Размножение растительной клетки кратко

Обновлено: 06.07.2024

У всех живых клеток наблюдаются общие свойства: питание, выделение. дыхание, обмен веществ, деление. В клетках идет постоянное расщепление одних веществ и синтез других. Синтезированные молекулы белков, жиров и углеводов идут на обновление внутренних структур клеток, которое происходит постоянно, пока клетка жива; используются для деления и роста новых клеток. В свою очередь, ненужные вещества удаляются из клетки. Эти процессы называются пластическим обменом веществ, или ассимиляцией.

Существует также энергетический обмен, или диссимиляция, в результате которого происходит синтез и расщепление молекул АТФ на более простые молекулы. Выделяющаяся при этом энергия идет на нужды клетки. Молекулы АТФ, или аденозинтрифосфорной кислоты, единственный и универсальный источник энергии в клетке.

В клетке происходит постоянное движение цитоплазмы, благодаря которому различные вещества и энергия перемещаются туда, где они в данный момент необходимы.

Рассмотрим подробнее каждый из перечисленных процессов.

Питание растительной клетки

Растения — автотрофы, их клетки могут синтезировать органические вещества из углекислого газа и воды в процессе фотосинтеза. Фотосинтез представляет собой ряд последовательных химических реакций, протекающих в хлоропластах. С помощью хлорофилла растение преобразует энергию солнечного света, из бедных энергией молекул углекислого газа и воды растение образует богатые энергией углеводы и кислород, а кроме того энергия запасается в виде АТФ .

Часть кислорода используется для клеточного дыхания, но большая его часть выделяется в атмосферу. В темноте фотосинтез прекращается, и кислород не образуется. Поскольку клеточное дыхание продолжается и в темноте, растение ночью выделяет углекислый газ.

Кроме углекислого газа, кислорода и воды, клетке еще необходимы минеральные вещества. Минералы входят в состав ферментов, встраиваются в клеточную стенку и т.д. Растение получает минеральные вещества в растворенном виде из почвы или воды.

Дыхание растительной клетки

Клеточное дыхание, или диссимиляция, — это процесс окисления органических веществ, чаще всего глюкозы и др. до углекислого газа и воды, в результате чего выделяется энергия, необходимая для жизнедеятельности клетки. Окисление — это химическая реакция расщепления при участии кислорода. Таким образом, в результате клеточного дыхания растением потребляется кислород и выделяется углекислый газ. Этот процесс происходит и днем, и ночью в митохондриях. Энергия, выделившаяся при окислении, запасается впрок в виде молекул АТФ и используется клеткой по мере надобности. Наиболее интенсивно процессы дыхания происходят в молодых и делящихся клетках. По своей сути клеточное дыхание является противоположностью фотосинтеза, за исключением того, что фотосинтез протекает только на свету, днем, а дыхание — как на свету, так и ночью, в темноте. Это демонстрирует следующая таблица:

Фотосинтез Дыхание
1 Поглощение углекислого газа Поглощение кислорода
2 Выделение кислорода Выделение углекислого газа
3 Образование органических веществ из углекислого газа и воды Разложение органических веществ на углекислый газ и воду
4 Поглощение из окружающей среды и расходование воды Образование и выделение в окружающую среду воды
5 Поглощение солнечной энергии и накопление ее в органических веществах и АТФ Высвобождение энергии и накопление ее в виде АТФ
6 Происходит только на свету Происходит непрерывно на свету и в темноте
7 Протекает в хлоропластах Протекает в митохондриях
8 Происходит в листьях и других зеленых частях растения Протекает во всех клетках растения

Выделение

Клетка может избавляться от ненужных или избыточных веществ различными способами — накапливать их в вакуолях, удалять их наружу или в межклеточное пространство с помощью секреторных пузырьков (везикул) и т.д. Выделение из клетки бывает двух видов:

  1. Экскреция — это пассивное выделение через мембрану по градиенту концентрации, оно идет без затрат энергии.
  2. Секреция — активное выделение из клетки с затратой энергии.

Секреция в свою очередь может проходить тремя способами:

  • мерокриновая — выделение отдельных молекул через клеточную мембрану с помощью специальных белков-переносчиков (эккриновая секреция), либо выделение секрета с помощью везикул, образующихся в Аппарате Гольджи, обычным способом — слиянием везикулы с клеточной оболочкой и раскрытием ее наружу (гранулокриновая секреция).
  • апокриновая — когда вместе с секретом выделяется часть цитоплазмы, например, при разрыве секреторных волосков.
  • голокриновая — когда разрушается клеточная мембрана, и секрет изливается наружу. Клетка при этом теряет свои структуры и превращается в секрет. Такой тип секреции имеют клетки корневого чехлика растений.

У растений для выделения образуются различные секреторные органы и приспособления . Выделяться могут не только токсичные и ненужные вещества, но и вещества, образующиеся растением специально для защиты от поедания животными, для привлечения насекомых-опылителей, для защиты от высыхания и т.д.

К таким образованиям относятся железистые волоски, например, у крапивы:

Поступление и выделение газов , а также испарение воды происходит через специальные образования — устьица, расположенные чаще на нижней стороне листа.

Размножение

Размножение растительной клетки происходит с помощью деления. Этапы процесса деления показаны на схеме:

Сначала происходит удвоение хромосом, они расходятся к полюсам клетки, а затем делится цитоплазма и клетка разделяется на две дочерние клетки.

За счет деления клеток, которое происходит постоянно, растение растет всю жизнь. Отсюда и название — РАСТение.

Однако рост отдельных частей растения может быть обусловлен и накоплением воды, питательных веществ или секрета в вакуолях и их растяжением:

Если у вас не открываются игры или тренажёры, читайте здесь .

Царство — одна из высших ступеней биологической систематики. Растения, как таксон, этого высокого уровня объединяет 400 тыс. видов организмов — от микроскопических водорослей до гигантской секвойи, высота которой достигает 100 м. Общее свойство растений — фотоавтотрофный способ питания.

Царство растений

Растения — объект изучения науки ботаники. Основы одной из старейших отраслей научного знания заложил Теофраст — ученик древнегреческого ученого и философа Аристотеля. Современная ботаника представляет собой комплекс наук. Крупнейшие отрасли: морфология, физиология, систематика, происхождение растений. Отдельные крупные группы внутри биологического царства изучают частные ботанические науки. Например, предмет альгологии — водоросли.

Сходство строения клеток, механизмов обмена веществ и роста позволяют объединить растения с животными и грибами в группу эукариот.

Отличительные признаки растительного организма:

  • Автотрофное питание.
  • Пластиды в клетках;
  • Целлюлозная клеточная стенка.
  • Способность к постоянному росту.
  • Характер ответа на внешние изменения.
  • Относительная неподвижность.
  • Связь с субстратом.
  • Разветвленное тело.

Фотосинтез осуществляется в клетках, обладающих зелеными пластидами. Растения в экосистемах являются продуцентами, так как сами для себя создают органические вещества. Выделяемый при фотосинтезе кислород используют для аэробного дыхания другие живые организмы. Молекулы О2 образуют защитный озоновый экран в атмосфере (Рис. 1).

Фотосинтез

Рис. 1. Фотосинтез

Царство растений (научное название Plantae) объединяет 12 отделов, из которых 4 — водоросли, 2 — мхи. В состав биологического царства также входят плауны, папоротники, хвойные и цветковые. Другие отделы представлены малым числом семейств, родов и видов.

Тело водорослей — талом (слоевище) — состоит из сходных по строению и функциям клеток. Вода обеспечивает водоросли (Algae) углекислым газом и кислородом, поддерживает тело, поэтому нет необходимости в механических тканях.

Высшие растения отличаются наличием тканей и органов. Сформированы многоклеточные органы полового и бесполого размножения. К высшим относятся споровые и семенные растения.

Как установили палеонтологи, низшие растения появились около 2 млрд. лет назад. Древние псилофиты вышли из воды на сушу. Это уже были высшие растения, лишенные корней, но имеющие сосуды — группы клеток для проведения воды к фотосинтезирующим клеткам. Сформировались защитные и механические ткани.

Выходу растений на сушу способствовали ароморфозы:

  • возникновение эукариотической клетки;
  • появление фотосинтеза;
  • многоклеточность, дифференциация клеток;
  • мейоз и оплодотворение;
  • обособление гаплоидного и диплоидного поколений, их чередование в цикле развития;
  • появление семени у древних папоротников;
  • формирование цветка.

Покрытосеменные, или цветковые, заняли господствующее положение в царстве растений после голосеменных. Многие виды и более крупные систематические группы низших растений исчезли полностью или угасают.

Строение (ткани, клетки, органы растительного организма)

Растительные клетки содержат ядро, являются эукариотическими (хотя бы на одном из этапов развития). Органоиды в цитоплазме сходны у растений и животных (Рис. 2).

Строение растительной клетки

Рис. 2. Строение растительной клетки

Черты отличия клеточного строения растений от животных:

  • есть пластиды, хлорофилл;
  • над плазматической мембраной сформирована целлюлозная клеточная стенка;
  • имеется крупная центральная вакуоль, наполненная клеточным соком;
  • крахмал содержится в цитоплазме в виде зерен.

Ткани — группы клеток, сходных по происхождению, строению и функциям (Табл. 1). Всего у растений насчитывается от 20 до 30 типов таких скоплений клеток.

Описание тканей цветковых растений

Название

Локализация

Функции

Верхушка побега, кончик корня, основания листьев, междоузлия.

Образование других типов тканей; верхушечный и другие типы роста; регенерация повреждений.

Кора, кожица листа, стебля, корневые волоски.

Защита; газообмен с внешней средой; испарение.

Листья, стебель, плоды.

Фотосинтез; газообмен с окружающей средой; запасание воды; накопление продуктов обмена веществ.

Лубяные и древесные волокна, каменистые клетки.

Образование наружного и внутреннего каркасов для опоры и защиты.

Сосуды древесины, ситовидные трубки.

Транспортировка воды и минеральных веществ к листьям; проведение органических веществ от листьев к другим органам.

Железистые клетки, волоски, нектарники, млечники.

Образование млечного сока, влаги, нектара; накопление продуктов обмена.

Через устьица происходит испарение воды, газообмен. Специальные образования состоят из щели и замыкающих клеток. Последние имеют относительно толстые внутренние стенки, способные изменять форму и открывать устьица.

Органы цветковых растений

Орган — часть тела живого организма, состоящая из одного типа тканей, выполняющая определенные функции. Органы растений образуют две группы — вегетативные и генеративные. Вегетативные — корень и побег, состоящий из стебля, листьев и почек. Вместе они обеспечивают обмен веществ и рост. Генеративные органы у цветковых — цветок, семя и плод — участвуют в половом размножении (Рис. 3).

Органы растения

Рис. 3. Органы растения

  • закрепление растения;
  • снабжение водой и минеральными веществами;
  • запасание питательных веществ;
  • вегетативное размножение.

Клетки и ткани корня образуют четыре зоны: роста, всасывания, проведения и корневой чехлик. Последний защищает зону роста, облегчает движение между частицами почвы. Клетки корневых волосков в зоне всасывания поглощают воду с растворенными в ней минеральными веществами.

Зона проведения выполняет функцию транспортирования веществ из корня в стебель, листья. Также, в этой зоне у растений возможно закладывание почек, запасание питательных веществ.

Все корни растения образуют его корневую систему. Выделяют главный, боковые и придаточные корни. У двудольных растений стрежневая корневая система с хорошо развитым главным корнем. Однодольные растения имеют мочковатую корневую систему. Главный корень неотличим от придаточных.

Различия в функциях корней:

  • воздушные позволяют эпифитам поглощать воду из воздуха, как происходит у филлокактусов, орхидей;
  • дыхательные отрастают у видов, обитающих на мелководьях, на чрезмерно влажной почве;
  • ходульные помогают выживать растениями в приливной зоне, на зыбкой почве;
  • корнеплоды и корневые клубни запасают питательные вещества;
  • цепляющиеся помогают закреплению стебля на опоре;
  • опорные поддерживают развесистую крону.

Корни бобовых формируют симбиоз с азотфиксирующими бактериями. Деревья образуют симбиоз с грибами, что позволяет получать больше воды из почвы. Грибы взамен получают органические вещества, созданные растением.

Побег — стебель с листьями и почками. Они могут быть расположены поочередно, супротивно (напротив друг друга), мутовками (группами), спирально. В строении побегов различают места прикрепления листьев — узлы. Участок побега между соседними узлами — междоузлие. Побег выполняет разные функции: дыхания, фотосинтеза, транспорта веществ.

По продолжительности жизни и степени одревеснения выделяют следующие жизненные формы растений: деревья, кустарники, травы. Последние еще делят на одно-, дву- и многолетние. Первые завершают жизненный цикл в течение 1 года. Двулетние в первый год образуют только вегетативные органы, на второй — цветут и образуют семена. Многолетники живут и цветут в течение продолжительного периода времени.

Почка — зачаточный побег. Различают вегетативные и генеративные почки. Вторые обычно более крупные, округлой формы. Внутри находится зачаток цветка.

Стебель — вегетативный орган растения, выполняющий функции опоры, проведения и запасания веществ. Для стебля характерны рост и ветвление. Орган принимает участие в вегетативном размножении. По характеру роста различают прямостоячие, ползучие, лазающие, цепляющиеся и вьющиеся стебли. К видоизменениям органа относят корневища, луковицы и клубни.

Лист обеспечивает фотосинтез, транспирацию (испарение воды), газообмен с внешней средой. Фотосинтез происходит в паренхиме листа. В строении органа выделяют листовую пластинку и черешок. В зависимости от количества этих составных частей различают простые и сложные листья. Форма и расположение на стебле, характер жилкования — важные систематические признаки.

Видоизменения листьев — приспособление к среде обитания:

  • мясистые чешуи;
  • сухие чешуи;
  • колючки;
  • усики.

Листья отличаются по размеру. У ряски, вольфии бескорневой они крошечные, у тропических пальм достигают нескольких метров в длину.

Цветок — это видоизмененный генеративный побег, который развивается из генеративной почки (Рис. 4). Строение цветка — важнейший систематический признак.

Части цвека

Рис. 4. Части цветка: 1— цветоножка и цветоложе; 2 — чашечка; 3 — лепестки венчика; 4 — тычинки; 5 — пестик.

Тычинка состоит из пыльника с пыльцой и тычиночной нити. В строении пестика различают верхнюю часть — рыльце и столбик, нижнее образование — завязь. Внутри находится семяпочка, из которой после оплодотворения развивается семя. Стенки завязи разрастаются и образуют плод.

Если в цветке имеются пестики и тычинки, то он относится к обоеполым. Однополые содержат только тычинки или только пестики. На однодомном растении расположены и тычиночные, и пестичные цветки. На двудомных развиваются или тычиночные, или пестичные цветки.

Упорядоченное расположение частей цветка отражают в формуле — условной записи строения с помощью обозначений (условных знаков). Например:

  • ⚥ — символ обоеполого,
  • ♀ — пестичного,
  • ♂ — тычиночного цветка.

Семя — генеративный орган, который служит для распространения семенных растений, содержит запас питательных веществ для зародыша. Последний имеет все вегетативные органы в зачаточном состоянии.

Плод развивается из завязи цветка, служит для защиты и распространения семени. В зависимости от консистенции околоплодника, возникающего из стенок завязи, различают сухие и сочные плоды. Они могут быть одно- или многосемянными.

Жизнедеятельность растительного организма

Растение — живой организм, для которого характерны особенности химического состава, обмен веществ и превращения энергии, раздражимость, развитие и воспроизведение. Основные метаболические процессы — фотосинтез, кислородное дыхание, корневое питание, водный обмен (Рис. 5).

Жизнедеятельность растений

Рис. 5. Жизнедеятельность растений

Фотосинтез происходит в зеленых клетках. Суть процесса — преобразование энергии света в энергию химических связей органических соединений. В превращениях веществ и усвоении энергии велика роль зеленого пигмента хлорофилла. Конечные продукты — сахар и крахмал.

Почвенное питание — процесс поглощения корнем воды с растворенными минеральными веществами. Неорганические соединения необходимы растениям для синтеза углеводов и белков, нуклеиновых кислот, АТФ. Недостаток питательных веществ приводит к минеральному голоданию растительного организма.

Клеточное дыхание у растений — процесс окисления органических соединений до углекислого газа и воды. Кислород поступает во все органы на свету и в темноте. Фотосинтез протекает только в зеленых клетках на свету. Дыхание, фотосинтез и водный обмен тесно связаны. Недостаток света, кислорода, воды отрицательно сказывается на жизнедеятельности растительного организма.

Размножение растений

Покрытосеменные размножаются вегетативным и половым способами. Первый тип воспроизведения себе подобных происходит за счет отделения и самостоятельного развития вегетативных органов либо их частей. Вегетативное размножение в природе осуществляется с помощью корневищ, клубней, луковиц, отпрысков, усов, выводковых почек и черенков. В практике растениеводства получили широкое распространение такие способы как черенкование, прививка, деление корневища, клональное размножение.

В половом размножении участвуют половые клетки. Они формируются в разных частях цветка — пыльцевом зерне и внутри семязачатков. Слияние гамет — оплодотворение — происходит после опыления. Так называют процесс переноса пыльцы на рыльце пестика.

У растений происходит двойное оплодотворение. Из вегетативной клетки пыльцы после опыления образуется трубка, растущая внутри пестика. Она достигает семязачатка. По пыльцевой трубке двигаются два спермия. Один из них сливается с яйцеклеткой, другой — с центральной клеткой. Образуются зигота и триплоидная клетка, обеспечивающая зародыш запасом питательных веществ. Созревшие семена и плоды распространяются ветром, животными, водой, человеком.

Жизнедеятельность растений

Рис. 6. Развитие растения из семени

Процесс индивидуального развития, или онтогенез, делится у растений на эмбриональный, вегетативный, генеративный периоды и старение. Длительность каждого этапа онтогенеза зависит от видовой принадлежности растительного организма (Рис. 6).

Раздражимость — способность воспринимать и отвечать на воздействия окружающей среды. Растения реагируют на внешние изменения не так, как животные. Реакция сводится к перестройке метаболизма, ростовым движениям. При неблагоприятных воздействиях закрываются устьица, останавливаются рост и развитие.

Растительный организм — целостная система, в которой каждый орган выполняет определенные функции в тесной связи с остальными. Сложные процессы регулируются с помощью биоэлектрических импульсов, фитогормонов.

2. Общая характеристика размножения растительной клетки

3. Вегетативное размножение

Такой способ размножения характерен для
низших растений(одноклеточных водорослей). Он
может быть представлен такими формами, как
обычное деление материнской клетки путем
перетяжки напополам с образованием двух
дочерних клеток- присуще сине-зеленым
водорослям (цианобактериям). Размножение бурых
и зеленых водорослей происходит путем
митотического деления ядра с последующей
перетяжкой цитоплазмы.

7. Спорообразование

Растения размножаются при помощи
специализированных клеток- спор, которые
развиваются либо в обычных вегетативных клетках
или в особых, именуемых спорангиями. Развитие
спор сопровождается делением ядра, которое
может происходить несколько раз в зависимости от
количества спор. Этот тип бесполого размножения
также характерен для одноклеточных водорослей.

9. Митоз

Основной способ деления эукариотических клеток
большинства высших растений, включающий в себя
несколько фаз в строго определенной
последовательности. Таким образом из одной
диплоидной материнской клетки( с двойным
набором хромосом) образуются две дочерние
клетки с таким же диплоидным набором. В
результате митоза у растения формируются многие
органы(кроме половых).

10. Интерфаза

11. Профаза

12. Прометафаза

13. Метафаза

14. Анафаза

Разделение и последующее расхождение сестринских хроматид в
направлении противоположных полюсов клетки.

15. Телофаза

Наблюдается деконденсация хромосом и увеличение их в
объёме. Происходит реконструкция ядерная оболочки,
построение мембран новообразованных дочерних ядер.
Постепенно восстанавливается наружная и внутренняя ядерные
мембраны, восстанавливаются ядерная ламина и ядерные поры.

16. Цитокинез

17. Биологическая суть митоза

Митоз обеспечивает наследственную передачу
признаков и свойств в ряду поколений клеток при
развитии многоклеточного организма. Благодаря
точному и равномерному распределению хромосом
при митозе все клетки единого организма
генетически одинаковы. Митоз обусловливает
важнейшие явления жизнедеятельности: рост,
развитие и восстановление тканей и органов.

18. Мейоз

Мейоз — разновидность митоза, в результате
которого из диплоидных (2n) соматических клеток
половых желез образуются гаплоидные гаметы
(n). Состоит из двух последующих стадий.
Процесс происходит в половых клетках высших
растений и водорослей (из зиготы развивается
водоросль или же формируются зооспоры).

Лептонема
Упаковка хромосом, конденсация ДНК с образованием хромосом в виде
тонких нитей (хромосомы укорачиваются).

Зигонема
Происходит конъюгация — соединение гомологичных хромосом с
образованием структур, состоящих из бивалентов и их дальнейшая
компактизация.

Пахинема
В некоторых местах гомологичные хромосомы плотно соединяются,
образуя хиазмы. В них происходит кроссинговер — обмен участками между
гомологичными хромосомами.

Диплонема
Происходит частичная деконденсация хромосом, происходят процессы
транскрипции (образование РНК), трансляции (синтез белка); гомологичные
хромосомы остаются соединёнными между собой.

Диакинез
ДНК снова максимально конденсируется, синтетические процессы
прекращаются, растворяется ядерная оболочка; центриоли расходятся к
полюсам; гомологичные хромосомы остаются соединёнными между собой.

Профаза II
Происходит конденсация хромосом, клеточный центр делится и продукты
его деления расходятся к полюсам ядра, разрушается ядерная оболочка,
образуется веретено деления, перпендикулярное первому веретену.

32. Биологическая роль мейоза.

1) Является основным этапом гаметогенеза.
2) Обеспечивает передачу генетической
информации от организма к организму при
половом размножении.
3) Уменьшение числа хромосом в два раза и
образовании гаплоидных гамет.
4) Благодаря при оплодотворении в зиготе
восстанавливается диплоидный набор хромосом.

33. Спасибо за внимание !


Видеоурок способствует формированию представлений о процессах, происходящих в клетке, о дыхании, питании (фотосинтезе) как о процессах, в ходе которых клетки получают энергию для жизнедеятельности. Учащиеся рассмотрят схему взаимосвязи обмена веществ и превращения энергии в организме, обобщат представления о процессах деления и развития клеток.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Жизнедеятельность клетки. Деление и рост клетки"

Вы уже знаете, что всё пространство клетки заполнено бесцветным вязким веществом – цитоплазмой. Она находится в постоянном движении. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. Чем активнее жизнедеятельность клетки, тем больше скорость движения цитоплазмы. Если клетку сильно нагреть или заморозить, то цитоплазма разрушается, и клетка погибает.

Цитоплазма одной живой клетки обычно не изолирована от цитоплазмы других живых клеток, расположенных рядом. Нити цитоплазмы (плазмодесмы) соединяют соседние клетки, проходя через клеточные стенки.


Растения имеют клеточное строение, так как их органы состоят из клеток. А каждая клетка – это микроскопически малая составная часть растения.

Каждая живая клетка дышит, питается, выделяет ненужные ей вещества, реагирует на воздействие внешней среды, в течение определённого времени растёт и размножается.

Клетки в процессе жизни потребляют различные вещества – воду, кислород, углекислый газ, органические и неорганические соединения. Они поступают в клетку в виде растворов и необходимы клетке для питания, дыхания и роста. А само растение получает необходимые вещества из воздуха и почвы.

Поступление веществ в клетку и их переработка называется питанием. В клетке из поступивших простых неорганических веществ образуются сложные вещества (белки, жиры и углеводы). Эти вещества идут на образование ядра, цитоплазмы и других частей клетки.

По типу питания все живые организмы делятся на две группы: гетеротрофы и автотрофы. Вспомним, что гетеротрофы получают готовые органические вещества из окружающей среды (это животные, грибы, многие виды бактерий). Автотрофы самостоятельно синтезируют органические вещества из неорганических в результате фотосинтеза (это растения и цианобактерии).

Фотосинтез – это сложный процесс, который происходит только в хлоропластах клеток растений только на свету. Более подробно мы рассмотрим этапы фотосинтеза при изучении отдельной темы. А сейчас запишем уравнение фотосинтеза – это процесс образования из двух неорганических веществ (углекислого газа и воды) органического вещества глюкозы. В результате фотосинтеза происходит выделение в окружающую среду кислорода. Фотосинтез происходит только на свету.


Часть образованных питательных веществ идёт на построение клетки, а другая часть расходуется на получение энергии.

Дыхание происходит в живых клетках в течение всей их жизни. Растения – аэробные организмы (аэробы) – они используют для клеточного дыхания кислород.

Внутри клетки кислород вступает в реакции с органическими веществами. При этом происходят химические реакции, в результате которых сложные органические вещества превращаются в неорганические (воду и углекислый газ) и выделяется энергия. Такой процесс называется дыханием. Высвобождаемая энергия запасается в молекулах АТФ (аденозинтрифосфорной кислоты) – сложного химического соединения. Энергия нужна для обеспечения процессов жизнедеятельности – движения цитоплазмы, превращения одних веществ в другие.


Заполним таблицу, в которой сравним процессы клеточного дыхания и фотосинтеза, используя следующие показатели: время суток, в которое происходит процесс; вещества, служащие исходным материалом; образующиеся вещества; тип используемой энергии. Клеточное дыхание происходит всегда, фотосинтез – только днём. Для клеточного дыхания необходимы органические вещества и кислород, для фотосинтеза – углекислый газ и вода. В результате дыхания образуются углекислый газ и вода, а в результате фотосинтеза – глюкоза и кислород. Для дыхания используется энергия химических связей, а при фотосинтезе – световая энергия.


В течение жизни в клетке образуются ненужные вещества (избыток воды и солей, конечные продукты обмена). Все они выделяются в окружающую среду. Процесс освобождения организма от данных веществ называется выделением или экскрецией.

Одно из главных свойств живых систем – постоянный обмен веществ и энергии с окружающей средой. В клетках непрерывно идут процессы синтеза (пластический обмен, ассимиляция), то есть из простых неорганических соединений (углекислого газа, воды, минеральных солей) образуются сложные органические вещества (белки, жиры и углеводы). Все процессы синтеза идут с затратами энергии.

Примерно с такой же скоростью идёт энергетический обмен (диссимиляция). Это процесс расщепления сложных органических веществ до более простых соединений, сопровождающийся выделением энергии. Конечные продукты энергетического обмена: углекислый газ, вода и аммиак.

Совокупность реакций пластического и энергетического обмена, лежащих в основе жизнедеятельности и обуславливающих связь организма с окружающей средой, называется обменом веществ (или метаболизмом).

Заполним схему взаимосвязи обмена веществ и превращения энергии в организме. В ходе энергетического обмена сложные органические вещества расщепляются до конечных продуктов обмена и высвобождается энергия.

В результате пластического обмена происходит образование сложных органических веществ. При этом происходит поглощение энергии, которая образована в результате реакций энергетического обмена. Часть энергии расходуется на процессы жизнедеятельности.

Получается, что пластический и энергетический обмены неразрывно связаны. Они являются противоположными сторонами единого процесса обмена веществ.

Вещества, которые образуются в ходе энергетического обмена, могут использоваться в пластическом обмене для образования сложных органических соединений. И наоборот.

В молодых клетках преобладает процесс пластического обмена, в результате чего обеспечивается накопление веществ, рост и развитие. В старых клетках преобладает процесс энергетического обмена.


Жизнь клетки с момента её образования в процессе деления материнской клетки до собственного деления (включая это деление) или гибели называется клеточным циклом. В течении этого цикла каждая клетка растёт и развивается таким образом, чтобы успешно выполнять свои функции в организме. В процессе жизни клетки растут и увеличиваются в размерах. Молодые растительные клетки содержат много мелких вакуолей, которые растут и в результате сливаются, заполняя практически весь объем клетки.


У разных видов живых организмов клеточный цикл, во время которого клетка выполняет свои функции, занимает разное время: например, у бактерий он длится около 20 минут, у инфузории-туфельки – от 10 до 20 часов. Клетки многоклеточных организмов на ранних стадиях развития делятся часто, а затем клеточные циклы удлиняются.

Жизнь клетки включает два периода: деление, в результате которого образуются две дочерние клетки, – митоз; период между двумя делениями, который носит название интерфазы. Рассмотрим поближе данные периоды.

Интерфаза – промежуток клеточного цикла между двумя делениями. Вспомним, что в ядре находятся тельца цилиндрической формы – хромосомы. Они передают наследственные признаки от клетки к клетке. В течение всей интерфазы хромосомы деспирализованы (раскручены), они находятся в ядре клетки в виде нитей. В этот период клетка растёт и выполняет свои функции. Происходит обмен веществ, синтез белков и АТФ. Происходит удвоение числа хромосом, соответственно и генетического материала в клетке. При этом образуются два набора хромосом, несущие одинаковую информацию о жизненных процессах.


Размножение клеток – это увеличение их количества. Новые клетки возникают в результате деления уже существующих клеток. Размножение является одним из обязательных свойств живого.

Для эукариотических клеток характерен митоз, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом. Сейчас мы с вами рассмотрим последовательные фазы митоза. Их четыре: профаза, метафаза, анафаза и телофаза.


В профазе в клетке увеличивается объём ядра, начинают спирализоваться нити, в результате чего формируются хромосомы. Каждая хромосома состоит из двух хроматид, соединённых в области центромеры. Постепенно растворяются ядрышко и ядерная оболочка. Хромосомы оказываются в цитоплазме и располагаются в ней беспорядочно. На полюсах клетки формируется веретено деления. Часть нитей веретена деления идёт от полюса к полюсу, другие нити прикрепляются к центромерам и способствуют их перемещению в экваториальную плоскость клетки.

В метафазе завершается формирования веретена деления. Хромосомы располагаются упорядоченно в экваториальной плоскости клетки. Образуется метафазная пластинка. В эту фазу можно легко посчитать количество хромосом в клетке и изучить их строение.

В анафазе нити веретена деления укорачиваются, в результате чего хроматиды каждой хромосомы отделяются друг от друга и расходятся к противоположным полюсам клетки.

В телофазе хромосомы оказываются у полюсов клетки и деспирализуются (раскручиваются). Вокруг ядерного материала каждого полюса формируются ядерные оболочки. В двух образовавшихся ядрах образуются ядрышки. Нити веретена деления разрушаются.

На этом деление ядра заканчивается, и начинается деление клетки надвое. В экваториальной плоскости клеток растений из содержимого пузырьков комплекса Гольджи образуется срединная пластинка, которая разделяет две дочерние клетки, являющиеся копиями друг друга и исходной материнской клетки. С момента разделения дочерних клеток каждая из них вступает в интерфазу нового клеточного цикла.

Биологическое значение митоза заключается в том, что он обеспечивает передачу наследственных признаков и свойств от клетки к клетке, что необходимо для нормального развития многоклеточного организма. Митоз обуславливает важнейшие процессы жизнедеятельности – рост, развитие, восстановление повреждённых частей растения. Митотическое деление лежит в основе бесполого размножения многих живых организмов.

Клеточная гибель бывает двух видов: некроз и апоптоз. Рассмотрим, в чём же их отличия.


Некроз – отмирание клеток, которое вызвано действием повреждающих факторов (низкие или высокие температуры, химические вещества, ионизирующие излучения). В повреждённых клетках нарушается проницаемость мембран, прекращается образование белков и другие процессы обмена веществ, происходит разрушение ядра, органоидов и, наконец, всей клетки.

Апоптоз – запрограммированная гибель клеток, которая регулируется организмом. От своего образования в результате деления до апоптоза клетки проходят определённое количество клеточных циклов.

Читайте также: