспособность, а потом погибают. Простые вирионы выходят из клетки через образовавшиеся в ее оболочке отверстия, клетка – хозяин погибает, не сохраняя в течение какого – то времени жизнеспособность.

В некоторых случаях репродукция вирионов в клетках может происходить в течение многих месяцев и даже лет. Вирусы выделяются через клеточную оболочку. При делении таких клеток вирионы передаются дочерним клеткам, в свою очередь начинающим продуцировать вирусные частицы.

Существует три типа взаимодействия вируса с клеткой: продуктивный, абортивный и вирогенный.

Продуктивный тип взаимодействия заключается в образовании новых вирионов.

Абортивный тип взаимодействия может внезапно прерваться в стадии репликации вирусной нуклеиновой кислоты или синтеза вирусных белков, или морфогенеза вирионов.

Вирогенный тип характеризуется встраиванием (интеграцией) вирусной нуклеиновой кислоты в ДНК клетки, которая обеспечивает синхронность репликации вирусной и клеточной ДНК.

При репродукции фага также происходит адсорбция его на поверхности клетки (1 стадия) в результате взаимодействия аминогрупп белков, локализованных в периферической части хвостового отростка фага, и отрицательно заряженных карбоксильных групп на поверхности бактериальной клетки.

Различают обратимые и необратимые фазы адсорбции. Обратимая фаза характеризуется тем, что фиксированные фаги можно отделить от клетки путем энергичного помешивания или резко уменьшить концентрацию ионов. Освободившиеся фаги при сохраняют свою жизнеспособность.

В период второй необратимой фазы адсорбции фаг не отделяется от тела микробной клетки. Процесс адсорбции длится несколько минут. Под влиянием фермента, находящегося в хвостовом отростке фага, в теле микробной клетки на месте прикрепления фага образуется отверстие, через которое внутрь клетки проникает ДНК фага. Оболочка фага остается снаружи (2 стадия).

Некоторые фаги вводят свою нуклеиновую кислоту в клетку без предварительного механического повреждения клеточной стенки. В наступивший после проникновения в клетку нуклеиновой кислоты фага латентный период, осуществляется биосинтез фаговой нуклеиновой кислоты и белков капсида фага.

Происходит синтез ферментов, необходимых для репликации фаговой нуклеиновой кислоты и структурных белков фага (3 стадия).

В четвертой стадии происходит заполнение фаговой нуклеокислотой пустотелых фаговых частиц и формирование зрелых фагов. Осуществляется морфогенез фага.

В конце латентного периода происходит лизис зараженных микробных клеток и выход зрелых фаговых частиц (5 стадия).

Считают, что адсорбция фага длится 40 минут, латентный период – 75 минут. Весь цикл взаимодействия фага с микробной клеткой продолжается немногим больше трех часов.

Внедрение фага в микробную клетку не всегда сопровождается ее лизисом. Нередко взаимодействие фага с микробной клеткой ведет к образованию лизогенных культур.

По характеру взаимодействия с микробной клеткой различают умеренные и вирулентные фаги. Состояние лизогении вызывается умеренными фагами. Лизогенные микробные клетки являются устойчивыми к вирулентным фагам. Вирулентные фаги обуславливают формирование новых фагов и лизис микробной клетки.


Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.

Оглавление

  • ЛЕКЦИЯ № 1. Введение в микробиологию
  • ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий
  • ЛЕКЦИЯ № 3. Физиология бактерий

Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.

ЛЕКЦИЯ № 3. Физиология бактерий

1. Рост и размножение бактерий

Рост бактерий — увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий — процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала — сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток — колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность — 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

2. Питание бактерий

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют органогены — это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10—4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества — СО2);

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ — витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта — перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

3) направленность всех процессов метаболизма на обеспечение процессов размножения;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо — и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных — брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

Рост бактерий- это увеличение количества, массы и размеров всех микробной клетки, начинающийся сразу после ее деления. Рост неразрывно связан с размножением.

Размножение у бактерий процесссамовоспроизведения микробной клетки. Он начинается сразделения ДНК нуклеоида на две дочерние нити, каждая из которых затем достраивается комплементарной нитью, при этом одновременно происходит образование двух дочерних клеток (полуконсервативный способ). Бактерии размножаются поперечным делениемсрезким увеличением количества клеток в популяции, процесс повторяется через одинаковые промежутки времени (от нескольких минут до нескольких суток), являясь индивидуальной генетической характеристикой микробного вида. При делении могут образовываться либо две одинаковые клетки, либо две асимметричные (полиморфные).

Бактерии отличаются высоким темпом размножения на различных питательных средах, который характеризуется временем генерации. Это время между двумя делениями клетки, проходящее от момента появления клетки до момента деления (например, время генерации кишечной палочки - 20 мин, возбудителя туберкулеза - 14 час). Скорость размножения зависит от вида бактерий и условий культивирования (химического состава питательной среды, её агрегатного состояния, рН, температуры, аэрации, газового состава, наличия питательных веществ и стимуляторов роста и т. д.). При размножении бактерий на плотных питательных средах, они образуют колонии - потомство одной клетки, визуально определяемое на (или в) питательной среде. Изолированные колонии являются скоплениями микробов одного вида, и, как правило, одного клона.

Для характеристики колоний, растущих на питательных средах, применяется ряд стандартных параметров - макроскопическаяхарактеристика.

По форме колонии бывают правильные — округлые, или неправильные - амебовидные и ризоидные, напоминающие переплетающиеся корни деревьев. В зависимости от размеров выделяют колонии точечные (диаметр меньше 1 мм), мелкие (диаметр I — 2 мм), средние (диаметр 2 — 4 мм) и крупные (диаметр 4 — 6 мм и более).

Цвет определяется видом пигмента (белый, желтый, красный и др. – рис 25 - приложение). Пигментированные колонии, например, встречаются у стафилокока (белый, лимонно-жёлтый или золотистый), у сарцин цвет пигмента жёлтый, у бактерий рода Serratia красный, у дрожжеподобных грибов Candida albicans белый. Многие патогенные бактерии пигмента не образуют - их колонии прозрачные или опалесцирующие.

По консистенции колонии бактерий чаще бывают мягкие, слизистые или плотные, крошковидные. По характерукраев различают ровные края в виде четко выраженной линии и неровные — фестончатые и волнистые. Поверхность колоний бывает матовая или блестящая с глянцем, сухая или влажная, гладкая или шероховатая. Гладкие колонии обозначают буквой S (smooth - гладкие), шероховатые буквой R (rough - шероховатый).

При выращивании бактерий на жидкой питательной среде наблюдается последовательная смена отдельных фаз в размножении бактериальной популяции(рис. 9):

1. Начальная фаза (лаг-фаза). Размножения клеток не происходит; микробы адаптируются к питательной среде, увеличиваются в размерах, накапливают ферменты, начинается репликация ДНК. В конце фазы начинается медленное размножение микробов.

2. Экспоненциальная фаза (лог-фаза) характеризуется максимальной скоростью размножения, при этом число бактерий увеличивается в геометрической прогрессии.

3. Стационарная фаза, при которой наблюдается равновесие между количеством вновь образовавшихся клеток и количеством погибших.

4. Фаза отмирания. В эту фазу происходит гибель клеток.

Величину биомассы определяют по ее сухой массе, а также содержанию бактериального азота, белка, ДНК, фосфора.


Рис. 9. Кривая роста бактериальной культуры. По оси абсцисс – количество бактерий, по оси ординат - время

Общее количество бактериальных клеток исследуют в счетных камерах, окрашенных мазках или по измерению светорассеяния.




В счетных камерах (например, Горяева) подсчитывают не менее 600 клеток в 10 большых квадратах, затем вычисляют среднее количество клеток в одном большом квадрате и рассчитывают концентрацию клеток в суспензии по формуле:

где X – число клеток в 1 мл суспензии, α – число клеток в одном большом квадрате, b – разведение.

При подсчете бактерий в окрашенных мазках микропипеткой наносят 0,01 мл бактериальной взвеси, площадью около 1 см 2 , мазок фиксируют, окрашивают, микроскопируют. Общее количество бактерий в 0,01 мл равняется числу клеток в поле зрения микроскопа, деленному на площадь зрения в квадратных см, вычисленную методом микрометрии.

Измерение светорассеяния основано на принципе пропорциональности количества света, рассеиваемого бактериальными клетками, к их концентрацией. На практике используют простой метод сравнения помутнения исследуемой бактериальной взвеси с известными по концентрации стандартами мутности, а также объективные нефелометрические методы с использованием фотоэлектроколориметров.

Подсчет живых бактерий осуществляется путем количественного посева бактерий на питательные среды с последующим подсчетом количества колоний. Для этого посевной материал равномерно распределяют по поверхности хорошо высушенного питательного агара. Можно также посевной материал сначала смешать с расплавленным агаром, а затем разлить (либо в пустые чашки, либо на поверхность застывшего питательного агара в чашке Петри).

Микроорганизмы по условиям температурного культивирования подразделяются на 3 группы:

· Психрофилы (рост в пределах от - 6 0 до +35 0 С, оптимум 10-20 0 С);

· Мезофилы, живущие в диапазоне температур от 3 0 до 45-50 0 С (оптимум 30-37 0 С);

Рост бактерий- это увеличение количества, массы и размеров всех микробной клетки, начинающийся сразу после ее деления. Рост неразрывно связан с размножением.

Размножение у бактерий процесссамовоспроизведения микробной клетки. Он начинается сразделения ДНК нуклеоида на две дочерние нити, каждая из которых затем достраивается комплементарной нитью, при этом одновременно происходит образование двух дочерних клеток (полуконсервативный способ). Бактерии размножаются поперечным делениемсрезким увеличением количества клеток в популяции, процесс повторяется через одинаковые промежутки времени (от нескольких минут до нескольких суток), являясь индивидуальной генетической характеристикой микробного вида. При делении могут образовываться либо две одинаковые клетки, либо две асимметричные (полиморфные).

Бактерии отличаются высоким темпом размножения на различных питательных средах, который характеризуется временем генерации. Это время между двумя делениями клетки, проходящее от момента появления клетки до момента деления (например, время генерации кишечной палочки - 20 мин, возбудителя туберкулеза - 14 час). Скорость размножения зависит от вида бактерий и условий культивирования (химического состава питательной среды, её агрегатного состояния, рН, температуры, аэрации, газового состава, наличия питательных веществ и стимуляторов роста и т. д.). При размножении бактерий на плотных питательных средах, они образуют колонии - потомство одной клетки, визуально определяемое на (или в) питательной среде. Изолированные колонии являются скоплениями микробов одного вида, и, как правило, одного клона.

Для характеристики колоний, растущих на питательных средах, применяется ряд стандартных параметров - макроскопическаяхарактеристика.

По форме колонии бывают правильные — округлые, или неправильные - амебовидные и ризоидные, напоминающие переплетающиеся корни деревьев. В зависимости от размеров выделяют колонии точечные (диаметр меньше 1 мм), мелкие (диаметр I — 2 мм), средние (диаметр 2 — 4 мм) и крупные (диаметр 4 — 6 мм и более).

Цвет определяется видом пигмента (белый, желтый, красный и др. – рис 25 - приложение). Пигментированные колонии, например, встречаются у стафилокока (белый, лимонно-жёлтый или золотистый), у сарцин цвет пигмента жёлтый, у бактерий рода Serratia красный, у дрожжеподобных грибов Candida albicans белый. Многие патогенные бактерии пигмента не образуют - их колонии прозрачные или опалесцирующие.

По консистенции колонии бактерий чаще бывают мягкие, слизистые или плотные, крошковидные. По характерукраев различают ровные края в виде четко выраженной линии и неровные — фестончатые и волнистые. Поверхность колоний бывает матовая или блестящая с глянцем, сухая или влажная, гладкая или шероховатая. Гладкие колонии обозначают буквой S (smooth - гладкие), шероховатые буквой R (rough - шероховатый).

При выращивании бактерий на жидкой питательной среде наблюдается последовательная смена отдельных фаз в размножении бактериальной популяции(рис. 9):

1. Начальная фаза (лаг-фаза). Размножения клеток не происходит; микробы адаптируются к питательной среде, увеличиваются в размерах, накапливают ферменты, начинается репликация ДНК. В конце фазы начинается медленное размножение микробов.

2. Экспоненциальная фаза (лог-фаза) характеризуется максимальной скоростью размножения, при этом число бактерий увеличивается в геометрической прогрессии.

3. Стационарная фаза, при которой наблюдается равновесие между количеством вновь образовавшихся клеток и количеством погибших.

4. Фаза отмирания. В эту фазу происходит гибель клеток.

Величину биомассы определяют по ее сухой массе, а также содержанию бактериального азота, белка, ДНК, фосфора.


Рис. 9. Кривая роста бактериальной культуры. По оси абсцисс – количество бактерий, по оси ординат - время

Общее количество бактериальных клеток исследуют в счетных камерах, окрашенных мазках или по измерению светорассеяния.

В счетных камерах (например, Горяева) подсчитывают не менее 600 клеток в 10 большых квадратах, затем вычисляют среднее количество клеток в одном большом квадрате и рассчитывают концентрацию клеток в суспензии по формуле:

где X – число клеток в 1 мл суспензии, α – число клеток в одном большом квадрате, b – разведение.

При подсчете бактерий в окрашенных мазках микропипеткой наносят 0,01 мл бактериальной взвеси, площадью около 1 см 2 , мазок фиксируют, окрашивают, микроскопируют. Общее количество бактерий в 0,01 мл равняется числу клеток в поле зрения микроскопа, деленному на площадь зрения в квадратных см, вычисленную методом микрометрии.

Измерение светорассеяния основано на принципе пропорциональности количества света, рассеиваемого бактериальными клетками, к их концентрацией. На практике используют простой метод сравнения помутнения исследуемой бактериальной взвеси с известными по концентрации стандартами мутности, а также объективные нефелометрические методы с использованием фотоэлектроколориметров.

Подсчет живых бактерий осуществляется путем количественного посева бактерий на питательные среды с последующим подсчетом количества колоний. Для этого посевной материал равномерно распределяют по поверхности хорошо высушенного питательного агара. Можно также посевной материал сначала смешать с расплавленным агаром, а затем разлить (либо в пустые чашки, либо на поверхность застывшего питательного агара в чашке Петри).

Микроорганизмы по условиям температурного культивирования подразделяются на 3 группы:

· Психрофилы (рост в пределах от - 6 0 до +35 0 С, оптимум 10-20 0 С);

· Мезофилы, живущие в диапазоне температур от 3 0 до 45-50 0 С (оптимум 30-37 0 С);

Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.

Рост — это увеличение размеров отдельной особи.

Размножение — способность организма к воспроизведению.

Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.

Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.

При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:

1. Фаза исходная (латентная) — микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.

2. Фаза логарифмического инкубационного роста — идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 15—30 мин.

3. Стационарная фаза — число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.

4. Фаза отмирания — характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.

5ч 10 15 20 25 30 35 40 45 Время нед нед

Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.

При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур. Чтобы знать, как получить чистую культуру того или иного микроорганизма, надо внимательно ознакомиться с практической частью данной главы.

§ 5. Пигментообразование у бактерий

Образование пигментов происходит при хорошем доступе кислорода и определенном составе питательной среды. По химическому составу и свойствам пигменты неоднородны и подразделяются на:

— растворимые в воде (пиоцианины синегнойной палочки);

— растворимые в спирте;

— нерастворимые в воде;

— нерастворимые в воде и спирте.

Бактерии могут образовывать пигменты разного цвета:

красный — Serratia marcescens; кремовый — Staphilococcus aureus; желтый — Scifreus; синий — синегнойная палочка и т. д.

Пигменты бактерий защищают их от природной ультрафиолетовой радиации, участвуют в процессах дыхания, реакциях синтеза, обладают антибиотическим действием.

Фотогенные бактерии, т. е. бактерии, способные светиться, — это своеобразная форма освобождения энергии при окислительных процессах. Чем сильнее приток кислорода, тем сильнее свечение бактерий.

Типичный представитель фотогенных микробов Photobacterium phosphoreum — неподвижная кокковидная бактерия, развивающаяся при температуре 28 °С.

Патогенных для человека видов в группе фотогенных бактерий не установлено.

Аромат-образующие микробы — микроорганизмы, которые обладают способностью выделять летучие вещества, вырабатываемые ими в процессе жизнедеятельности. Они образуют уксусно-этиловый и уксусно-амиловый эфиры.

Ароматические свойства вин, молочных продуктов, почвы, сена и других веществ зависят от деятельности некоторых видов микроорганизмов. Ароматичность молочным продуктам, особенно маслу, придает такая бактерия, как Теисо-nostos cremoris.

С помощью микробов путем сбраживания навоза, растительных остатков и бытовых отходов получают метан, который используется во многих странах для отопления помещений.

Промышленные предприятия уже начали выпуск микробного белка, используемого для корма животных и птиц. С помощью микробов можно получить витамины, ферменты (амилазу, лактозу, пенициллиназу, протеазы.)

Патогенные представители вырабатывают ядовитые для человека и животных вещества — токсины, которые делятся на 2 группы:

1. Экзотоксин — белки, которые клетка выделяет во внешнюю среду, обладает выраженными иммуногенными и антигенными свойствами. Часто они состоят из двух фрагментов — А и В. В-фрагмент способствует адгезии, инвазиии. А — обладает выраженной активностью по отношению к внутренним системам клетки.

2. Эндоксин — тесно связан с телом микробной клетки, так как локализуется в липополисахаридном слое клеточной стенки. Действие эндоксинов на организм не отличается специфичностью. Эндоксины освобождаются при разрушении микробной клетки.

Читайте также: