Размножение клеток эукариот кратко

Обновлено: 19.05.2024

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Мейоз

Мейоз: 1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

Целостный организм состоит из дискретных единиц — клеток. Жизнь почти всех клеток короче жизни особи, поэтому суще­ствование каждой особи поддерживается размножением кле­ток. Каждый вид организмов также дискретен, т. е. состоит из отдельных особей. Каждая из них смертна. Существование ви­да поддерживается размножением особей.

Следовательно, размножение — необходимое условие сущест­вования вида и преемственности последовательных генераций внутри вида.

!. В основе классификации форм размножения эукариот лежит тип исходных клеток:

• при бесполом размножении организм производит потомство из соматических клеток, передавая дочерним организмам только собственные наследственные признаки в неизменяемом гене­тическом материале. Происходит простое копирование;

• при половом размножении между специализированными поло­выми клетками происходит обмен генетическим материалом. В этом случае дочерний организм получает генетический мате­риал от разных исходных особей.

Всем видам эукариот свойственны оба вида размножения. Бесполое размножение.

  • • митотическое деление;
  • • шизогония (множественное деление);
  • • почкование;
  • • спорообразование;
  • • вегетативное размножение;
  • • спорообразование.
  • • без оплодотворения;
  • • с оплодотворением.

Органоиды обычно распределяются равномерно. В ряде случаев обнаружено, что делению предшествует их удвоение. После де­ления дочерние особи растут и, достигнув величины материн­ского организма, переходят к новому делению. Шизогония, или множественное деление, — форма размножения, развившаяся из предыдущей. При шизогонии происходит мно­гократное деление ядра без цитокинеза, а затем и вся цито­плазма распределяется на частички, обособляющиеся вокруг ядра. Из одной клетки образуется много дочерних. Почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий ядро. Почка растет, достигает размеров материнской особи и затем отделяется от нее.

Спорообразование встречается у животных, относящихся к типу простейших, классу споровиков. Спора — одна из стадий жиз­ненного цикла, служащая для размножения, она состоит из клетки, покрытой оболочкой, защищающей от неблагоприят­ных условий внешней среды. Некоторые бактерии после поло­вого процесса способны образовывать споры.

Вопрос 41. Вегетативное (бесполое) размножение многоклеточных

1. Вегетативное размножение

3. Размножение с помощью спор

1. У многоклеточных растений одна из характерных форм беспо­лого размножения — вегетативное размножение. Для такого размножения могут служить отдельные части вегетативных ор­ганов. Так, осот, пырей и многие другие многолетние травы размножаются подземными участками стебля — корневищами.

В ряде случаев образуются специальные органы, служащие для вегетативного размножения. Это видоизмененные части стеб­ля — клубни картофеля, луковицы лука, чеснока.

При вегетативном размножении у многоклеточных животных новый организм образуется из группы клеток, отделяющейся от материнского организма. Вегетативное размножение встре­чается лишь у наиболее примитивных из многоклеточных жи­вотных — губок, кольчатых червей и др.

За счет размножения группы клеток на теле этих животных образуется выпячивание — почка. В почку входят клетки экто-и энтодермы. У гидры почка постепенно увеличивается, на ней формируются щупальца, и затем она отделяется от материн­ской особи.

Ресничные и кольчатые черви делятся перетяжками на не­сколько частей, з каждой из которых восстанавливаются не­достающие органы.

У некоторых кишечнополостных встречается размножение стробиляцией, когда полипоидный организм довольно интен­сивно растет и по достижении известных размеров начинает поперечными перетяжками делиться на дочерние особи. В это время полип напоминает стопку тарелок или блюдец. Образо­вавшиеся особи — медузы — отрываются и начинают самостоя­тельную жизнь.

2. Особая форма вегетативного размножения – полиэмбриония, когда эмбрион делится на несколько частей, каждая из кото­рых развивается в самостоятельный организм. Полиэмбриония распространена у ос, ведущих паразитический образ жизни в личиночном состоянии, среди млекопитающих она встречается у броненосца.

3. Размножение путем спорообразования связано с возникновени­ем специальных клеток – спор. Эта форма размножения харак­терна:

У нитчатых зеленых водорослей из некоторых клеток могут формироваться споры. Они получили название зооспор, так как снабжены ресничками или жгутиками и могут плавать в воде. У более высокоорганизованных растений споры образу­ются в специальных органах – спорангиях. Споры наземных растений неподвижны, очень мелки, содер­жат ядро, цитоплазму и покрыты плотной оболочкой, хорошо защищающей от неблагоприятных условий. Каждая такая клетка дает начало новому организму. Число об­разуемых растениями спор огромно. Благодаря мелким разме­рам споры легко разносятся ветром. Таким образом, размно­жение спорообразованием имеет ряд ценных приспособлений для расселения и поддержания существования видов растений, имеющих эту форму размножения.

У многих растений (мхи, папоротникообразные) размножение спорообразованием чередуется с половым размножением.

Вопрос 42. Половое размножение одноклеточных

1. Половое размножение у одноклеточных.

2. Конъюгация, гаметическая копуляция

3. Изогамия и анизогами

1. Кроме митотического деления, у одноклеточных обнаружен также половой процесс, который заключается обычно в слиянии двух половых клеток — гамет. Формы полового процесса у од­ноклеточных организмов можно объединить в две группы: конъюгацию, при которой специальные половые клетки не об­разуются, и гаметическую копуляцию, когда формируются по­ловые элементы и происходит их попарное слияние.

2. У некоторых видов бактерий существуют особи, которые мож­но назвать женскими (реципиентными) и мужскими (донорски­ми). Последние имеют цитоплазматический фактор пола F+.

Между такими особями периодически осуществляется половой процесс, называемый конъюгацией.

У бактерий (гаплоидов) конъюгаты после синтеза ДНК обра­зуют между собой протоплазматический мостик, через который часть ДНК переходит из донорской клетки в реципиентную, что приводит к комбинативной изменчивости вида.

У инфузорий существует своеобразная форма конъюгации. Инфузории — животные из типа простейших. Их характерной чертой является наличие двух ядер:

При конъюгации инфузории сближаются попарно, между ни­ми образуется протоплазматический мостик. Одновременно в ядерном аппарате каждого из партнеров совершаются сложные процессы: макронуклеус растворяется, а микронуклеус делится без предварительного удвоения хромосом (путем мейоза), в ре­зультате чего формируется стационарное и мигрирующее ядра. Каждое из них содержит гаплоидный набор хромосом. Мигри­рующее ядро переходит в цитоплазму партнера, где оба ядра (стационарное и мигрирующее) сливаются, образуя так назы­ваемый синкарион, содержащий диплоидный набор хромосом. После ряда сложных перестроек из синкариона формируются обычные макро- и микронуклеусы. После конъюгации инфу­зории расходятся. Каждая из них сохраняет самостоятельность, но благодаря обмену кариоплазмой наследственная информация каждой особи изменяется, что (как и в других случаях полового процесса) может привести к появлению новых комбинаций свойств и признаков.

Гаметической копуляцией называется половой процесс у одно­клеточных организмов, при котором две особи приобретают по­ловые различия, т. е. превращаются в гаметы и полностью сли­ваются, образуя зиготу.

3. В процессе эволюции степень различия гамет нарастает. На первом этапе полового размножения у гамет еще не наблюда­ется морфологической дифференцировки, т. е. имеет место изога­мия. Примером может служить размножение раковинной кор­неножки полистолиллы. У этих одноклеточных животных ядро делится путем мейоза, три гаплоидных ядра лизируются, а клетка, приобретая пару жгутиков, становится подвижной изо-гаметой.

Дальнейшее усложнение процесса связано с дифференцировкой гамет на крупные и мелкие клетки, т. е. появлением анизо­гамии. Наиболее примитивная форма ее существует у некото­рых колониальных жгутиконосцев. У Pandorina morum образу­ются как большие, так и малые гаметы, причем и те и другие подвижны. Более того, сливаться попарно могут не только большая гамета с малой, но и малая с малой, однако большая гамета с большой никогда не сливаются. Следовательно, у пандорины наряду с появлением анизогамии еще сохраняется изогамия.

У другого колониального жгутиконосца – Eudorina elegans и хламидомонад макро- и микрогаметы еще подвижны, но сли­ваются лишь разные гаметы, т. е. проявляется исключительно анизогамия. Наконец, у вольвокса большая гамета становится неподвижной, она во много раз крупнее мелких подвижных гамет.

Такая форма анизогамии, когда гаметы резко различны, полу­чила название оогамии. У многоклеточных животных при по­ловом размножении имеет место лишь оогамия.

Вопрос 43. Половое размножение многоклеточных. Строение половых клеток (гамет)

1. Гаметы у многоклеточных

1. Гаметы представляют собой высокодифференцированные по­ловые клетки. В процессе эволюции они приобрели приспо­собления для выполнения специфических функций. Формиро­ванию гамет у многоклеточных предшествует особая форма де­ления клеток — мейоз. В результате мейоза в половых клетках образуется не диплоидный, как в соматических клетках, а гап­лоидный набор хромосом. Развитие гамет у многоклеточных животных происходит в половых железах – гонадах. Различают два типа половых клеток:

Ядра как мужских, так и женских гамет в равной мере содер­жат наследственную информацию, необходимую для развития организма. Но другие функции яйцеклетки и сперматозоида различны, поэтому по строению они резко отличаются друг от друга.

Сперматозоиды развиваются в семенниках, яйцеклетки — в яич­никах. Семенниками обладают особи мужского пола (самцы), яичниками — женские особи (самки).

2. Если мужские и женские клетки развиваются в одной особи, та­кой организм называется гермафродитом. Гермафродитизм свойствен многим животным, стоящим на сравнительно низких ступенях эволюции органического мира:

• плоским и кольчатым червям;

• как патологическое состояние в других группах животных. При естественном гермафродитизме мужские и женские поло­вые железы могут функционировать одновременно на протяже­нии всей жизни данной особи. В таких случаях организмы, как правило, имеют ряд приспособлений, препятствующих само­оплодотворению.

У моллюсков половая железа периодически продуцирует то яй­цеклетки, то сперматозоиды. Это зависит как от возраста осо­би, так и от условий существования. Например, у устриц это может быть обусловлено преобладанием белкового или угле­водного питания.

3. Яйцеклетки неподвижны, имеют шаровидную или слегка вы­тянутую форму. Они содержат все типичные клеточные орга­ноиды, но строение их отличается от такового у других клеток, так как приспособлено для реализации возможности развития целого организма. Размеры яйцеклетки значительно превыша­ют размеры соматических клеток. Внутриклеточная структура цитоплазмы в яйцеклетках специфична для каждого вида жи­вотных, чем обеспечиваются видовые, а нередко и индивидуальные, особенности развития.

В яйцеклетках содержится ряд веществ, необходимых для раз­вития зародыша. К их числу относится питательный матери­ал — желток. У некоторых видов животных накапливается столько желтка в яйцеклетках, что они могут быть видны не­вооруженным глазом.

Яйцеклетки покрыты оболочками, которые по происхождению бывают:

Первичная оболочка образуется из поверхностного слоя еще не­зрелой половой клетки — овоцита. Под электронным микроско­пом видно, что она пронизана микроворсинками и отростками фолликулярных клеток, прилегающих к поверхности яйцеклет­ки. По этим структурам в овоцит поступают питательные ве­щества. После завершения периода роста они стягиваются, а пористость первичной оболочки исчезает.

Вторичная оболочка состоит из фолликулярных клеток или вы­деляемых ими секретов.

Третичными оболочками являются, например, белковая, подскорлуповая и скорлуповая оболочки яиц птиц. Яйцеклетки не у всех видов животных обладают всеми тремя типами оболо­чек, иногда может встречаться всего одна или две из них. Яйцеклетки млекопитающих третичной оболочки не имеют.

4. Сперматозоиды обладают способностью к движению, чем в из­вестной мере обеспечивается возможность встречи с яйцеклет­кой. По морфологическому строению и малому количеству ци­топлазмы сперматозоиды резко отличаются от всех других кле­ток, но все основные органоиды в них имеются.

Типичный сперматозоид имеет:

На переднем конце головки расположена акросома, состоящая из видоизмененного комплекса Гольджи. Основную массу го­ловки занимает ядро. В шейке находятся центриоль и спи­ральная нить, образованная митохондриями. При исследова­нии сперматозоидов обнаружено, что протоплазма головки сперматозоида имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоидов к неблагоприятным влияниям внешней среды. Размеры сперма­тозоидов всегда микроскопические.

Для некоторых животных характерны атипичные сперматозои­ды, строение которых весьма разнообразно. Скажем, спермато­зоиды ракообразных обладают выростами в виде лучей.

У одноклеточных организмов, имеющих ядро, существует несколько разнообразных по механизму протекания способов бесполого размножения. Чаще всего встречаются четыре: 1) деление клетки надвое; 2) почкование; 3) спорообразование; 4) шизогония.

Деление клетки надвое

У одноклеточных эукариот разделению материнской клетки предшествует деление ядра — образуются два дочерних ядра, идентичных как друг другу, так и исходному материнскому. У многих одноклеточных (эвглена зеленая, хламидомонада) деление ядра происходит в основном с разрушением ядерной оболочки, расхождением дочерних хромосом к полюсам клетки и формированием двух новых ядер. Иногда при делении клетки материнское ядро делится на дочерние ядра путем перетяжки без расхождения хромосом к полюсам клетки (амеба обыкновенная, инфузория туфелька). После этого следует разделение цитоплазмы и образование двух дочерних клеток. Органоиды клетки при этом либо разделяются между дочерними особями, либо образуются заново у одной из них, как это бывает со жгутиками и сократительными вакуолями.


Деление клеток у одноклеточных эукариот может происходить в продольной плоскости (у жгутиконосцев) или в поперечной (у инфузорий), или в любом направлении (например, у амеб).

Почкование


У некоторых одноклеточных эукариот перед делением ядра в материнской клетке формируется небольшой вырост оболочки с цитоплазмой, куда потом перемещается одно из образовавшихся дочерних ядер. Формируется почка, которая отделяется от материнской клетки и превращается в малую дочернюю особь. Некоторое время она растет и развивается, достигая размеров материнского организма. Почкование является основным способом размножения дрожжевых грибов при благоприятных условиях. Если при почковании дочерние клетки не отделяются от материнской, то образуются цепочки клеток, которые могут разветвляться.

В отличие от простого деления, при почковании материнская клетка делится на неравные части, постоянно отпочковывая меньшую дочернюю клетку и сохраняя при этом свое существование.

Спорообразование

Как вы уже знаете, у прокариот споры представляют собой особое состояние клетки, позволяющее переносить неблагоприятные условия. У одноклеточных эукариот (хлорелла, хламидомонада) спорообразование происходит путем многократного синхронного деления ядра и содержимого клетки с образованием вокруг дочерних клеток собственных клеточных оболочек при сохранении целостности оболочки материнской клетки. В результате под общей оболочкой образуется много мелких клеток — спор. Спора представляет собой небольшую клетку, состоящую из ядра и небольшого количества цитоплазмы. Например, у хлореллы в одной клетке может образоваться до 64 неподвижных спор. Споры, имеющие жгутики и способные к передвижению, называются зооспорами (хламидомонада). После разрыва оболочки материнской клетки споры выходят в окружающую среду и каждая спора, прорастая, дает начало новому организму. Так как споры микроскопически малы, то легко переносятся ветром, водой или другими организмами, что способствует не только размножению, но и расселению особей.


Таким образом, споры (от греч. sporá — сеяние, посев) — микроскопические специализированные клетки, служащие для бесполого размножения, расселения и (или) сохранения при неблагоприятных условиях.

Шизогония


Повторим главное. У одноклеточных эукариот бесполое размножение может осуществляться делением клетки надвое, почкованием, спорообразованием и шизогонией. При делении клетки надвое деление ядра может происходить как с расхождением хромосом к полюсам, так и путем его перетяжки. При этом из материнской клетки образуются две идентичные дочерние. При почковании материнская клетка отпочковывает меньшую дочернюю клетку и сохраняет при этом свое существование. Спорообразование у одноклеточных эукариот обеспечивает сразу две функции — размножения и расселения. Споры могут быть неподвижными или иметь жгутики (зооспоры). Шизогония — множественное деление клетки преимущественно у паразитических одноклеточных, позволяющее быстро заражать много клеток хозяина.

Проверим знания

Ключевые вопросы

1. Какие способы бесполого размножения одноклеточных эукариот известны в природе?
2. Чем различается почкование у эукариот и прокариот?
3. Почему спорообразование у эукариот является способом бесполого размножения, а у прокариот — таковым не является?

Сложные вопросы

1. Установите соответствие между одноклеточными организмами и способами их бесполого размножения. Организмы: дрожжи, кишечная палочка, амеба обыкновенная, хлорелла, хламидомонада. Способы бесполого размножения: деление клетки, спорообразование, почкование.
2. Какой из способов бесполого размножения одноклеточных организмов возник позже в процессе развития органического мира? Дайте аргументированный ответ с использованием дополнительной информации.

Индивидуальное домашнее задание. Возьмите 10 г сухих пекарских дрожжей и столовую ложку сахара, растворите их в стакане теплой воды (30—35 °С). Отбирайте через каждые 20 мин по 20 мл суспензии и проводите кипячение проб. Пробы после кипячения вылейте в прозрачные стаканчики, дайте отстояться и измерьте высоту осадка. Постройте график изменения высоты осадка с течением времени. Объясните полученные результаты.


Все живое на планете состоит из клеток, а в случае бактерий одна клетка является полноценным живым организмом. И как растения, животные и бактерии отличаются друг от друга по внешнему виду и строению, так и их клетки различаются между собой. Исключение составляют фаги – вирусы, которые являются примером неклеточной жизни.

строение клетки

Ключевые вехи развития клеточной теории

В 70-е годы 17 века М. Мальпиги и Н. Грю исследовали клеточное строение растений.

В это же время А. Левенгук открыл и описал бактерии – одноклеточные организмы.

Антоний Левенгук

Исследование в 17 и 18 веках носило эпизодический характер, и в связи с несовершенством микроскопов возникало множество ошибочных предположений о клеточном строении.

В 19 веке теория о клеточном строении организмов получила дополнительное подтверждение, что явилось следствием конструктивного усовершенствования оптических микроскопов, в частности использования ахроматических линз.

Ф. Линк и Молднхоуэр на примере растений доказывают, что клетка является обособленной структурой организма, Ф. Мейен описывает клеточный обмен как процесс, самостоятельный для каждой клетки.

Значительный вклад в создание клеточной теории сделал Пуркинье и его ученики. Они проводили исследования животных тканей, в частности тканей человека, и сопоставляли полученные данные с имеющейся информацией по растительным клеткам. Я. Пуркинье первым открыл и описал протоплазму клетки (1825 г.) Однако вывод о гомологии клеток растений и животных в то время сделан не был.

Изучение микробов в лаборатории

Р. Броун в 1831 году впервые описал клеточное ядро и выдвинул предположение, что оно является частью клетки растений.

В 1838 г. немецкие ученые М. Шлейден (ботаник) и Т. Шванн (зоолог) независимо друг от друга пришли к идее, что живой организм (у М. Шлейдена – растение, а у Т. Шванна – животное) состоит из отдельных клеток.

Основные положения теории М. Шлейдена и Т. Шванна

Важнейшее значение в изучении и понимании процессов в живых организмах имели следующие положения выдвинутой теории:

  • все живые организмы состоят из клеток;
  • рост растений и животных происходит в результате размножения клеток.

Значимый вклад в развитие клеточной теории внес (1858 г.) Р. Вирхов, выдвинув положение, что клетка бактерий, растений или животных возникает только из клетки, и других возможностей не существует.

Макет бактерии

Современная теория является развитием положений М. Шлейдена и Т. Шванна, опирающимся на возросшие технические возможности. Она включает в себя следующие ключевые положения о клетке:

  • она является элементарной единицей практически всех живых организмов, исключение составляют неклеточные формы – вирусы;
  • у бактерий, растений и животных они гомологичны (сходны по основным свойствам и отличаются по второстепенным);
  • размножаются путем деления, то есть новые клетки всегда возникают из предыдущих клеточных тканей.

Все живое состоит из клеток. В свете этого постулата ученые не пришли к единому мнению, следует ли считать фаги (вирусы) живыми организмами, ведь основные признаки живого (размножение, обмен веществ и др.) у них отсутствуют и могут проявляться лишь в чужом организме, а сами фаги являются вне ее лишь достаточно сложным химическим соединением.

По своей сути, фаги являются облигатными (не живут вне тела хозяина) паразитами. Они распространены так же широко, как и все другие организмы – воздух, водоемы и суша населены не только ядерными и доядерными формами жизни, но и фагами, которые могут поражать как прокариотов, так и эукариотов.

Фаги являются самой распространенный формой органической материи – в водоемах их содержится огромное количество – в 1 мл воды насчитывается до единиц фагов.

Известно, что вирусы могут поражать не только бактерии, такие фаги называют бактериофагами, но и всех эукариотов – растения, грибы и животных. Таким образом, роль фагов становится очевидной – они являются важным звеном в механизме регуляции численности всего живого на планете.

Доядерные и ядерные формы жизни

Все живое можно разделить на 2 группы:

  • прокариоты (бактерии и архебактерии);
  • эукариоты (растения и животные).

Прокариоты и эукариоты

Несмотря на общее происхождение, клетки бактерий имеют не так много схожих признаков с растениями и животными, к ним относятся:

  • наличие наружного замкнутого слоя – фосфолипидной мембраны;
  • присутствие наследственного материала – рибосомы и хромосомы.

Строение прокариотических и эукариотических клеток, представленное как сравнительная характеристика, наглядно показано в таблице:

Свойство Доядерные (прокариоты) Ядерные (эукариоты)
Размер 2-10 мкм 10-100 мкм
Форма клетки Для различных видов бактерий характерны свои формы – они могут быть круглыми (кокки), палочковидными или спиралевидной формы (спириллы и вибрионы) Клетка растения имеет фиксированную прямоугольную форму, а для животных характерна неправильная округлая форма
Наличие капсулы Присутствует у отдельных видов; не является характерной чертой прокариотов Отсутствует
Клеточная стенка Присутствует у всех бактерий Характерно наличие у растений и грибов, а у животных отсутствует
Плазматическая мембрана Есть Есть
Ядро клетки Нет Есть
Хромосомы Как таковых хромосом нет; генетический материал содержит нуклеоид – закольцованная спаренная молекула ДНК; линейные молекулы ДНК редко встречаются у прокариотов Нуклеопротеидные структуры ядра эукариотов, являются носителем генетической информации; кариотип – совокупность всех хромосом клетки – является специфическим признаком конкретного вида и не подвержен индивидуальным изменениям
Тип деления Прямое Митоз
Наличие пилей Есть Нет
Органеллы перемещения Есть – жгутики и реснички Есть у всех эукариотов (ундулиподии, закрепленные с помощью кинетосом), кроме грибов

Клеточное строение усложняется от прокариотов к эукариотам. Если организм бактерии состоит из одной клетки, то организмы высших животных, в частности человека, состоят из .

Химический состав

Важной характеристикой живой клетки является ее химический состав.

Клеточное вещество бактерий, растений и животных представляет собой сложный двухфазный коллоид:

  • цитоплазматический матрикс, способный переходить от жидкого до твердого агрегатного состояния;
  • мембранная система, выполняющая роль более жидкой составляющей.

Химический состав бактериальной клетки

Элементарный клеточный состав насчитывает более 70 единиц и в процентном соотношении по убыванию распределяется следующим образом:

  • кислород – 65%;
  • углерод -18%;
  • водород – 10%;
  • азот – 3%;
  • кальций, калий, фосфор, хлор и сера.

Данная группа химических элементов присутствует всегда в значительном количестве и носит название макроэлементов.

Микроэлементы, такие как медь, марганец, селен, кобальт и другие, также являются обязательной частью клетки, но необходимы в малых количествах.

Химические элементы присутствуют не в виде молекул чистого вещества – они образуют различные органические и неорганические соединения, имеющие свою роль в процессе жизнедеятельности организма.

Неорганика организмов

Исключительное значение для жизнедеятельности любой формы – бактерий, растений, грибов или животных – имеет вода.

Строение бактериальной клетки

Это неорганическое соединение является:

  • средой для проведения реакций;
  • растворителем химических веществ;
  • частью механизма выведения продуктов обмена;
  • гарантом стабильного температурного режима прокариотов и эукариотов.
    Кроме воды, в структуре присутствуют минеральные соли, они являются частью клеточной протоплазмы.

Органические соединения

Основными органическими соединениями, участвующими в строении и жизнедеятельности организмов бактерий, растений, грибов и животных, являются углеводы (простые и сложные), липиды, стероиды, белки, АТФ и нуклеиновые кислоты.

Нуклеоид бактериальной клетки

Роль биологических молекул в живых организмах заключается в следующем:

  • углеводы (соединение углерода, водорода и кислорода) являются составной частью мембранных систем и важнейшим энергетическим источником;
  • липиды (соединение спиртов и жирных кислот) играют роль накопителей энергии;
  • стероиды – данные вещества являются гормонами;
  • белки – сложные соединения со значительной молекулярной массой; являются строительным материалом, а также катализаторами, гормонами, токсинами и антителами, вследствие деструкции становятся источниками энергии;
  • АТФ – осуществляет обмен энергии и вещества, является источником энергии для биохимических процессов;
  • нуклеиновые кислоты – ДНК и РНК – являются носителями генетической информации.

Методы изучения клеточной структуры

В связи с микроскопическими размерами изучение строения клеток стало возможным только с появлением микроскопов.

микроскопический метод

Современная наука использует для исследования цитопроцессов системно-структурные методики, объединяющие микроскопическую технику и цитологические исследования.

Для изучения процессов в клетках бактерий, растений, грибов и животных используются следующие техники микроскопирования:

1. Световая – используются оптические микроскопы, разрешающая способность до 105 крат (проекция на экран); имеет модификации:

  • фазово-контрастная – используются оптические микроскопы для получения изображений прозрачных объектов;
  • ультрафиолетовая и инфракрасная – оптические микроскопы оснащаются флуоресцентными экранами, объекты изучают в УФ- или ИК-частях спектра;
  • люминесцентная – метод основан на появлении люминесценции под воздействием УФ-излучения.

2. Электронная – применение сканирующих электронных микроскопов позволило получить трехмерное изображение клетки, а дополнительное использование замедленной киносъемки дало возможность записать процесс жизнедеятельности самой клетки.

Выращивание бактерий в чашке Петри

Цитологические исследования используют цитохимические методы – избирательное окрашивание определенных участков цитоплазмы, а также методики авторадиографии – введение радиоактивных изотопов водорода, фосфора или углерода в клетку и отслеживание их на фотоэмульсиях.

Цитологи способны выделить отдельные компоненты клетки методами дифференциального центрифугирования. Применение при анализе хроматографов позволяет разделить биологические молекулы, а их пространственное расположение определяют методами рентгеноструктурного анализа.

Особенности размножения прокариотов и эукариотов

Сравнительная характеристика процесса пролиферации (размножения) доядерных и ядерных организмов выявляет различные процессы, протекающие при размножении в клетках прокариотов и эукариотов.

Размножение безъядерной клетки осуществляется простым делением на 2 равноценные по размеру и составу части, каждая из которых является носителем одинаковой генетической информации.

Схема деления прокариотической клетки

Эукариотические клетки размножаются по одному из двух механизмов:

  • митоз – непрямое деление, основное для ядерных форм; происходит деление ядра с образованием родительского набора хромосом в каждом из дочерних ядер, далее происходит деление самой клетки;
  • мейоз – деление клетки с уменьшением хромосомного набора вдвое – образуются гаметы, при оплодотворении происходит слияние гамет, новый организм имеет полный набор хромосом.

Независимо от того, является клетка прокариотом или эукариотом, она всегда связана с жизнью. В отсутствии клетки жизни не существует.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.


Все живые организмы могут быть распределены в одну из двух групп (прокариоты или эукариоты) в зависимости от основной структуры их клеток. Прокариоты — живые организмы, состоящие из клеток, которые не имеют клеточного ядра и мембранных органелл. Эукариоты — живые организмы, клетки которых содержат ядро, а также мембранные органеллы.

Компоненты клеток заключены в мембрану, которая служит барьером между внешним миром и внутренними составляющими клетки. Клеточная мембрана — избирательный барьер, это означает, что он пропускает некоторые химические вещества, поддерживающие равновесие, необходимое для жизнедеятельности клеток.

Клеточная мембрана регулирует перемещение химических веществ из клетки в клетку следующими способами:

  • диффузия (тенденция молекул вещества к минимизации концентрации, то есть перемещение молекул из области с более высокой концентрацией по направлению к области с более низкой до момента выравнивания концентрации);
  • осмос (движение молекул растворителя через частично проницаемую мембрану для того, чтобы уравнять концентрацию растворенного вещества, которое не в состоянии двигаться через мембрану);
  • селективный транспорт (при помощи мембранных каналов и насосов).

Прокариоты

Прокариоты

Прокариоты — организмы, состоящие из клеток, которые не имеют клеточного ядра или любых мембранных органелл. Это означает, что генетический материал ДНК у прокариот не связан в ядре. Кроме того, ДНК прокариот менее структурирована, чем у эукариот. В прокариотах ДНК одноконтурная. ДНК эукариот организована в хромосомы. Большинство прокариот состоят только из одной клетки (одноклеточные), но есть несколько и многоклеточных. Ученые разделяют прокариот на две группы: бактерии и археи.

Типичная клетка прокариота включает:

    ;
  • плазматическую (клеточную) мембрану;
  • цитоплазму;
  • рибосомы;
  • жгутики и пили;
  • нуклеоид;
  • плазмиды;

Эукариоты

эукариот

Эукариоты — живые организмы, клетки которых содержат ядро и мембранные органеллы. Генетический материал у эукариот находится в ядре, а ДНК организована в хромосомы. Эукариотические организмы могут быть одноклеточными и многоклеточными. Все животные являются эукариотами. Также эукариоты включают растения, грибы и простейших.

Читайте также: