Расскажите о сверхновых звездах кратко

Обновлено: 05.07.2024

5000 лет назад яркий диск, по блеску не уступающий Солнцу, зажегся на небосклоне. Жители города в панике бросились к храмам. Жрецы предрекали несчастья и небесную кару, что падет на головы грешникам, если они не принесут богатые жертвы, чтобы служители молитвами отвели беду. Наивные горожане вереницами потянулись к храму, неся добро, в надежде что несчастья пройдут мимо. Жрецы усердно молились и милосердный Бог отвел беду. Второе солнце стало тускнеть, а через год вообще исчезло с небес. На клинописных табличках, сохранившихся со времен древней цивилизации Шумеров, ученые сумели расшифровать записи о втором солнце.

Спустя сотни лет в записях китайских и арабских астрономов от 1054 года также встречаются упоминания о появлении яркой звезды на небосводе, свет которой и днем и ночью в течение трех недель удивлял наблюдателей.

Но древние люди, наблюдая за ярким свечением, даже предположить не могли, что яркая вспышка на небе – это не рождение новой звезды, а смерть старого, отжившего свой век, небесного тела, в котором прекратились термоядерные реакции и под влиянием собственных гравитационных сил произошел большой взрыв, который был виден за десятки световых лет. Для систем,находящихся поблизости, это катастрофа, несущая гибель в радиусе 50 световых лет. Ведь энергия взрыва достигает 1046 Дж, а температура сверхновых звезд – 100 миллиардов градусов!

Отличия новой и сверхновой

Древние наблюдатели не задумывались о том, что яркое небесное тело на небосклоне может быть итогом разных процессов. Священный трепет и невозможность заметить разницу без специального оборудования не позволяли постичь это знание. И лишь с появлением телескопов различия были обнаружены. Оказалось, что то, что мы называем новой или сверхновой звездой – это не сама звезда, а всего лишь ее взрыв.

И хотя названия похожи, процессы, происходящие при этих астрономических явлениях, имеют довольно значительные отличия.

Вспышка сверхновой звезды

Во время жизни огненного светила происходит непримиримая борьба между разнонаправленными силами. К центру звездной массы сжимает звезду изо всех сил гравитация, стараясь превратить огненный огромный шар в футбольный мячик. Термоядерные реакции, кипящие в толще звездных масс и на поверхности, стараются разорвать светило на мелкие кусочки.

В толще юной звезды запасы водорода огромны, и благодаря постоянно протекающим реакциям образования гелия из атомов водорода, силы гравитации и термоядерных реакций находятся в относительном равновесии.

Но ничто не вечно, и за пару-тройку миллиардов лет запасы водорода истощаются и некогда активная звезда стареет. Ядро становится комком раскаленного гелия, по краям которого выгорает водород. В предсмертных конвульсиях догорают последние запасы водорода и вот уже небесное светило не в силах противостоять собственной гравитации.

Звезда сжимается и уменьшается в несколько сотен тысяч раз. И единовременно практически весь запас звездной энергии высвобождается наружу. Последний вздох умирающей звезды – яркая вспышка взрыва , что в летописях и трактатах наблюдатели-астрономы описывают как рождение сверхновой.

Взрыв неимоверной мощи по яркости превосходит светимость целой галактики, а тяжелые элементы космический ветер разносит по межзвездному пространству. Из остатков звезды образуются новые планеты в звездных системах, расположенных в сотнях световых лет от места, где произошла космическая трагедия.

В зависимости от типа погибшей звезды выделяют:

При взрыве сверхновой звезда погибает навсегда, превращаясь либо в черную дыру, либо в нейтронную звезду.

Астрономия. 10-11 классы. Базовый уровень. Учебник.

Взрыв новой – зрелище не менее впечатляющее (ведь светимость ничем не примечательного небесного тела увеличивается от 50 тысяч до 100 тысяч раз), но более частое. Обычно это происходит в системе из двух звезд, в которой одна планета значительно старше и в своем возрасте находится на главной последовательности или перешла в стадию красного гиганта и уже успела заполнить свою полость Роша, а вторая звезда – белый карлик. В результате тесного взаимодействия на белый карлик от гигантской соседки через окрестности точки Лагранжа L1 перетекает газ, содержащий до 90% водорода.

Белый карлик

Полученное карликом вещество формирует вокруг меньшей звезды аккреционный диск. Скорость аккреции на белый карлик – постоянная величина, и, зная параметры звезды-компаньона и отношение масс звёзд-компонентов двойной системы, это значение можно рассчитать.

Но жадность еще никого до добра не доводила, и когда водорода вокруг белого карлика становится в избытке, происходит взрыв невероятной силы, а если масса белого карлика достигает 1.4 солнечной, происходит необратимый взрыв сверхновой.

Если подвести итог сказанному выше, новой звездой называют взрыв в результате термоядерных реакций на поверхности небольшой плотной звезды. А в результате взрыва сверхновой происходит сжатие ядра огромной звезды, по своей массе в десятки раз больше чем Солнце, с полным уничтожением окружающих звезду слоев.

На самом деле, сверхновые звезды это светила, которые вспыхивает и в это время их яркость резко увеличивается, а затем медленно затухает. Только представьте, их блеск может повышаться от 10 до 20 звёздных величин.

А вот вспышка сверхновой звезды представляет само явление внезапного увеличения и постепенного уменьшения звёздной яркости.

Как выяснилось, такое событие происходит на конечной стадии эволюции некоторых объектов в результате катаклизма. Причем в межзвёздное пространство выделяется огромное количество энергии.

SN 1987A сверхновая типа II-P

SN 1987A сверхновая типа II-P

Как получаются новые сверхновые звезды

По данным учёных, внутри светила происходит резкое повышение массы вещества, которое участвует в термоядерных реакциях. Проще говоря, возникает взрыв. Однако такое явление случается в кратных звёздных системах. А вот, например, звезда главной последовательности (её процессы) находится в равновесии и не может спровоцировать вспышку.

Какая звезда превращается в сверхновую?

В действительности, взрыв сверхновой звезды имеет природу отличающуюся от других вспышек.
Как оказалось, линии водорода в их спектрах отсутствуют. А значит в таких звёздных телах на этапе, предшествующему вспыхиванию, его очень мало. Однако масса вырабатываемого ими вещества довольно высокая. Она, в основном, состоит из углерода, кислорода и другие тяжёлых элементов.

Кроме того, при спектральном анализе наблюдается смещение линии кремния. Что показывает на происходящие во время выброса ядерные реакции.

Итак, возникает предположение о том, что в прошлом сверхновая звезда была карликом. Вероятнее всего, белым углеродно-кислородным представителем.

Типы сверхновых звезд

Стоит отметить, что их обозначение начинается с вида (SN) и года открытия. А оканчивается буквами, которые указывают на порядковый номер объекта в данном году. К примеру, по времени их сначала именуют от А до Z, затем используют аа, ab, ac и др.

Разумеется, представители одного вида тел никогда не могут быть абсолютно идентичными. Они отличаются друг от друга. Главным образом, различается их светимость, природа происхождения, то есть образование.
Итак, выделяют два вида:

I тип: в двойной системе (из белого карлика и более массивного компаньона) вещество переходит к карликовому компоненту. В результате происходит взрыв, сжатие и формирование нейтронного светила.

Что интересно, в их спектре нет водорода. По этому показателю, основываясь на состав, их делят на подтипы Ia, Ib и Ic.

Сверхновая типа Ib SN 2008D

Сверхновая типа Ib SN 2008D

К тому же, период пика яркости длится примерно два или три дня. Но отмечается высокий уровень блеска.

II тип: гигант или сверхгигант большой массивности взрывается и его ядро коллапсирует. Его элементы очень быстро разлетаются в разные стороны.

Правда, в таких объектах в спектре наблюдаются линии водорода. Также группируются на подтипы: II-L, II-P, IIb и IIn.

Кроме того, второму типу свойственно более продолжительное увеличение яркости. Хотя она ниже и быстрее уменьшается в отличие от первого вида.

Интересные факты про сверхновые звезды

Что интересно, их обнаруживают уже после вспышки. В то время, когда выделенная ими энергия, то есть излучение, достигнет земной атмосферы. Как раз тогда, её можно наблюдать.
Собственно, поэтому долгое время объекты типа сверхновых звезд были непонятными и таинственными.

Рождение сверхновой звезды

Рождение сверхновой звезды

Что остается на месте вспышки сверхновой звезды

Между прочим, после взрыва остаётся образование из газа и пыли, а также следы веществ, участвующих в жизни космического тела. Причем то, что сохранилось, так и называется-остаток сверхновой.

Иначе говоря, остаток сверхновой это туманности, которые сформировались после того, как взорвалась звезда и превратилась в сверхновую. Поскольку оболочка разрывается, её частицы разлетаются, то образуется ударная волна. Которая, в свою очередь, также быстро расширяется и из неё получается газопылевая область. Она, помимо всего прочего, содержит звёздный материал и вещества из космического пространства, объединённого этой волной.

Конечно, остаток также, как и сама вспышка, наблюдается спустя какое-то время. Иногда лишь по прошествии сотни лет.

Сверхновые звезды и их примеры

Можно выделить несколько наиболее известных представителей: SN 1572 (её также называют звездой Тихо Браге, так как он дал её описание), SN 1604, SN 1987А и SN 1993J.

К примеру, среди данного вида светил отмечают ярчайшую за прошлый век SN 1987А, а лидером нынешнего столетия пока выступает SN 2006gy.

Кстати, известная Крабовидная туманность является остатком SN1054.

Как вы считаете, в чём состоит важная роль сверхновых звезд?

По правде говоря, они играют важную роль в химическом развитии галактик и всей Вселенной.
Не стоит забывать, что всю свою жизнь, а это тысячи лет, внутри светила происходят ядерные реакции. За это время в нём накапливаются продукты термоядерного синтеза.

Сейчас нам известно, что когда взрывается звёздный объект, в пространство выделяется вещество и энергия. То есть, всё, что было накоплено, как бы, растворяется вокруг. В результате происходит обогащение области на химические элементы. Что, собственно, ведёт к эволюции нашей Вселенной.

Космосмическое пространство

Космосмическое пространство

Наконец, значение максимум светимости светила SN можно применять как стандартную свечу. То есть рассчитывать расстояния между космическими объектами. Более того, сейчас благодаря новейшим телескопам стало возможно наблюдать сверхновые звезды соседних галактик. А это, бесспорно, большой прорыв в изучении и исследовании Вселенной.

сверхновая

Сверхновая – это самый большой взрыв и чрезвычайно яркий, сверхсильный взрыв звезды. Сверхновые могут на короткое время затмить целые галактики и излучать больше энергии, чем наше Солнце за всю свою жизнь. Они также являются основным источником тяжелых элементов во вселенной. По данным НАСА, сверхновые – это “самый большой взрыв, который происходит в космосе.”

История наблюдений за сверхновыми звездами

То, что мы сегодня знаем как Крабовидную Туманность, является самой известной из этих сверхновых. Китайские и корейские астрономы записали этот звездный взрыв в своих записях в 1054 году. Коренные американцы, возможно, также видели его (согласно наскальным рисункам, увиденным в Аризоне и Нью-Мексико). Сверхновая, образовавшая Крабовидную Туманность, была настолько яркой, что астрономы могли видеть ее днем.

Крабовидная туманность

Другие сверхновые, наблюдавшиеся до изобретения телескопа, произошли в 393, 1006, 1181, 1572 годах (изученные знаменитым астрономом Тихо Браге) и 1604 году. Браге писал о своих наблюдениях за сверхновой звездой в своей книге “De nova stella”, которая дала название “нова”. Однако нова отличается от сверхновой. Оба они представляют собой внезапные вспышки яркости, когда горячие газы выбрасываются наружу, но для сверхновой, взрыв является катастрофическим и означает конец жизни звезды.

Термин “Сверхновая” не использовался до 1930-х годов. Впервые он был использован Уолтером Бааде и Фрицем Цвикки в обсерватории Маунт-Вильсон, которые использовали его в связи с наблюдаемым ими взрывным событием, названным S Andromedae (также известным как SN 1885A). Взрыв был расположен в галактике Андромеда. Они также предположили, что сверхновые происходят, когда обычные звезды коллапсируют в нейтронные звезды.

В современную эпоху одной из наиболее известных сверхновых была SN 1987A 1987 года рождения, которая до сих пор изучается астрономами. Они могут видеть, как развивается сверхновая в первые несколько десятилетий после взрыва.

Звездная смерть

В среднем сверхновая будет возникать примерно раз в 50 лет в галактике размером с Млечный путь. Иными словами, где-то во Вселенной каждую секунду или около того взрывается звезда, и некоторые из них находятся не слишком далеко от Земли.

То, как именно умирает звезда, отчасти зависит от ее массы. Нашему Солнцу, например, не хватает массы, чтобы взорваться как сверхновая. Вместо этого, через пару миллиардов лет, оно раздуется в красного гиганта, поглотит ближайшие планеты, а потом превратится в белого карлика. Но при правильном количестве массы звезда может сгореть в огненном взрыве.

Классификация сверхновых

Звезда может стать сверхновой одним из двух способов:

  • Сверхновая типа I: звезда накапливает вещество от ближайшего соседа до тех пор, пока не начнется цепная ядерная реакция.
  • Сверхновая второго типа: у звезды заканчивается ядерное топливо и она коллапсирует под действием собственной гравитации.

Тип I

Они происходят из двойных звездных систем, в которых углеродно-кислородный белый карлик притягивает к себе материю от своего компаньона (аккреция). При таком сценарии на белом карлике скапливается столько массы, что его ядро достигает критической плотности 2 х 10 9 г/см³. Этого достаточно, чтобы привести к неконтролируемому слиянию углерода и кислорода, что приведет к детонации звезды.

Сверхновая звезда

Тип II

Чтобы звезда взорвалась как сверхновая второго типа, она должна быть в несколько раз массивнее Солнца (по оценкам, от 8 до 15 солнечных масс). Как и у Солнца, у неё в конечном итоге закончится водород, а затем гелиевое топливо в её ядре. Однако у такой звезды будет достаточно массы и давления, чтобы плавить углерод. Вот что происходит дальше:

  • Постепенно более тяжелые элементы накапливаются в центре, а более легкие элементы стремятся к внешней стороне звезды.
  • Как только ядро звезды превышает определенную массу (предел Чандрасекара), звезда начинает взрываться (по этой причине эти сверхновые также известны как сверхновые с коллапсом ядра).
  • Ядро нагревается и становится более плотным.
  • В конце концов имплозия отскакивает от ядра, выбрасывая звездный материал в космос, образуя сверхновую.

То, что осталось – сверхплотный объект, называемый нейтронной звездой. Это объект размером с город, который может иметь массы больше нашего Солнца.

Существуют подкатегории сверхновых типа II, классифицированные на основе их кривых блеска. Свет сверхновых типа II-L неуклонно уменьшается после взрыва, в то время как свет типа II-P остается стабильным в течение некоторого времени, прежде чем уменьшиться. Оба типа имеют сигнатуру водорода в своих спектрах.

Звезды, намного более массивные, чем Солнце (около 20-30 солнечных масс), не могут взорваться как сверхновые, считают астрономы. Вместо этого они коллапсируют, образуя черные дыры.

В 2018 года учёными были озвучены данные о возможном открытии в ходе своих наблюдений нового, до сих пор неизученного, третьего типа сверхновых. Во время этих наблюдений, были зафиксированы 72 кратковременные вспышки с температурой от 10 до 30 тыс.°C и размерами от нескольких единиц до нескольких сотен а. е. Основная особенность этих космических событий заключается в их относительной кратковременности — всего несколько недель, а не несколько месяцев как у обычных сверхновых.

Остататок сверхновой типа Ia

Что вы знаете о сверхновых звездах? Наверняка скажете, что сверхновая звезда является грандиозным взрывом звезды, на месте которой остаётся нейтронная звезда или чёрная дыра.

Не только взрывы звезд

Однако на самом деле не все сверхновые являются конечной стадией жизни массивных звезд. Под современную классификацию сверхновых взрывов, помимо взрывов сверхгигантов, входят также некоторые другие явления.

Новые и сверхновые

SN 1604 или Сверхновая Кеплера

SN 1604 или Сверхновая Кеплера

Новые и сверхновые звезды обозначают резкое увеличение яркости какой-либо звезды или группы звезд. Как правило, раньше люди не имели возможности наблюдать звёзды, которые порождали эти вспышки. Это были слишком тусклые объекты для невооруженного глаза или астрономического прибора тех лет. Их наблюдали уже в момент вспышки, что естественно походило на рождение нового светила.

Не смотря на схожесть этих явлений, в наши дни существует резкое различие в их определениях. Пиковая светимость сверхновых звезд в тысячи и сотни тысяч раз больше пиковой светимости новых. Такое расхождение объясняется принципиальным различием природы этих явлений.

Рождение новых звезд

Сверхновая вспыхнувшая в 1604 году

Сверхновая вспыхнувшая в 1604 году

Новые вспышки являются термоядерными взрывами, происходящим в некоторых тесных звездных системах. Такие системы состоят из белого карлика и более крупной звезды-компаньона (звезды главной последовательности, субгиганта или гиганта). Могучее тяготение белого карлика притягивает вещество из звезды-компаньона, в результате чего вокруг него образуется аккреционный диск. Термоядерные процессы, происходящие в аккреционном диске, временами теряют стабильность и приобретают взрывной характер.

В результате такого взрыва яркость звездной системы увеличивается в тысячи, а то и в сотни тысяч раз. Так происходит рождение новой звезды. Доселе тусклый, а то и невидимый для земного наблюдателя объект приобретает заметную яркость. Как правило, своего пика такая вспышка достигает всего за несколько дней, а затухать может годами. Нередко такие вспышки повторяются у одной и той же системы раз в несколько десятилетий, т.е. являются периодичными. Также вокруг новой звезды наблюдается расширяющаяся газовая оболочка.

Сверхновые взрывы обладают совершенно иной и более разнообразной природой своего происхождения.

Классификация сверхновых

Классификация сверхновых

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

Смерть сверхгигантов

Остаток сверхновой звезды W49B

Остаток сверхновой звезды W49B

Классовые различия

Остаток сверхновой Кассиопея А

Остаток сверхновой Кассиопея А

Различные классы и подклассы сверхновых объясняются тем, какой звезда была до взрыва. К примеру, отсутствие водорода у сверхновых I класса (подкласса Ib, Ic) является следствие того, что водорода не было у самой звезды. Вероятнее всего, часть её внешней оболочки была потеряна в ходе эволюции в тесной двойной системе. Спектр подкласса Ic отличается от Ib отсутствием гелия.

В любом случае сверхновые таких классов происходят у звезд, не имеющих внешней водородно-гелиевой оболочки. Остальные же слои лежат в довольно строгих пределах своего размера и массы. Это объясняется тем, что термоядерные реакции сменяют друг друга с наступлением определенной критической стадии. Поэтому взрывы звезд Ic и Ib класса так похожи. Их пиковая светимость примерно в 1,5 миллиардов раз превышает светимость Солнца. Эту светимость они достигают за 2-3 дня. После этого их яркость в 5-7 раз слабеет за месяц и медленно уменьшается в последующие месяцы.

Звёзды сверхновых II типа обладали водородно-гелиевой оболочкой. В зависимости от массы звезды и других её особенностей это оболочка может иметь различные границы. Отсюда объясняются широкий диапазон в характерах сверхновых. Их яркость может колебаться от десятков миллионов до десятков миллиардов солнечных светимостей (исключая гамма-всплески – см. дальше). А динамика изменения яркость имеет самый различный характер.

Трансформация белого карлика

Сверхновая типа Ia

Сверхновая типа Ia

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых гипергигантами. Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Сверхновая звезда GRB 080913

Сверхновая звезда GRB 080913

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Прародители жизни

Несмотря на всю свою катастрофичность, сверхновые по праву можно назвать прародителями жизни во Вселенной. Мощность их взрыва подталкивает межзвездную среду на образования газопылевых облаков и туманностей, в которых впоследствии рождаются звезды. Ещё одна их особенность состоит в том, что сверхновые насыщают межзвездную среду тяжелыми элементами.

Наблюдение за сверхновыми

Сверхновая SN 1987A

Сверхновая SN 1987A

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Вселенские вспышки

Гамма вспышка в галактике 4C 71,07

Гамма вспышка в галактике 4C 71,07

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Материалы по теме


Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии. Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия. Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Такие разные сверхновые

Читайте также: