Расчет выборочной совокупности кратко

Обновлено: 05.07.2024

Если размер генеральной совокупности более 1 000 000 или сложно оценить точно иначе чем фразой "ну очень много" — можно просто оставить поле пустым.

Пояснения

Доверительная вероятность показывает, с какой вероятностью случайный ответ попадет в доверительный интервал. Для простоты можно понимать её как точность выборки. Как правило, используется 95%, но в условиях малых бюджетов и для небольших выборок, когда высокая точность не нужна, вероятностью можно пожертвовать и понизить её уровень до 90% и даже до 85% (главное не забыть учесть это в процессе анализа и в выводах). И наоборот, чем большую выборку может себе позволить исследователь, тем выше можно установить точность полученных данных.

Доверительный интервал можно понимать как погрешность, задает размах части кривой распределения по обе стороны от выбранной точки, куда могут попадать ответы.

Необходимы пояснения для тех, кто в первый раз сталкивается с понятиями доверительной вероятности и доверительного интервала. Например, выборка в 384 человека для генеральной совокупности более 500 000 человек (например, один из административных округов Москвы) означают доверительную вероятность 95% и доверительный интервал ±5%. То есть при проведении 100 исследований с такой выборкой (384 человека) в 95 процентов случаев получаемые ответы по законам статистики будут находиться в пределах ±5% от исходного.

Применяемые Формулы

Формулы расчета размера выборки, применяемые в калькуляторе.

Размер Выборки

Корректировка для малой генеральной совокупности

ss = размер выборки
css = скорректированная выборка
pop = генеральная совокупность

1. Задачи математической статистики.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).

Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x1 –наблюдалось раз, x2-n2 раз,… xk - nk раз. n = n1+n2+. +nk– объем выборки. Наблюдаемые значения называются вариантами, а последовательность вариант, записанных в возрастающем порядке- вариационным рядом. Числа наблюдений называются частотами (абсолютными частотами), а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Простая формула для расчета объема выборки

Ниже приведена простая формула для расчета объема выборки для тех случаев когда на заданный вопрос возможны лишь два варианта ответа:

Пример расчета объема выборочной совокупности

Подставляем эти данные в формулу и считаем:

Округлив расчетное значение, получаем объем выборки n = 96 человек.

Следовательно, для проведения исследования с заданными параметрами (уровень доверительности, допустимая ошибка) компании необходимо опросить 96 человек.

Значение нормированного отклонения для различных доверительных интервалов

В таблице приведены некоторые значения нормированного отклонения (z) для важнейших уровней доверительности, или, иначе, доверительной вероятности (α):

α (%) 60 70 80 85 90 95 97 99 99,7
z 0,84 1,03 1,29 1,44 1,65 1,96 2,18 2,58 3,0

Конечно, в таблице приведены значения z только для основных уровней доверительности. Полную версию таблицы можно найти в интернете.

Область применения простой формулы выборки

Особенности формулы расчета размера выборки

Для рассмотренной нами простой формулы определения объема выборки можно выделить несколько характерных особенностей:

© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.

Нашли опечатку? Помогите сделать статью лучше! Выделите орфографическую ошибку мышью и нажмите Ctrl + Enter.

Каждый исследователь, желающий получить достоверные данные о генеральной совокупности изучаемых явлений и процессов, стоит перед проблемой определения объема выборочной совокупности (п).

ными показателями в этом случае будут предельная ошибка репрезентативности (или), коэффициент доверия (О, а наличными — дисперсияизучаемых признаков и (в некоторых случаях) численность генеральной совокупности (N).

Формулы расчета выборочной совокупности выводятся из формул расчета ошибок репрезентативности.


Из формулыпо которой рассчитывается ошибка по

вторной выборки качественного признака при коэффициенте доверия / = 1, может быть легко вычислен объем выборки. Для этого необходимо знать значение удельного веса признака и задать предельную ошибку выборки. Обратимся к известному примеру. Доля лиц, совершивших преступления в состоянии опьянения (Р), составляла 35%, или 0,35. Предельную ошибку (W) зададим равной ±5%, или 0,05.

В этом случаепреступление (дело,


статкарта, приговор;.


, по которой определяется однократная ошиб-


ка повторной выборки количественного признака, объем выборочной совокупности можно рассчитать после нахождения дисперсии (а2) и необходимой предельной ошибки выборки (W).

Вновь обратимся к примеру о сроках лишения свободы. В нем а2 = 2,29 года, W = ±0,15 года. Найдем объем выборочной совокупности (п):

Это означает, что если нас удовлетворяет ошибка выборки, равная ±0,15, то следует изучить 100 преступлений (дел, статкарт и т.д.), а если она допустима в пределах ±0,3, то достаточно 25 единиц изучения.

Выше говорилось, что коэффициент доверия, равный 1 (t = 1), недостаточно надежен, так как только 683 единицы из 1000 могут быть в пределах заданной ошибки репрезентативности. Поэтому чаще всего при расчете объема выборочной совокупности вводится коэффициент доверия, равный 2(t = 2), который означает, что в 954 случаях из 1000 число единиц выборочной совокупности будет находиться в пределах заданной ошибки репрезентативности. С этой целью в приведенные формулы, как и при расчете ошибки репрезентативности, вводится коэффициент t.


Расчеты выборочных совокупностей показывают, что если повысить коэффициент доверия вдвое (/ = 2), то объем выборки необходимо увеличить вчетверо. Это означает, что в пределах тех же ошибок репрезентативности ±5% и ±0,15 года теперь будет находиться не 683, а 954 единицы из 1000. В этих случаях ошибка выборки именуется двукратной, поскольку распространяется на все единицы выборочной совокупности, расположенные в пределах 2а нормального распределения.


Все предшествующие расчеты производились для повторной выборки. В реальной жизни криминологические и социально-правовые изучения проводятся, как правило, бесповторным способом, т.е. уголовное дело, статкарта, гражданское дело и т.д. по какому-то признаку изучаются или респонденты (при анкетировании) опрашиваются единожды. В этом случае применяются формулы для бесповторной выборки.

Nt2P< 1 - Р)

Эти формулы расчета выборочных совокупностей для качественных и количественных признаков являются наиболее полными.



Если уменьшить ошибку выборки до ±3%, то выборочная совокупность должна быть увеличена до 848 единиц, если до ±2 % — объем выборки должен составить 1575 единиц.

Увеличение генеральной совокупности вдвое, т.е. до 6000, увеличит выборку ненамного, лишь до 381 единицы. Это говорит о том, что объем генеральной совокупности — относительно второстепенный параметр даже при расчете объема бесповторной выборки, хотя он и стоит в формуле расчета. При повторной выборке объем генеральной совокупности не имеет никакого значения, поэтому он отсутствует в формуле расчета как дисперсии, так и численности выборки. Следовательно, там, где численность генеральной совокупности по тем или иным причинам точно не известна, ею можно пренебречь и рассчитывать выборочную совокупность по формулам повторной выборки или использовать приблизительную численность генеральной совокупности.

Для определения объема повторной выборки по качественному признаку можно использовать табл. 6. Как и табл. 5 (о пределах ошибок), она рассчитана применительно к коэффициенту доверия, равному 2 (t = 2).

Читайте также: