Радикал в химии это кратко

Обновлено: 05.07.2024

Радикал (от латинского radikalis – коренной) – это частица (атомы или группы атомов) с неспаренными электронами. Радикалы обладают высокой реакционной способностью. Примеры радикалов: Н• – радикал водорода, Cl• – радикал хлора, •CH3 – радикал-метил. В то же время парамагнитные молекулы, например O2, NO, NO2, имеющие неспаренные электроны, не являются радикалами.

Автор: Ю. М. Коренев
Источник: Общая и неорганическая химия, Ю. М. Коренев, В. П. Овчаренко, 2000г
Дата в источнике: 2000г

Радикал - это частица (атом или молекула), содержащая один или несколько неспаренных электронов. В большинстве случаев химическая связь образуется при участии двух электронов. Частица, имеющая неспаренный электрон, очень активна и легко образует связи с другими частицами. Поэтому время жизни радикала в среде, как правило, очень мало.

Свободные радикалы в химии — частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов на внешней электронной оболочке. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьируется.

\mathsf<X \rightarrow X\cdot^+ + e^-></p>
<p>

\mathsf<Y + e^- \rightarrow Y\cdot^-></p>
<p>

Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:

\mathsf <CH_4 + Cl\cdot \rightarrow CH_3\cdot + HCl></p>
<p>

\mathsf <CH_4 + Cl\cdot \rightarrow CH_3\cdot + HCl></p>
<p>

\mathsf<CH_3\cdot + Cl_2 \rightarrow CH_3Cl + Cl\cdot></p>
<p>

\mathsf<2Cl\cdot \rightarrow Cl_2></p>
<p>

\mathsf<2CH_3\cdot \rightarrow C_2H_6></p>
<p>

Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения — также хорошие радикалообразующие частицы.


Радикалы в химии – это атомарные частички, обладающие некими особенностями, связанными с переходом между соединениями. В данной статье мы ознакомимся с представителями радикалов, их определением и особенностями, а также уделим внимание их видовому разнообразию.

Введение

Радикал в химии – это атом или его группа, что способна переходить, не претерпевая изменений, от одной комбинации соединения в другое. Подобным определением пользовался А. Л. Лавуазье, который его же и создал.

Теория радикалов в химии

По мнению Лавуазье предполагалось, что каждая кислота образована двумя простыми и неразложимыми веществами – кислородом и кислотным радикалом. Согласно такому взгляду, предполагалось, что серные кислоты создаются кислородом и серой. Однако в те времена еще не было известно о различии между кислотным ангидридом и собственно кислотой.

Создание теории

Свободные радикалы в организме это

Радикалы в химии – это вещества, что не претерпевают изменений при переходах. Теория, что была создана для их описания, в 1840-50 годах стала постепенно заменяться на теорию типов. Смена была связанна с наличием немалого количества факторов, которые противоречиво описывались ТР.

Организм и радикалы

Свободные радикалы в организме – это частички, обладающие одним или несколькими неспаренными электронами, расположенными на внешней оболочке электронов. В другом определении свободный радикал описывают как молекулу или атом, способный поддерживать независимое существование. Он обладает некоторой стабильностью и 1 – 2 электрона (e - ) в неспаренном состоянии. Частички e - занимают орбиталь молекулы или атома в единственном виде. Радикалам свойственно наличие парамагнитных свойств, что объясняется взаимодействием электрона с магнитными полями. Существуют случаи, в которых наличие e - в неспаренном виде влечет за собой значительное усиление реакционной способности.

Примерами свободных радикалов являются молекулы кислорода (O2), оксид азота с разными валентностями (NO и NO2) и диоксид хлора (ClO2).

Углеводородный радикал это

Органика

Органические радикалы – это ионные частицы, которым свойственно одновременно наличие неспаренного электрона и заряда. Чаще всего, в реакциях органической химии, ион-радикалы создаются вследствие протеканий одноэлектронных переносов.

Если окисление протекает в одноэлектронной форме и применимо к нейтральной молекуле с избытком электронной плотности, то оно приведет к созданию катион-радикала. Противоположное протекание процесса, в ходе которого нейтральная молекула восстанавливается, приводит к образованию анион-радикала.

Ряд ароматических углеводородов из многоядерной группы может самостоятельно образовать оба вида ион-радикалов (органических) без особых усилий.

Свободные радикалы в химии

Свободные радикалы в химии – это крайне разнообразные вещества, как по своему строению, так и свойствам. Они могут пребывать в разных агрегатных состояниях, например, жидком или газовом. Также может различаться их длительность жизни или количество электронов, что остались неспаренными. Условно каждый радикал можно отнести к одной из двух групп: -p- или s-электронные. Они отличаются местом локализации неспаренного е - . В первом случае отрицательная частица занимает положение на 2р- орбитали в преобладающем количестве случаев. Соответствующий ряд атомных ядер при этом находится в узловой орбитальной плоскости. В варианте с s-группой, локализация электрона происходит таким образом, что нарушение электронной конфигурации практически не происходит.

Гидрофобный радикал это

Понятие углеводородного радикала

Углеводородный радикал – это атомная группа, образовавшая связь с молекулярной функциональной группой. Также их называют углеводородными остатками. Чаще всего, в ходе хим. реакции радикалы претерпевают переходы из одних соединений в другие и не изменяются. Однако такие объекты химического изучения могут нести в себе ряд функциональных групп. Понимание этого заставляет человека вести себя с радикалами крайне осторожно. К таким соединениям чаще относятся вещества, в состав которых входят углеводородные остатки. Сам радикал может быть функциональной группой.

Явление в алкилах

Алкильные радикалы – это соединения из ряда интермедиатов, что являются частичками алканов. Они обладают свободным e - в единственном числе. Примером может служить метил (CH3) и этил (C2H5). Среди них выделяют несколько типов: первичную (например, метил – ▪CH3), вторичную (изопропил - ▪CH(CH3)2), третичную (трет-бутил ▪C(CH3)3) и четвертичную (неопентил - ▪CH2C(CH3)3) группу алкильных радикалов.

Алкильный радикал это

Явление в метилене

Метиленовый радикал – это простейшая форма карбена. Представлен в виде бесцветного газа, а формулой схож с углеводородами из ряда алкенов – CH2. Предположение о существовании метилена было выдвинуто в тридцатых годах ХХ века, однако найти неопровержимые доказательства удалось только в 1959. Это было осуществлено благодаря спектральному исследовательскому методу.

Получение метилена стало возможным благодаря использованию диазометановых или кетановых веществ. Их подвергают разложению под воздействием УФ-излучения. В ходе подобного процесса образуется метилен, а также молекулы азота и углеродный монооксид.

Радикал в химии – это также и молекула метилена, обладающая одним углеродным атомом, в котором отсутствует двойная связь. Это отличает метилен от алкенов, и потому его относят к карбенам. Ему свойственна чрезвычайная химическая активность. Положение электронов может обуславливать различные свойства химической природы и геометрию. Существует синглетная (e - - спаренный) и триплетная (электрон, пребывающий в свободном состоянии – неспаренный) формы. Триплетная форма позволяет описывать метилен как бирадикал.

Гидрофобность

Органический радикал это

Гидрофобный радикал – это соединение, обладающее другой полярной группой. Такие молекулы и атомы могут вступать в связь с аминоалкилсульфо-группами при помощи различных промежуточных связей.

В соответствие со строением выделяют прямоцепочечные и разветвленные, парафиновые (олефиновые) и перфторированные радикалы. Наличие гидрофобного радикала позволяет некоторым веществам легко проникать сквозь бислойные липидные мембраны, а также встраиваться в их структуры. Подобные вещества входят в состав неполярных аминокислот, которые выделяются благодаря определенному показателю полярности боковой цепи.

В современном способе рациональной классификации аминокислот выделяют радикалы в соответствие с их полярностью, т. е. способностью взаимодействовать с водой при наличии физиологического значения pH (около 7.0 pH). В соответствии с типом содержащегося радикала выделяют несколько классов аминокислот: неполярную, полярную, ароматическую, отрицательно и положительно заряженную группу.

Радикалы с гидрофобными свойствами вызывают общее снижение растворимости пептидов. Аналоги с гидрофильными качественными характеристиками обуславливают формирование гидратной оболочки вокруг самой аминокислоты, а пептиды при взаимодействии с ними лучше растворяются.

Свободные радикалы в химии — частицы (как правило, неустойчивые) , содержащие один или несколько неспаренных электронов на внешней электронной оболочке. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьируется.

Читайте также: