Размножение деление клеток кратко

Обновлено: 04.07.2024

Образование эукариотических клеток связано с процессом удвоения, а после — деления генетического материла ядра (в ходе митоза или мейоза), а также с делением тела клетки или цитокинезом (не относится к клеткам, образующимся в результате слияния).

Жизнь и функционирование сформировавшихся один раз клеток длится до момента их следующего деления или гибели.

Не могут делиться эритроциты, нейроны и мышечные клетки.

Жизнь каждой клетки ограничена. По этой причине для длительного существования в многоклеточном организме должен происходить процесс образования новых клеток со скоростью гибели старых клеток.

Одно из самых важных явлений в организме — деление клеток.

Что такое деление клетки? Как происходит деление клетки?

Одноклеточные организмы зарождаются в результате образования зиготы и слияния гамет. Зигота делится достаточно интенсивно и образует миллиарды новых клеток, которые получают дифференциацию, растут и формируют ткани с органами.

Рост и обновление многих структур в многоклеточных организмах связаны с процессом размножения клеток — пролиферацией. После того как новый организм сформирован, клетки постепенно утрачивают способность размножаться. Периодически они делятся — это связано с необходимостью замещения погибших клеток, а также поддержания целостности тканей, органов и организма в целом.

Основа деления клеток — молекулярно-генетический механизм или репликация молекул ДНК.

Непрямое деление клеток

Определение митоза

В многоклеточном организме клетки возникают как результат деления (размножения) уже существующих клеток.

Митоз или непрямое деление — это непростой процесс деления ядра с последующим образованием двух дочерних ядер.

Чем характеризуется непрямое деление клетки? Приведем его примеры ниже.

В каждом из новых двух ядер содержится идентичный материнскому набор хромосом, между дочерними клетками происходит точное распределение хромосом с ДНК.

Процесс митоза — часть жизненного цикла клетки, основанный на пяти последовательных фазах.

  1. Профаза.
  2. Прометафаза.
  3. Метафаза.
  4. Анафаза.
  5. Телофаза.

Фазы митоза

Каждая фаза митоза отличается по длительности. Одна может заниматься несколько минут, а другая — сотни часов. Длительность фазы определяется типом клетки, тканями, активностью органов, физиологическим состоянием организма, разнообразными факторами внешней среды вроде влажности, освещения, температуры, химических веществ и др, а также внутренними факторами — гормонами, нейромедиаторами.

Пройдемся кратко по фазам митоза.

Профаза — начальная стадия митоза. В стадии профазы содержимое ядра клетки заметно меняется. Происходит скручивание, уплотнение длинных волокон хроматина, образование ими петель и спиралей. Если посмотреть в световой микроскоп, то они будут иметь вид отдельных хромосом.

Каждая хромосома на этой стадии состоит из двух хроматид — они находятся рядом одна с другой по всей длине. Происходит отдаление пар центриолей в направлении к противоположным концам клетки, в результате чего образуются два полюса деления. Эти структуры будут участвовать в процессе организации микротрубочек веретена деления.

Начало прометафазы можно охарактеризовать внезапной (в течение 20-30 секунд) дезинтеграцией ядерной оболочки на небольшие везикулы — они очень похожи на везикулы эндоплазматической сети. За счет этого микротрубочка веретена деления получает возможность попасть в ядро. Происходит смешение цитоплазмы и кариоплазмы. Далее происходит еще большее уплотнение хромосом и образование на их центромерах кинетохор — они представляют собой специальные белки, от которых отходят микротрубочки.

Группы миктротрубочек веретена деления вступают во взаимодействие с кинетохорными микротрубочками — благодаря этому хромосомы могут двигаться. Особенностью кинетохорных миктротрубочек является то, что они направлены в разные стороны от двух сестринских хроматид. Поэтому они могут тянуть их в разные стороны, задавая, тем самым, движению хромосом определенное направление.

Клетка находится в стадии метафазы, когда хромосомы располагаются в экваториальной плоскости. Хромосомы, сгруппированные таким способом, называют метафазной пластинкой. В таком положении они находятся благодаря натяжению микротрубочек. Позже присоединенные к кинетохорам микротрубочки начинают растягивать хромосому в разные стороны. Как результат — происходит отделение дочерних хроматид одна от другой. Метафаза обеспечивает хромосомам упорядоченное состояние и четкое строение, поэтому в этой фазе они хорошо видны в световой микроскоп.

На стадии метафазы проводятся исследования на кариотип.

Окончание фазы связано с завершением репликации центромерного участка ДНК и рассоединением хроматид.

Когда наступает анафаза, микротрубочки веретена деления растягивают хроматиды каждой хромосомы одна от другой и перемещают их в противоположные части клетки. Движение хроматид осуществляется с одинаковой скоростью. В дочерних анафазных хромосомах, которые раньше были хроматидами метафазной хромосомы, находится по одной молекуле ДНК.

Эта молекула имеет палочкообразную форму и изгиб около центромеры. Расхождение анафазных хромосом происходит одновременно и достаточно быстро. По завершении анафазы в разных частях поделившейся клетки образуется два полных и равноценных набора хромосом.

Генетическая формула наборов — 2n2c.

На стадии телофазы наборы хромосом располагаются на противоположных концах веретена. Само веретено начинает распадаться. Вокруг каждой группы хромосом происходит слияние везикул и образование новых ядерных оболочек. Осуществляется раскручивание наследственного материала хромосом до состояния хроматина (хроматин свойственен интерфазе). Вновь появляются ядрышки. По завершении всех изменений процесс митоза заканчивается. Образованные ядра вступают в начало следующего клеточного цикла.

Биологическое значение митоза заключается в точном и равномерном распределении генетического наследственного материала между дочерними клетками.

Непрямое деление клеток

​​​​​​​

Значение процесса размножения клеток

Размножение или воспроизведение себе подобных — важное свойство всех живых организмов, включая бактерий.

Благодаря этому процессу обеспечивается непрерывное существование во времени всех видов растений и животных, поддерживается их численность и наследственность между поколениями. Возникновение новых клеток возможно только путем деления или размножения уже существующих.

Процесс деления клетки — это то, что определяет рост, индивидуальное развитие и непрерывное самообновление тканей многоклеточных организмов. Поддержание жизни особей многоклеточных организмов обусловлено именно размножением клетки, потому что клетки живут гораздо меньше, чем отдельные особи.

Все эукариотические клетки образуются в результате удвоения, а потом деления генетического материала ядра (митоз, мейоз) и деления тела клетки (цитокинез), за исключением тех клеток, которые образуются за счёт слияния.

Клетки, которые один раз сформировались, живут и функционируют до тех пор, пока не поделятся снова или погибнут.

Эритроциты, нейроны и мышечные клетки сердца не способны к делению.

В связи с тем, что длительность жизни каждой клетки ограничена, многоклеточный организм, чтобы существовать долго, должен образовывать новые клетки с той же скоростью, с которой гибнут старые.

Деление клеток – важнейшее явление в жизни всех организмов.

Одно из положений клеточной теории утверждает, что новые клетки образуются только из предидущих. Этот процесс и называется делением клеток.

У одноклеточных организмов жизнь начинается образованием зиготы в результате слияния гамет. Во время интенсивного деления зиготы образуются миллиарды клеток, которые дифференцируются, растут и формируют ткани и органы.

С размножением клеток (пролиферацией) связаны рост и оновление многих структур в многоклеточном организме. После нового формирования организма клетки теряют способность к интенсивному размножению, хотя время от времени делятся для замещения клеток, которые погибли, и поддержания целостности тканей, органов и всего организма.

В основании деления клеток лежит молекулярно-генетический механизм – репликация молекул ДНК.

Митоз – непрямое деление клеток

Все клетки многоклеточного организма возникают в результате размножения (деления) ранее существующих клеток.

Митоз (гр. mitos – нить) – это сложный процесс деление ядра, в результате которого образуются две дочерние ядра, в каждом из которых имеется тот же набор хромосом, что и в материнском ядре, происходит точное распределение хромосом с имеющейся в них ДНК между дочерними клетками.

Готовые работы на аналогичную тему

Процесс митоза является частью жизненного цикла клетки и условно делится на пять последовательных фаз:

  • профазу;
  • прометафазу;
  • метафазу;
  • анафазу;
  • телофазу.

Фазы митоза и мейоза. втор24 — интернет-биржа студенческих работ

Длительность каждой фазы митоза может быть разной – от нескольких минут до сотен часов. Это зависит от типа клеток, тканей, активности органов, физиологического состояния организма, а также от факторов внешней среды (температуры, влажности, освещения, химических веществ и т.п.) и внутренних факторов (гормонов и нейромедиаторов).

Профаза.

Когда клетка входит в стадию профазы, содержимое ядра существенно изменяется. Длинные волокна хроматина скручиваются, уплотняются, образуют петли и спирали. Они хорошо заметны в световом микроскопе как отдельные хромосомы. На этой стадии каждая хромосома состоит из двух хроматид, находящихся друг возле друга по всей длине. Пары центриолей отдаляются друг от друга в направлении к противоположным концам клетки, образуя два полюса деления. Эти структуры будут залучены в организацию микротрубочек веретена деления.

Прометафаза.

Начало прометафазы отличается внезапной (20-30 с) дезинтеграцией ядерной оболочки на мелкие везикулы, которые подобны везикулам эндоплазматической сети. Теперь микротрубочка веретена деления может попасть в ядро. Кариоплазма и цитоплазма смешиваются. Хромосомы ещё более уплотняются, потом на центромерах хромосом образуются кинетохоры – специальные белки, от которых отходят микротрубочки. Группы микротрубочек веретена деления взаимодействуют с кинетохорными микротрубочками, что и обеспечивает движение хромосом. Кинетохорные микротрубочки направлены в разные стороны от двух сестринских хроматид и могут тянуть их в разные стороны, что приводит к направленному движению хромосом.

Метафаза.

Расположение хромосом в экваториальной плоскости означает, что клетка находится в стадии метафазы. Сгруппированные таким образом хромосомы имеют название метафазной пластинки. В таком виде они удерживаются за счёт натяжения микротрубочек. В дальнейшем микротрубочки, присоединённые к кинетохорам, начинают растягивать хромосому в разные стороны таким образом, что дочерние хроматиды отделяются друг от друга. Во время метафазы хромосомы находятся в упорядоченном состоянии, имеют чёткое строение и хорошо видимы в световом микроскопе. Потому исследование кариотипов проводят именно в этой фазе. В конце фазы завершается репликация центромерного участка ДНК, а хроматиды п рассоединяются.

Анафаза.

Во время анафазы хроматиды каждой хромосомы растягиваются микротрубочками веретена деления друг от друга и перемещаются к противоположным частям клетки. Все хроматиды двигаются с одинаковой скоростью. Дочерние анафазные хромосомы (раньше были хроматидами метафазной хромосомы) содержат по одной молекуле ДНК. Она палочкообразной формы, но имеет изгиб возле центромеры. Их расхождение происходит одновременно и быстро. Когда анафаза завершается, в разных частях клетки, которая делится, собираются два полные равноценные наборы хромосом. Генетическая формула этих наборов – 2n2c.

Телофаза.

Два идентичные наборы хромосом находятся на противоположных концах веретена, которое начинает распадаться. Вокруг каждой из групп хромосом везикулы сливаются и образуют новые ядерные оболочки. Наследственный материал хромосом начинает раскручиваться (деспирализоваться) до состояния хроматина, который характерен для интерфазы. Снова появляются ядрышка. Когда эти изменения завершаются, митоз добегает конца, и каждое из образованных ядер снова входит в начало следующего клеточного цикла.

Биологический смысл митоза – точное и равномерное распределение генетического наследственного материала между дочерними клетками.

Значение процесса размножения

Размножение, или воспроизведение себе подобных, является неотъемлемым свойством всех живых организмов – от бактерий до человека. Этот процесс обеспечивает существование во времени каждого вида растений и животных, поддержание его численности наследственности между отдельными поколениями. Лишь путём размножения (деления) существующих клеток могут возникать новые. Рост, индивидуальное развитие и постоянное самообновление тканей многоклеточных организмов определяются процессами деления клеток. Поддержание жизни таких особей во времени также обуславливается размножением клеток, поскольку длительность существования большинства клеток короче, чем особи.

Деление клеток – основа размножения и индивидуального развития организмов.

Деление клетки – важнейший биологический процесс, без него невозможно существование живых организмов. Доказано, что клетки всех живых организмов сходны по строению и химическому составу. Путем деления исходной клетки увеличивается число вновь образовавшихся клеток. Клетка – это наименьшая единица строения любого живого организма. Из нее состоят ткани и органы.

Клетка растет, развивается, она способна к самостоятельному воспроизведению. Для клетки свойственно протекание таких процессов, как метаболизм, раздражение, саморегуляция.

Клетка существует с момента ее появления в результате деления и до ее окончательной гибели или последующего деления. Это время называется клеточным циклом. На длительность цикла влияет тип клетки и условия внешней среды. Промежуток между делениями клеток называют интерфазой.

Для прокариотов, или простейших организмов, характерно отсутствие ядра. Им присуще бинарное деление клеток, то есть деление клетки пополам с копированием ДНК, находящегося в цитоплазме. ДНК, или дезоксирибонуклеиновая кислота, это сложная уникальная молекула, хранящая в себе наследственную информацию об организме в виде генетического кода.

Для эукариотических организмов характерно наличие клеток с одним или несколькими ядрами. Ядро – важнейший компонент клетки, состоящий из ядерной оболочки, ядрышка, хроматина и кариоплазмы. Ядрышко синтезирует рибосомы. В нем сосредоточено наибольшее количество белка в клетке.

Особенности деления клеток

Некоторым эукариотическим клеткам свойственно деление посредством амитоза. Амитоз может проходить без образования хромосом и веретена деления, а генетический материал распределяется случайным образом. Этот способ деления присущ клеткам, которые быстро завершают свой жизненный цикл: фолликулярные клетки яичников, эпителиальные клетки кожи, клетки злокачественных новообразований, клетки коры дуба. При этом клетки могут делиться как на равные, так и на неравные части, а ядерная оболочка не распадается.


Эукариотические клетки с образованием хромосом способны делиться только двумя способами: митозом и мейозом. Хромосомами называют совокупность органоидов клеточного ядра, определяющих наследственные свойства клеток и живых организмов.

Все клетки можно разделить на 2 группы в зависимости от хромосомного набора, содержащегося в ядре:

  • соматические клетки, из которых состоит тело многоклеточных организмов, они не принимают участие в половом размножении;
  • половые клетки (гаметы).

Совокупность хромосом, которые содержатся в ядре, это хромосомный набор. Число хромосом в клетке одинаково для каждого вида живых организмов. Так, у клеток человека этот показатель составляет 46.


Первый способ деления — митоз

С помощью митоза делятся соматические клетки многоклеточных животных, кроме половых клеток.

При делении этим способом материнская клетка делится на дочерние клетки, которые не отличаются от нее генетически, то есть наследственной информацией.

Процесс деления клетки с помощью митоза называют митотическим. Клеточный цикл состоит из митотического цикла и периода покоя. Митотический цикл состоит из интерфазы и митотического деления.


The study made the unexpected finding that in certain forms of replication stress, an active checkpoint actually allows cells to divide, causing worse damage than if it were missing entirely, said USC expert Susan Forsberg. (Illustration/iStock)

Интрефаза длится по времени намного дольше по сравнению с митотическим делением. Во время этой стадии происходит рост клетки, синтез белка и органических веществ, а также накопление веществ, необходимых для деления клетки. Интерфаза может длиться от нескольких минут до нескольких дней. Она состоит из 3 фаз:

  • пресинтетической, или фазы начального роста;
  • синтетической;
  • постсинтетической, во время которой клетка готовится к митотическому делению.

В целом процесс митотического деления длится от нескольких минут до нескольких часов в зависимости от вида живого организма. Правильное протекание митоза возможно без внешнего вредного воздействия, например, излучения рентгена, попадания этилового спирта. Неблагоприятные факторы могут привести к нарушениям в процессе распределения хромосом или даже полной гибели клетки.

Фазы митоза

Хроматин перед началом деления преобразуется в хромосомы в форме нитей. Всего выделяют несколько фаз митоза в зависимости от внешнего вида и состояния хромосомы. Их называют профазой, метафазой, анафазой, телофазой.

  1. Во время профазы хромосомы становятся короче и толще, они видны в световой микроскоп. В этой фазе они представляют собой связанные между собой сестринские хроматиды, принимают спиралевидную форму. Хроматиды представляют собой структурные элементы хромосомы, сформированные в ядре в результате удвоения хромосом. Бесформенный хроматин в ядре собирается в четко оформленные хромосомы. В это же время происходит разрыв ядерной оболочки и исчезновение ядрышка. Вследствие этого хромосомы свободно и хаотично располагаются в цитоплазме, а центриоли переходят к полюсам клетки. В заключение профазы сформируется веретено деления. Оно представляет собой микротрубочки.
  1. В метафазе деление клеточного веретена завершается. ДНК максимально спирализованы в хромосомы. Они, в свою очередь, состоят из двух хроматид. К микротрубочкам веретена начинают крепиться двойные хромосомы, в результате чего формируется метафазная пластинка. На этой стадии несложно подсчитать хромосомы.
  1. В самой короткой стадии анафазы хромосомы распадаются на отдельные хроматиды. В свою очередь, дочерние хромосомы растягиваются к полюсам клетки с помощью микротрубочек. В клетке теперь присутствует два диплоидных хромосомных набора.
  1. В стадии телофазы деспирализуются хромосомы. Завершается формирование ядерной оболочки. Заканчивается процесс образования ядрышек в ядрах. Цитоплазма делится, образуя две клетки. На этой стадии рушатся нити клеточного веретена деления. Завершение телофазы совпадает с процессом цитокинеза. Он представляет собой разделение тела материнской клетки на две клетки дочерние.


Второй способ деления клетки — мейоз


Необходимо понимать, в чем заключается различие диплоидной и гаплоидной клеток. Как известно, плоидность – количество одинаковых наборов хромосом, находящихся в ядрах клеток организма. В диплоидной клетке имеется основной набор хромосом – от каждой материнской клетки присутствует один набор. При слиянии клеток хромосомы не накапливаются. После деления диплоидных клеток в ядре новых клеток оказывается уже один набор хромосом. Для гаплоидной клетки характерно содержание всего одного набора хромосом. Она образуется из диплоидной путем митотического деления.


Фазы мейоза

Этот способ состоит из двух следующих друг за другом делений с короткой интерфазой между ними. Это приводит к тому, что из одной диплоидной клетки формируются четыре клетки гаплоидные. Восстановление плоидности происходит в результате оплодотворения.

Непосредственно мейоз состоит из мейоза I и мейоза II. В очень короткой интерфазе между этими стадиями деления происходит удвоение ДНК. Далее происходит образование четырех дочерних клеток. Фазы мейоза I схожи с фазами, протекающими при митозе.

  1. Профаза I дольше всех остальных длится по времени, при ней хромосомы спирализуются и утолщаются. Возникает явление конъюгации хромосо. Оно заключается в соединении гемологичных хромосом друг с другом. Такие хромосомы идентичны друг другу по форме, строению и размерам. Структуры, которые образованы двумя соединенными хромосомами – это биваленты. Между хромосомами возникает процесс, названный кроссинговером, то есть обменом, в котором участвуют участки хромосом. Это приводит к возникновению обновленных генетических комбинаций. По окончании этой фазы ядерная оболочка должна разрушиться, а веретено деления – сформироваться.
  1. При метафазе I биваленты находятся у клеточного экватора. Нити веретена начинают присоединяться к центромерам гомологичных хромосом.
  1. В анафазе I гомологичные хромосомы разъединяются к различным клеточным полюсам. Этому способствует сокращение нитей веретена деления. Распределяются хромосомы хаотичным образом из-за самопроизвольного крепления нитей веретена. У каждого клеточного полюса происходит формирование гаплоидного набора новой клетки.
  1. На стадии телофазы I хромосомы проходят процесс деспирализации. Затем появляются две дочерние клетки с двумя гаплоидными ядрами. К окончанию этой фазы количество хромосом уменьшатся вдвое.

Мейоз II, иди эквационное деление, имеет те же самые фазы:

  1. Во время профазы II должно восстановиться новое веретено деления, а оболочка ядра должна разрушиться.
  1. Во время метафазы II хромосомы начинают присоединяться к нитям веретена деления и продолжают выстраиваться на его экваторе.
  1. При анафазе II хроматиды распределяются к полюсам клетки. На каждом полюсе появляется гаплоидный набор хромосом.
  1. Во время телофазы II образуется ядерная оболочка вместе с ядрышками, разделяется цитоплазма. Снова деспирализуются хромосомы.


Отличие мейоза от митоза

  1. При митозе происходит только однократное деление, а при мейозе – двукратное.
  2. Митоз характерен для соматических клеток, а мейоз – для клеток половых.
  3. Митоз участвует в таких процессах, как рост и развитие любого живого организма. Мейоз отвечает за образование половых клеток.
  4. При делении митозом возникают две клетки диплоидные, а при делении мейозом возникают четыре клетки гаплоидные.
  5. В результате деления путем митоза новые клетки будут идентичны и генетически схожи с материнскими. При мейозе благодаря случайному расхождению хромосом и кроссинговеру дочерние клетки на генетическом уровне различны.


Биологическая роль деления клетки

Деление клетки – очень важный и значимый процесс, лежащий в основе роста, развития и размножения организмов. Главной особенностью живых организмов является их способность к росту.

  1. Деление клеток способно обеспечивать непрерывность жизни и передачу наследственной информации.
  2. Если в системе деления клеток происходит сбой, то организм теряет свою жизнеспособность.
  3. Новые клетки появляются посредством деления уже клеток существующих.
  4. Из новых клеток формируются новые органы и ткани у растений, животных, человека.

Отдельно стоит отметить биологическое значение процессов митоза и мейоза.

Раздел ЕГЭ: 2.7. … Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. …

Клеточный цикл (жизненный цикл клетки) — время существования клетки от начала одного деления до начала следующего деления, состоит из интерфазы и собственно процесса деления.

Интерфаза — период между делениями, в котором происходят процессы роста и развития клетки, удвоения ДНК, синтеза белков и органических соединений.

жизненный цикл клетки

  1. Пресинтетический (постмитотический) период G1 — образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет (хромосомный набор — 2n2c).
  2. Синтетический период S — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид, активно синтезируются структурные белки ДНК — гистоны (хромосомный набор — 2n4c).
  3. Постсинтетический (премитотический) период G2 — подготовка к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли (хромосомный набор — 2n4c).

Примечание. В схемах деления гаплоидный набор хромосом обозначают буквой n , а молекул ДНК (т. е. хроматид ) — буквой с . Перед буквами указывают число гаплоидных наборов, например:

виды деления клеток

Митоз и амитоз

Митоз (непрямое деление клетки) — процесс равномерного распределения между дочерними клетками ядерного наследственного материала.

В результате митоза из одной материнской клетки с диплоидным (двойным) набором хромосом образуются две диплоидные дочерние клетки, содержащие полную генетическую информацию в том же объёме, что и родительская. Митоз обеспечивает сохранность наследственных признаков и увеличение количества клеток или одноклеточных организмов.

Стадии (фазы) митоза:

  • Профаза (2n4c) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления; прикрепление хромосом к нитям веретена деления.
  • Метафаза (2n4c) — спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную пластинку.
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками формируется клеточная стенка.

митоз

Амитоз — прямое деление клетки, при котором ядро делится путём перешнуровки без предшествующей перестройки:

  • хромосомы не проходят цикла спирализации;
  • не образуется веретено деления;
  • клетка делится сразу после репликации ДНК;
  • ДНК между дочерними клетками распределяется неравномерно.

Амитоз проходит быстрее, чем митоз. В результате амитоза увеличивается количество дочерних клеток, но одновременно могут появляться двух- и многоядерные клетки. Амитоз характерен для одноклеточных и некоторых клеток многоклеточных организмов (клетки при патологических состояниях).

Мейоз

Мейоз — способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в два раза набором хромосом. На этапе интерфазы (предшествует мейозу) происходит репликация ДНК с последующим удвоением хромосом. Клетки с диплоидным набором хромосом, каждая состоит из одной хромосомной нити (хромонемы). После интерфазы хромосомы становятся удвоенными, а их диплоидное число 2n сохраняется. Центриоли в клеточном центре удваиваются.

Стадии (фазы) мейоза I (редукционное деление):

  1. Профаза I — спирализация хромосом; конъюгация; кроссинговер; хроматиды начинают расходиться; биваленты обособляются и располагаются по периферии ядра; ядрышко исчезает (хромосомный набор клетки — 2n4c).
  2. Метафаза I — начинается с момента разрушения ядерной оболочки; биваленты располагаются в экваториальной плоскости, прикреплённые к нитям веретена деления (хромосомный набор клетки — 2n4c).
  3. Анафаза I — центромеры каждой пары гомологичных хромосом разъединяются, и к полюсам клетки отходят гомологичные хромосомы, состоящие из двух хроматид (хромосомный набор клетки к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c).
  4. Телофаза I — начинается с достижения хромосомами полюсов клетки (у каждого полюса — n хромосом): происходит редукция числа хромосом; образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка (хромосомный набор каждой из образовавшихся клеток — 1n2c).

Завершение мейоза I сопровождается образованием двух дочерних клеток, содержащих гаплоидный набор хромосом, которые в свою очередь остаются удвоенными.

Во время кратковременной интерфазы (интеркинеза) не происходит репликация ДНК, нет удвоения хромосомы, две дочерние клетки вступают во второе деление мейоза.

Стадии (фазы) мейоза II (по типу митоза — равное деление):

  1. Профаза II — непродолжительная, так как хроматиды спирализованы (хромосомный набор клетки — 1n2c).
  2. Метафаза II — образуются экваториальная пластинка, хромосомы, состоящие из двух хроматид, центромерными участками прикрепляются к нитям веретена деления (хромосомный набор клетки — 1n2c).
  3. Анафаза II — хроматиды расходятся к полюсам клетки (хромосомный набор у каждого полюса — 1n1c , в клетке — 2n2c).
  4. Телофаза II — образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка. Образуются четыре гаплоидные клетки 1n1c (хромосомные наборы образовавшихся клеток не идентичны).

мейоз

Мейоз II проходит по типу митоза. В результате мейоза из одной клетки с диплоидным набором хромосом после двух последовательных делений образуются 4n клетки.

Черты мейоза

  1. Редукция числа хромосом (если бы не было уменьшения числа хромосом при образовании половых клеток, то из поколения в поколение их количество возрастало бы и был бы утрачен один из важнейших признаков каждого вида — постоянство числа хромосом),
  2. Конъюгация (сближение и переплетение) гомологичных хромосом.
  3. Рекомбинация генетического материала, обусловленная случайным расхождением материнских и отцовских гомологичных хромо сом в дочерние клетки, а также кроссинговером (процессом обмена участками гомологичных хромосом).

Таким образом, мейоз — непрерывный процесс, состоящий из двух последовательных делений ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I.

Наборы хромосом и количество ДНК в клетке (мейоз)

Наборы хромосом и количество ДНК в клетке (мейоз)

Читайте также: