Расскажите о закономерностях в атомных спектрах водорода кратко

Обновлено: 04.07.2024

Излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. В соответствии с этим спектр испускания атомов называется линейчатым.

На рис. 12.1 показан спектр испускания паров ртути. Такой же характер имеют и спектры других атомов.

Изучение атомных спектров послужило ключом к позианию строения атомов. Прежде всего было замечено, что линии в спектрах атомов расположены не беспорядочно, а объединяются в группы или, как их называют, серии линий. Отчетливее всего это обнаруживается в спектре простейшего атома — водорода. На рис. 12.2 представлена часть спектра атомарного водорода в видимой и близкой ультрафиолетовой области. Символами обозначены видимые линии, указывает границу серии (см. ниже). Очевидно, что линии располагаются в определенном порядке. Расстояние между линиями закономерно убывает по мере перехода от более длинных волн к более коротким.

Швейцарский физик Бальмер (1885) обнаружил, что длины волн этой серии линий водорода могут быть точно представлены формулой

где — константа, — целое число, принимающее значения 3, 4, 5 и т. д.

Если перейти в (12,1) от длины волны к частоте, получится формула

где — константа, называемая в честь шведского спектроскописта постоянной Ридберга. Она равна

Формула (12.2) называется формулой Бальмера, а соответствующая серия спектральных линий водородного атома — серией Бальмера. Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий. В ультрафиолетовой части спектра находится серия Лаймана. Остальные серии лежат в инфракрасной области. Линии этих серий могут быть представлены в виде формул, аналогичных (12.2):

Частоты всех линий спектра водородного атома можно представить одной формулой:

где имеет значение 1 для серии Лаймана, 2— для серии Бальмера и т. д. При заданном число принимает все целочисленные значения, начиная с Выражение (12.4) называют обобщенной формулой Бальмера.

При возрастании частота линии в каждой серии стремится к предельному значению которое называется границей серии (на рис. 12.2 символом отмечена граница серии Бальмера).

Возьмем ряд значений выражения

Частота любой линии спектра водорода может быть представлена в виде разности двух чисел ряда (12.5). Эти числа называют спектральными термами или просто термами. Так, например, частота первой линии серии Бальмера равна второй линии серии Пфунда и т. д.

Изучение спектров других атомов показало, что частоты линий и в этом случае могут быть представлены в виде разностей двух термов:

Однако терм обычно имеет более сложный вид, чем для водородного атома. Кроме того, первый и второй члены формулы (12.6) берутся из различных рядов термов.

Самым простым из всех атомов является атом водорода, и он выступил в свое время в качестве своеобразного тест-объекта для теории Бора. К моменту появления теории атом водорода был тщательно исследован в ходе экспериментов: имелось знание о том, что он содержит единственный электрон. Ядром атома является протон.

Протон - это частица с положительным зарядом, модуль которого равен модулю заряда электрона, а масса больше массы электрона в 1836 раз.

Серия Бальмера и формула Ридберга

Начало XIX века ознаменовалось открытием линейчатого спектра.

Линейчатый спектр - это дискретные спектральные линии в видимой области излучения атома водорода.

В последующем закономерности, в соответствии с которыми ведут себя длины волн (или частоты) линейчатого спектра, подробно в количественном отношении исследовал И. Бальмер (в 1885 г.)

Серия Бальмера - совокупность спектральных линий атома водорода в видимой части спектра.

Позднее подобные серии спектральных линий обнаружились в ультрафиолетовой и инфракрасной частях спектра. В 1890 г. И. Ридберг составил запись эмпирической формулы для частот спектральных линий (формула Ридберга):

ν n m = R 1 m 2 - 1 n 2 .

Для серии Бальмера m = 2 , n = 3 , 4 , 5 , . . . . Для ультрафиолетовой серии (серия Лаймана) m = 1 , n = 2 , 3 , 4 , . . . .

Неизменяемая R в формуле для частот спектральных линий носит название постоянной Ридберга и равна: R = 3 , 29 · 10 15 Г ц .

До того, как Бор сформулировал постулаты, вопросы, каким же образом возникают линейчатые спектры и каков смысл целых чисел, входящих в формулы спектральных линий водорода (и некоторых других атомов), оставались без ответа.

Правило квантования

Бором было сформулировано правило квантования, которое приводило к соотносимым с опытом значениям энергий стационарных состояний атома водорода. Ученый выдвинул гипотезу, что момент импульса электрона, совершающего вращение вокруг ядра, может принимать лишь дискретные значения, кратные постоянной Планка.

Для круговых орбит правило квантования Бора имеет запись:

m e ν r n = n h 2 π ( n = 1 , 2 , 3 , . . . ) .

В данном выражении m e является массой электрона, υ - его скоростью, r n обозначает радиус стационарной круговой орбиты.

Правило квантования Бора дает возможность путем вычисления определить радиусы стационарных орбит электрона в атоме водорода и отыскать значения энергий. Скорость электрона, который совершает вращение по круговой орбите некоторого радиуса r в кулоновском поле ядра, записывается в виде соотношения (в соответствии с 2 законом Ньютона):

ν 2 = e 2 4 π ε 0 m e r .

Самой близкой к ядру орбите соответствует значение n = 1 .

Боровский радиус - это радиус первой орбиты, расположенной ближе всех к ядру электрона атома водорода, определяемый как:

r 1 = α 0 = ε 0 h 2 π m e e 2 = 5 , 29 · 10 - 11 м .

Радиусы последующих орбит получают возрастание пропорционально n 2 .

Полная механическая энергия E системы из атомного ядра и электрона, вращающегося по стационарной круговой орбите радиусом r n , имеет запись:

E n = E k + E p = m e ν 2 2 - e 2 4 π ε 0 r n .

Заметим, что E p 0 , поскольку имеет место действие сил притяжения между электроном и ядром. Подставим в это выражение записи для υ 2 и r n и получаем:

E n = - m e e 4 8 e 0 2 h 2 · 1 n 2 .

В квантовой физике атома целое число n = 1 , 2 , 3 , . . . носит название главного квантового числа.

В соответствии со вторым постулатом Бора: когда электрон переходит с одной стационарной орбиты с энергией E n на другую стационарную орбиту с энергией E m E n , атом испускает квант света с частотой ν n m , равной Δ E n m h :

ν n m = ∆ E n m h = m e e 4 8 ε 0 2 h 3 1 m 2 - 1 n 2 .

Это выражение полностью идентично с эмпирической формулой Ридберга для спектральных серий атома водорода, если за постоянную R взять:

R = m e e 4 8 ε 0 2 h 3 .

Подставим в это выражение числовые значения всех переменных, получим

R = 3 , 29 · 10 15 Г ц .

Полученное значение отлично коррелируется с эмпирическим значением R .

На рисунке 6 . 3 . 1 проиллюстрировано образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.

Рисунок 6 . 3 . 1 . Стационарные орбиты атома водорода и образование спектральных серий.

Рисунок 6 . 3 . 2 демонстрирует диаграмму энергетических уровней атома водорода с указанием переходов для различных спектральных серий.

Рисунок 6 . 3 . 2 . Диаграмма энергетических уровней атома водорода с указанием переходов для различных спектральных серий. Также имеется указание длин волн для первых пяти линий серии Бальмера.

Тот факт, что теория Бора для атома водорода и результаты эксперимента оказались так отлично согласованы между собой, стал весомым аргументом в пользу верности этой теории. Но при этом попытка использовать теорию применительно к более сложным атомам закончилась провалом. Бору не удалось дать физическую интерпретацию правилу квантования – это позже, спустя десятилетие, сделал де Бройль, опираясь на представления о волновых свойствах частиц. Его предположение заключалось в том, что каждая орбита в атоме водорода соответствует волне, получающей распространение по окружности около ядра атома. Стационарная орбита имеет место тогда, когда волна постоянно повторяет себя после каждого оборота вокруг ядра. Иначе говоря, стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты (рис. 6 . 3 . 3 ). Такое явление подобно стационарной картине стоячих волн в струне с закрепленными концами.

Рисунок 6 . 3 . 3 . Иллюстрация идеи де Бройля возникновения стоячих волн на стационарной орбите для случая n = 4 .

Согласно дебройлевским идеям, в стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться целое число длин волн λ :

Если подставить сюда формулу длины волны де Бройля λ = h p , где p = m e υ – импульс электрона, то:

n h n e ν = 2 π r n или m e ν r n = n h 2 π .

Итак, правило квантования Бора находится во взаимосвязи с волновыми свойствами электронов.

Вообще можно сказать, что Бор достиг поразительных успехов в попытках объяснить спектральные закономерности. Появилось утверждение, что атомы являются квантовыми системами, а энергетические уровни стационарных состояний атомов дискретны. Практически одномоментно с возникновением боровской теории экспериментально было доказано, что существуют стационарные состояния атома и квантование энергии. Дискретность энергетических состояний атома опытным путем продемонстрировали в 1913 г. Д. Франк и Г. Герц, исследуя столкновение электронов с атомами ртути. Выяснилось, что при энергии электронов менее 4 , 9 э В их столкновение с атомами ртути протекает согласно закону абсолютно упругого удара. А, когда энергия электронов равна 4 , 9 э В , столкновение с атомами ртути будет иметь черты неупругого удара. Таким образом, выходит, что, столкнувшись с неподвижными атомами ртути, электроны лишаются всей своей кинетической энергии, что, в свою очередь, означает факт поглощения атомами ртути энергии электрона и перевода электронов из основного состояния в первое возбужденное состояние:

E 2 - E 1 = 4 , 9 э В .

В соответствии с концепцией Бора, когда будет происходить обратный самопроизвольный переход атома, ртуть будет испускать кванты с частотой

ν = E 2 - E 1 h = 1 , 2 · 10 15 Г ц .

Линия спектра с подобной частотой в самом деле нашлась в ультрафиолетовой части спектра излучения атомов ртути.

Утверждения о дискретных состояниях находились в противоречии с классической физикой, в связи с чем также возник закономерный вопрос: не опровергает ли квантовая теория законы классической физической теории.

Квантовая физика отнюдь не стремилась отменить фундаментальные основы, такие как законы сохранения энергии, импульса, электрического разряда и подобное. По сформулированному Бором принципу соответствия квантовая физика вмещает в себя классические представления, и при некоторых условиях можно заметить планомерный переход от квантовых представлений к классическим. Энергетический спектр атома водорода как раз дает нам такой пример (рис. 6 . 3 . 2 ): при больших квантовых числах n ≫ 1 дискретные уровни постепенно становятся ближе, что задает плавный переход в область непрерывного спектра, вытекающего из классической физики.

Квантовые числа

Видение Бора о том, что существуют определенные орбиты для движения электронов в атоме, оказалось очень условным. В действительности, траектория движения электрона в атоме почти не имеет общего с движением планет или спутников. Физический смысл есть лишь в возможности обнаружить электрон в том или ином месте, и эта вероятность описывается квадратом модуля волновой функции | Ψ | 2 . Волновая функция Ψ служит решением базового уравнения квантовой механики – уравнения Шредингера. Выяснилось, что состояние электрона в атоме описывается целым набором квантовых чисел.

Основное квантовое число n - квантовое число, задающее квантование энергии атома.

Орбитальное квантовое число l – число, применяемое для квантования момента импульса.

Магнитное квантовое число m – число, применяемое для квантования проекции момента импульса.

Квантовое число m введено в связи с тем, что проекция момента импульса на любое выделенное в пространстве направление (к примеру, направление вектора B → магнитного поля) также принимает дискретный ряд значений.

s -состояния ( 1 s , 2 s , . . . , n s , . . . ) – это состояния, при которых орбитальное квантовое число l равно нулю.

Описываются s -состояния сферически симметричными распределениями вероятности.

Когда l > 0 сферическая симметрия электронного облака нарушается.

p -состояния - это состояния при l = 1 .

d -состояния – это состояния при l = 2 и т.д.

Рис. 6 . 3 . 4 иллюстрирует кривые распределения вероятности ρ ( r ) = 4 π r 2 | Ψ | 2 обнаружения электрона в атоме водорода на разных расстояниях от ядра в состояниях 1 s и 2 s .

Рисунок 6 . 3 . 4 . Распределение вероятности обнаружения электрона в атоме водорода в состояниях 1 s и 2 s . r 1 = 5 , 29 · 10 – 11 м – радиус первой орбиты Бора.

На рисунке 6 . 3 . 4 наглядно продемонстрировано, что электрон в состоянии 1 s (основное состояние атома водорода) имеет возможность быть обнаруженным на различных расстояниях от ядра. С самой высокой вероятностью электрон обнаружится на расстоянии, равном радиусу r 1 первой боровской орбиты. Вероятность нахождения электрона в состоянии 2 s достигает максимума на расстоянии r = 4 r 1 от ядра. И в том, и в том случае атом водорода возможно представить, как сферически симметричное электронное облако, в центре которого расположено ядро.

Итак, что же такое атом? Изолированные атомы в виде разреженного газа или паров металлов испускают спектр, состоящий из отдельных спектральных линий (линейчатый спектр). Изучение атомных спектров послужило ключом к познанию строения атомов.

Прежде всего, в экспериментах было замечено, что линии в спектрах расположены не беспорядочно, а сериями. Расстояние между линиями в серии закономерно уменьшается по мере перехода от длинных волн к коротким.

Швейцарский физик Й. Бальмер в 1885 году установил, что длины волн серии в видимой части спектра водорода могут быть представлены формулой:

В спектроскопии принято характеризовать спектральные линии не частотой, а величиной, обратной длине волны:

Если преобразовать (6.1.1) с учетом (6.1.2), то получим:


где – постоянная Ридберга, n = 3, 4, 5,…


В физике постоянной Ридберга называют и другую величину: = 3,29·10 15 c –1 .

Формулу Бальмера (6.1.3) можно переписать в виде

Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий:


Серия Лаймона , n = 2, 3, 4,…


Серия Пашена ,n = 4, 5, 6,…


Серия Брэкета , n = 5, 6, 7,…


Серия Пфунда , n = 6, 7, 8,…

Обобщенная формула Й. Бальмера:


или
,
(6.1.5)

Ясно было, что атом – сложная система, имеющая сложные атомные спектры (рис. 6.1).


В конце XIX века учеными рассматривались многие модели атомов (рис. 6.2, а, б, в).


а б в

В 1903 году Дж. Дж. Томсон, предложил модель атома: сфера, равномерно заполненная положительным электричеством, внутри которой находятся электроны (рис. 6.2, а). Атом в целом нейтрален: суммарный заряд сферы равен заряду электронов, однако спектр такого атома должен был быть сложным, но никоим образом не линейчатым, что противоречило экспериментам. Модель атома, изображенная на рис. 6.2, б, состояла из сферы, в центре которой находилось положительно заряженное ядро, а вокруг него располагались электроны. Эта модель также не вписывалась в эксперименты. Наиболее известна в то время была планетарная модель атома, предложенная Э. Резерфордом (рис. 6.2, в).

Светящиеся газы показывают линейчатые спектры излучения, которые состоят из отдельных линий. Если свет пропускать через газ, то появляются линейчатые спектры поглощения, при этом атом поглощает спектральные линии, которые сам способен испускать. Первым изучался спектр атома водорода. Во второй половине XIX века проводились множество исследований спектров излучения. Было получено, испускаемый молекулярный спектр представляет собой совокупность широких размытых полос, у которых отсутствуют резкие границы. Такие спектры получили названия полосатых.

Спектр излучения атомов принципиально отличен по виду. Он состоит из четко обозначенных линий. Спектры атомов называют линейчатыми. Для каждого элемента есть определенный испускаемый только им линейчатый спектр. При этом вид спектра излучения не зависит от способа, которым возбужден атом. По такому спектру определяют принадлежность спектра элементу.

Закономерности в линейчатых спектрах

Линии в спектре расположены закономерно. Найти данные закономерности и объяснить их - важная задача физического исследования. Первым эмпирическую формулу, которая описала часть линий излучения для спектра атома водорода, получил Бальмер. Он отметил, что длины волн, девяти линий спектра водорода, которые были известны в то время, могут вычисляться по формуле:

где $\lambda =364,613\ нм,\ n=3,4,\dots ,11.$

Анализ экспериментальных материалов показал, что отдельные линии в спектре можно объединять в группы линий, которые называют сериями. Ридберг записал формулу (1) в виде:

где $R=3,29\cdot ^c^$- константа Ридберга, $_$ -- частота излучения соответствующей линии. Такая серия носит имя Бальмера. Формула Бальмера -- Ридберга (2) указала на специальную роль целых чисел в закономерностях, которые описывают спектры. Данное выражение играло существенную роль в развитии учения о строении атомов.

Сейчас известно много спектральных линий водорода, частоты которых с большой точностью подчинены формуле (2). С ростом $n$ линии в спектре серии приближаются друг к другу. Граница Бальмеровской серии определена с помощью длины волны ($<\lambda >_$), при данной длине волны $n\to \infty :$ $<\lambda >_=\frac=364,5968$ нм.

Готовые работы на аналогичную тему

Другой ученый, Лайман, исследовал серию линий в ультрафиолетовой части спектра атома водорода и открыл серию, которую описал выражением:

Данную серию называют серией Лаймана.

Серию в инфракрасной области спектра атома водорода описал Пашен:

Такая серия названа в его честь (серия Пашена). Поздние в инфракрасной области спектра атома водорода были найдены следующие серии:

Брэкета:

Пфундта:

Хэмфри:

Каждая из приведенных серий имеет сгущение линий при росте чисел $n$ и свою граничную частоту (длину волны).

Рассматривая приведенные выше формулы, вводя обозначение: $T\left(n\right)=\frac$, то каждую испускаемую частоту можно записать как разность (для разных значений целых чисел):

Серию линий спектра получают в соответствии с формулой (8), если одно из целых чисел фиксируется, а другое принимает все целые значения, которые больше числа, которое фиксировано.

Граничные частоты (граничные волновые числа) серий спектра водорода определены как:

Формула (8) подтверждается эмпирически с высокой спектроскопической точностью. Особая роль целых чисел, ставшая очевидной в закономерностях спектров, до конца была осмыслена только в квантовой механике.

Задание: Какова максимальная ($E_$) и минимальная ($E_$) энергии фотона в серии Бальмера?

Решение:

В качестве основы для решения задачи используем сериальную формулу для частот спектра атома водорода:

где $R=3,29\cdot ^c^$- константа Ридберга.

Минимальная энергия фотона может быть вычислена при использовании выражения:

Максимальная энергия находится при $n=\infty $:


Задание: Определите, какова длина волна, которая соответствует: 1) границе серии Лаймана, 2) границе серии Бальмера.

Решение:

1) В качестве основы для решения задачи используем сериальную формулу для длин волн спектра водорода (серия Лаймана):

где $R'=1,1\cdot ^7м^.$ На границе $n=\infty \ $преобразуем выражение (2.1) в формулу:

2) В качестве основы для решения второй части задачи используем сериальную формулу для длин волн спектра водорода (серия Бальмера):

Читайте также: