Проводники в электростатическом поле кратко

Обновлено: 02.07.2024

В зависимости от электрических характеристик все вещества в физике принято делить на две большие категории — вещества, способные проводить электрический ток, и вещества, которые не проводят электричество. Первая категория носит название проводников, а вторая — диэлектриков или изоляторов.

Структура вещества представлена набором атомов, состоящих из зарядов. При отсутствии вокруг вещества внешнего поля, распределение частиц осуществляется таким образом, что сумма внутренних электрических полей имеет нулевое значение. В случае помещения вещества в среду внешнего электрического поля, оно оказывает воздействие на заряды. В результате частицы перераспределяются, что приводит к образованию собственного электрического поля. Полное электрическое поле \(\vec\) представляет собой сумму внешнего поля \(\vec>\) и внутреннего поля \( \vec>\) сформированного с помощью зарядов.

Проводником является тело или материал, в котором наблюдается перемещение электрических зарядов в процессе воздействия на них сколь угодно малой силы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Какие вещества являются проводниками

Заряженные частицы в проводнике называют свободными. Металл обладает такими зарядами. Они носят название электронов. В веществах, которые являются растворами или расплавами солей, кислот и щелочей, в качестве свободных зарядов выступают ионы.

Проводники проводят электричество. Типичными проводниками принято считать металлы. Важной особенностью проводников является присутствие свободных зарядов, участвующих в тепловом движении и способных двигаться по всему объему вещества.

Если внешнее поле отсутствует, в любой области проводника положительные заряды, составляющие ионную решетку, компенсируют отрицательные свободные заряды. В итоге поверхность проводника наполняется нескомпенсированными положительными и отрицательными заряженными частицами. Такое явление носит название электростатической индукции. Образующиеся заряженные частицы на поверхности вещества называют индукционными зарядами. Такие заряженные частицы обладают собственным полем \(\vec>\) компенсирующим внешнее поле \(\vec>\) по всему объему проводника:

Полное электростатическое поле внутри проводника обладает нулевым значением. Во всех точках вещества потенциалы равны и соответствуют потенциалу, характерному для поверхности проводника.

В чем отличие проводника от диэлектрика

В отличие от диэлектрических веществ, материалы, которые способны проводить электричество, обладают высокой концентрацией свободных носителей заряда. Для металлов характерно присутствие свободных электронов, которые по сравнению со связанными электронами, перемещаются по всему объему вещества.

Образование свободных электронов связано с тем, что атомы металлических веществ обладают валентными электронами, слабо взаимодействующими с ядрами и достаточно просто теряющими связи с ними. Таким образом, металл является кристаллической решеткой, включающей узлы с положительными ионами, которые окружены отрицательным электронным газом.

Электростатической индукции

В качестве примера можно поместить металлический предмет в электрическое поле, напряженность которого равна E0.

Вначале наблюдается образование поля с такой же напряженностью \(E_\) внутри проводника. Данное поле будет воздействовать на свободные электроны. В результате заряды приходят в движение в противоположном направлении полю \(E_ \) . В процессе распределения электронов образуется внутреннее поле $$E_$$. Его направление будет противоположно внешнему полю $$E_$$. Перемещение электронов прекращается в том случае, когда суммарное поле внутри материала примет нулевое значение:

Электростатической индукции

Данное равенство подтверждено многочисленными практическими опытами. Известно, что с помощью замкнутой проводящей оболочки целиком экранируется находящаяся внутри нее область от внешних электрических полей. Таким образом, образуется электростатическая защита.

Условия равновесного состояния заряда в проводнике

Можно представить пару точечных зарядов, модули которых одинаковы, а знаки противоположны. Такие заряженные частицы +q и –q отдалены друг от друга на некоторое расстояние. Они создают электростатическое поле, в котором наблюдают системы с взаимно перпендикулярными силовыми линиями и эквипотенциальными поверхностями. В качестве одной из таких поверхностей представлена плоскость. Она пролегает сквозь середину отрезка, который соединяет заряженные частицы. Плоскость обладает нулевым потенциалом, так как, исходя из принципа суперпозиции, если точки удалены на равные расстояния r1 = r2 от заряженных частиц, то:

Условия равновесного состояния заряда в проводнике

Далее необходимо совместить плоскость и тонкую проводящую пластину с последующим ее заземлением.

Можно наблюдать, что поле при этом сохранит стабильность, так как все точки пластины обладают одинаковым потенциалом, равным нулю. При исключении заряда –q, который наблюдается за проводящей пластиной, поле перед ней не изменится. Исходя из этого, можно сделать вывод о том, что при приближении тонкой проводящей заземленной пластины к точечному заряду электрическое поле, которое создают реальный заряд и его мнимое изображение противоположного знака в пластине, будет совпадать с полем в зеркале. Способ электростатических изображений не является универсальным методом, однако с его помощью можно упростить решение многих задач.

Примеры решения задач

Задача №1

Облако небольшого размера обладает зарядом q. Оно располагается на высоте h над землей. Если принять землю за проводник, то необходимо определить, какова напряженность поля, которое создает этот заряд на расстоянии S от точки, над которым расположен заряд. В этом случае кривизна поверхности не учитывается.

Решение

Точечный заряд имеет вид небольшого заряженного облака в данном случае. Для поля точечного заряда характерна сферическая симметрия. На поверхности земли наблюдается образование индуцированных зарядов. Линии напряженности исходят радиально из точечного заряда +q и достигать поверхности земли под прямым углом. В таком случае сторона, которая обращена к положительному заряду, покрывается отрицательными зарядами. На внутренней стороне поверхности земли заряды отсутствуют.

Справедливо утверждение, что отрицательные заряды, приходящие из земли, скомпенсируют положительный заряд, который образовался на внутренней поверхности земли. Результирующее поле будет соответствовать полю двух точечных равных, но разноименных зарядов, удаленных на расстояние 2h друг от друга. Поверхность земли при этом представляет собой эквипотенциальную поверхность. Таким образом:

Результирующее поле будет рассчитано следующим образом:

Задача №2

Требуется рассчитать поверхностную плотность \(\sigma\) заряда под зарядом.

Решение

Поверхностная плотность заряда представляет собой функцию координат на поверхности земли. Изменения вектора напряженности происходят скачками от E(r) до нулевых значений, так как внутри земли нет электрического поля. Изменения можно рассчитать таким образом:

С учетом отсутствия поля в земле уравнение можно записать в виде:

Из данного равенства следует:

Под зарядом \(S = 0\) , из чего следует:

Задача №3

Проводящий предмет обладает зарядом q и располагается внутри замкнутой металлической оболочки. Необходимо выяснить, изменится ли внешнее электрическое поле при перемещении объекта внутри оболочки.

Решение

Как бы ни располагался проводник с зарядом +q под оболочкой, его внутренняя поверхность будет обладать зарядом –q, распределенным так, что поле в структуре металла отсутствует. Верхняя сторона оболочки будет обладать зарядом +q, распределяемым таким образом, что поле в толще материала будет отсутствовать. Распределение заряда +q по внешней стороне оболочки не зависит от положения, которое занимает проводник внутри оболочки. Из этого можно сделать вывод, что изменения поля вне оболочки отсутствуют во время движения проводника внутри оболочки.

Можно представить, что оболочка обладает сферической формой. В этом случае индуцированный на ее внешней поверхности заряд, который распределен равномерно, сформирует вне оболочки поле, которое не определяется расположением и геометрическими размерами заряженного проводника внутри сферы и обладает сферической симметрией, а напряженность E и потенциал в каждой точке этого поля будут рассчитаны таким образом:

Где r является расстоянием от центра сферы до рассматриваемой точки.

Задача №4

Однородное электростатическое поле обладает напряженностью Е. В это поле помещают пластину из металла площадью S. Необходимо определить заряд, который будет индуцироваться на сторонах пластины.

Решение

Представим, что правой стороне пластины соответствуют положительно заряженные частицы, а левой — отрицательные. С помощью этих зарядов будет образовано поле с напряженностью, которую можно рассчитать по формуле:

Где σ является поверхностной плотностью зарядов.

Определив сумму полей, можно определить результирующее поле:

Исходя из того, что пластина представляет собой проводник, получаем равенство:

Из этого уравнения получим:

\(\sigma =\varepsilon _E\)

В таком случае искомый заряд будет рассчитан по формуле:

\(q=\sigma S =\varepsilon _ES\)

Задача №5

Пару металлических пластин расположили параллельно. Они отдалены на небольшое расстояние. Первую пластину заряжают положительно, ее заряд составляет q. Необходимо определить заряды, индуцированные на поверхности второй пластины.

Решение

Правая сторона второй пластины будет обладать положительным зарядом, а левая — отрицательным. С помощью этих зарядов будет образовано поле с напряженностью:

Где q является величиной заряда, который образован на сторонах второй пластины, S представляет собой площадь пластины.

Кроме общего поля на второй пластине будет сформировано поле:

Данное поле формируется с помощью заряда первой пластины. Результирующее поле будет обладать нулевым значением. Таким образом:

Электронное учебное пособие по разделам курса физики Электростатика. Электродинамика. Электромагнетизм. Электромагнитные колебания и волны

1. Электростатика. Электрические заряды


Слово электричество возникло от греческого слова электрон янтарь, который электризуется при натирании о шерстяную материю. В природе известны два рода электрических зарядов, которые условно названы положительным и отрицательным зарядами. Известно также их взаимодействие: одноименные заряды отталкиваются, разноименные притягиваются.

Электрический заряд любого тела состоит из целого числа элементарных зарядов равных примерно , Этим зарядом является заряд отрицательно заряженной частицы, получившей название электрон. Электрон имеет массу покоя, равную приблизительно . Кроме отрицательно заряженного электрона имеются частицы, обладающие элементарным положительным зарядом. Устойчивой частицей, обладающей элементарным положительным зарядом, является протон. Протон представляет собой ядро атома водорода – самого легкого элемента таблицы Менделеева. Масса протона в 1836 раз больше массы электрона . Протон – это частица, которая входит в состав ядер всех элементов и определяет заряд ядра. Электроны в атомах образуют электронную оболочку атома. Они могут покинуть электронную оболочку атома или молекулы, превращая их в положительный ион, могут также присоединиться к другому атому или молекуле, превращая эти частицы в отрицательный ион. Передача электронов может происходить не только между атомами или молекулами, но и между телами, например, при их соприкосновении. Такое явление называется электризацией тел соприкосновением. При электризации в одних телах возникает избыток электронов, такие тела заряжаются отрицательно, в других телах их недостаток, такие тела заряжаются положительно. Однако во всех случаях выполняется один из фундаментальных законов физики – закон сохранения электрических зарядов: алгебраическая сумма зарядов частиц или тел, образующих электрически изолированную (замкнутую) систему, не изменяется при любых процессах, происходящих в этой системе. Под электрически изолированной системой понимается система тел (частиц), которая не обменивается зарядами с телами, не входящими в эту систему.

Лекция 7. Проводники и диэлектрики в электрическом поле

Настало время исследовать явления, происходящие при введении в электрическое поле проводников и диэлектриков. К этому моменту учащиеся уже владеют основными понятиями, изучили физические величины, законы электростатики и представляют себе их экспериментальное обоснование. Поэтому они готовы к анализу существующих фактов, выдвижению правдоподобных гипотез, построению теоретических моделей явлений, выводу следствий из предложенных моделей и их экспериментальному обоснованию.

Учебно-исследовательская деятельность теперь может быть организована главным образом в форме постановки и выполнения экспериментальных заданий. Это, разумеется, не исключает более серьёзных работ, направленных на создание новых учебных экспериментов. Большой интерес для учащихся может представить исследование в электрическом поле привычных для них твёрдых, жидких и газообразных объектов. Экспериментальные задания этого этапа помимо прочего должны способствовать углублению сформированных понятий напряжённости и потенциала электрического поля.

7.1. Проводники в электростатическом поле

Проводники отличаются от диэлектриков тем, что у них высока концентрация свободных носителей заряда. В металлах ими являются свободные электроны, которые в отличие от связанных электронов способны перемещаться по всему объёму тела. Появление свободных электронов обусловлено тем, что в атомах металлов валентные электроны слабо взаимодействуют с ядрами и легко утрачивают связи с ними. Поэтому металл представляет собой кристаллическую решётку, в узлах которой расположены положительные ионы, окружённые отрицательным электронным газом.

Внесём в электростатическое поле напряжённостью Е0 металлическое тело. В первый момент внутри проводника возникает поле той же напряжённости Е0. Оно действует на свободные электроны, и те перемещаются против поля Е0. По мере перераспределения электронов в проводнике возникает внутреннее поле E', направленное противоположно внешнему полю Е0. Электроны перемещаются до тех пор, пока результирующее поле внутри проводника не станет равно нулю: Е = Е0E' = 0.

Этот факт учащиеся уже неоднократно подтвердили экспериментом. Понятно, что замкнутая проводящая оболочка полностью экранирует находящуюся внутри неё область от внешних электрических полей, следовательно, может являться электростатической защитой.

7.2. Электростатическое изображение

Пусть два одинаковых по модулю и противоположных по знаку точечных заряда +q и –q находятся на некотором расстоянии друг от друга. Созданное ими электростатическое поле характеризуется системами взаимно перпендикулярных силовых линий и эквипотенциальных поверхностей. Одной из таких поверхностей является плоскость, проходящая через середину отрезка, соединяющего заряды. Потенциал этой плоскости равен нулю, т.к., согласно принципу суперпозиции, для точек, находящихся на равных расстояниях r1 = r2 от зарядов:

Теперь совместим с этой плоскостью тонкую проводящую пластину и заземлим её. Поле при этом не изменится, поскольку все точки пластины будут иметь одинаковый (нулевой) потенциал. Если убрать заряд –q, находящийся за проводящей пластиной, то поле перед ней останется прежним.

Отсюда следует, что, если к точечному заряду поднести тонкую проводящую заземлённую пластину, то электрическое поле между зарядом и пластиной будет в точности таким же, как поле, созданное реальным зарядом и его мнимым изображением противоположного знака в пластине, как в зеркале.

Метод электростатических изображений, не отличаясь универсальностью, всё же позволяет упростить решение многих задач.

7.3. Диэлектрики в электростатическом поле

У диэлектриков электроны связаны с атомами и не могут под действием электрического поля свободно перемещаться. Так как концентрация свободных носителей заряда ничтожно мала, электростатическая индукция отсутствует. Поэтому напряжённость поля внутри диэлектрика не обращается в нуль, а лишь в большей или меньшей степени уменьшается.

В этом можно убедиться, поставив следующие опыты. На электрометре закрепим металлическую пластину и зарядим её. Поднесём к заряженной пластине другую металлическую пластину и увидим, что показания электрометра уменьшились. Это объясняется тем, что за счёт электростатической индукции на ближайшей поверхности поднесённого проводника возникает заряд противоположного знака.

Теперь вместо металлической поднесём к заряженной пластине нейтральную диэлектрическую пластину. Вновь увидим, что показания электрометра уменьшились. Значит, и на поверхности диэлектрика в электрическом поле также возникают заряды. Отсюда следует, что диэлектрик, помещённый во внешнее электрическое поле, оказывает на него влияние, создавая своё электрическое поле, уменьшающее внешнее.

В электрическое поле заряженного шара внесём нейтральную диэлектрическую палочку на нити и обнаружим, что палочка поворачивается, располагаясь вдоль силовой линии поля. Значит, палочка становится диполем – концы её приобретают заряды противоположных знаков.

7.4. Полярные и неполярные диэлектрики

Если молекула состоит из двух ионов (K + Сl – ), один из которых положительный, а другой отрицательный, то центры распределения положительного и отрицательного зарядов не совпадают. Такие молекулы и состоящие из них диэлектрики называются полярными.

Если молекула состоит из одного или нескольких одинаковых атомов (например, Н2), то центры распределения отрицательного и положительного зарядов совпадают, и она называется неполярной молекулой, а диэлектрик – неполярным диэлектриком.

7.5. Поляризация диэлектриков

Неполярные атомы и состоящие из них молекулы нейтральны. Полярные молекулы в первом приближении можно считать диполями. Из-за теплового движения полярные молекулы ориентированы беспорядочно, поэтому заряд и напряжённость электрического поля в диэлектрике в среднем равны нулю.

Поместим полярный диэлектрик в однородное электростатическое поле E0, созданное параллельными пластинами, которым сообщили заряды противоположных знаков. На диполи в однородном поле действует вращающий момент. В результате молекулы-диполи стремятся развернуться вдоль силовых линий. Чем больше напряжённость поля и ниже температура диэлектрика, а значит, и интенсивность хаотического движения, тем выше степень ориентации диполей.

При помещении в электрическое поле неполярных диэлектриков происходит деформация атомов, в результате чего центр распределения положительного заряда смещается по полю, а центр распределения отрицательного заряда – против поля. Так, неполярная молекула превращается в диполь, ось которого сонаправлена с полем, а длина определяется напряжённостью поля.

При внесении диэлектрика в электрическое поле вследствие переориентации или деформации молекул на его поверхностях возникают связанные электрические заряды. Это явление называется поляризацией диэлектрика.

Связанные заряды на поверхности тела создают внутри него электрическое поле E', направленное противоположно внешнему полю E0. Результирующая напряженность Е = E0 + E' оказывается меньше E0, т.е. Е = Е0E' U/d. Диэлектрическую проницаемость диэлектрика определите по формуле

Демонстрационный эксперимент целесообразно провести так. Покажите учащимся лист стекла толщиной 4 мм, диэлектрическую проницаемость которого вы будете измерять. Собрав установку, включите высоковольтный источник, установите напряжение U = 0,5 кВ и прикоснитесь его выводами к стержню и корпусу электрометра. Стрелка прибора отклонится. Выключите источник и удалите из промежутка между электродами стеклянную пластину. Стрелка электрометра отклоняется больше. Запомните показание, электрометр разрядите, к нему подключите выводы высоковольтного источника, включите источник и повышайте напряжение до тех пор, пока стрелка электрометра не отклонится на то же число делений. По цифровому измерителю источника прочитайте значение напряжения U0 между электродами для случая, когда пластина удалена, и по формуле = U0/U вычислите значение диэлектрической проницаемости. В наших опытах для пластины из оконного стекла толщиной 4 мм получилось U0 = 2,1 кВ, следовательно, диэлектрическая проницаемость стекла = 4,2.

Это совсем неплохой результат для демонстрационного опыта. Заметим, что лучше не использовать в качестве диэлектриков полимерные материалы, т.к. придётся специально избавляться от их случайной электризации или поляризации.

Вопросы и задания для самоконтроля

1. Что происходит в проводниках и диэлектриках при внесении их в электростатическое поле?

2. Предложите демонстрационный эксперимент, в котором учащиеся воочию убеждаются, что в проводнике имеются свободные носители заряда, а в диэлектрике они отсутствуют.

3. Детально объясните, почему для определения потенциала в точке поля необходимо использовать пламенный зонд. Возможно ли отказаться от пламени и чем его в таком случае можно заменить?

4. Предложите простой способ, позволяющий в демонстрационным опыте нарисовать эквипотенциальные линии исследуемого электростатического поля.

5. Предложите методику формирования понятия эквипотенциальности поверхности проводника в электростатическом поле.

6. Какие процессы происходят в воздухе вокруг острия, имеющего значительный потенциал относительно Земли?

7. В чём физическая сущность метода электростатических изображений?

8. Детально объясните результат опыта по поляризации диэлектрической плёнки, помещённой в электрическое поле.

9. Оцените дидактическую эффективность методики определения диэлектрической проницаемости стекла непосредственно на уроке.

10. С какой целью и где применяются электреты в современных условиях?

Беляев И.П., Дружинин В.П., Шефер Н.И. Демонстрация электретных свойств диэлектриков. – Физика в школе, 1981, № 6.

Беляев И.П., Дружинин В.П., Шефер Н.И. Исследование электретных свойств диэлектриков. – Физика в школе, 1981, № 3.

Беляев И.П., Дружинин В.П., Рожков И.Н. Электретный эффект: Учебно-методическое пособие. – Оренбург: Изд-во ОГПИ, 1997.

Калашников С.Г. Электричество. – М.: Физматлит, 2004.

Демонстрационный эксперимент по физике в старших классах средней школы. Т. 2. Электричество. Оптика. Физика атома: Под ред. А.А.Покровского. – М.: Просвещение, 1972.

Шахмаев Н.М., Шилов В.Ф. Физический эксперимент в средней школе: Механика. Молекулярная физика. Электродинамика. – М.: Просвещение, 1989.

Проводниками называются тела, в ко­торых есть свободные носители заряда. Про­ще говоря, это тела (твердые, жидкости или га­зы), в которых имеются заряженные частицы, способные двигаться внутри тела под действи­ем приложенной силы (со стороны электриче­ского поля). Под проводниками в основном понимают металлы, которые замечательны тем, что в них имеются свобод­ные электроны.

Неплохим проводником является вода с рас­творенными в ней ионными молекулами, ко­торые в воде легко диссоциируют на ионы. По этой причине наше тело — проводник, с чем связана опасность слишком тесного контакта с электричеством.

В статическом случае (при отсутствии тока) напряженность поля внутри проводника равна нулю. Свободные заряды перераспределяются в проводнике до тех пор (причем очень быстро), пока внутри его напряженность поля и сила, действующая на заряды внутри его, не станут равны нулю. Вследствие этого потенциал во всех точках проводника одинаков, а его поверхность эквипотенциальна.

При внесении проводника в электрическое поле положительные заряды (ядра) и отрицательные (электроны) разделяются. Это явление получило название электростатической индукции. Появляющиеся заряды в результате этого процесса – индуцированные. Они создают дополнительное электрическое поле.

Направление поля таких зарядов – противоположная сторона относительно внешнего. Заряды, которые накапливаются на концах проводника, способны ослаблять внешнее поле. Их перераспределение идет до тех пор, пока не выполняются условия равновесия зарядов для проводников.

Условия равновесного состояния заряда в проводнике

Чтобы заряд на проводнике был в состоянии равновесия, необходимо:

  • напряженность поля внутри равнялась нулю E → = 0 , то есть с неизменным потенциалом внутри поля с эквипотенциальным объемом проводника;
  • направление вектора E → на поверхности проводника перпендикулярно относительно самого проводника в любой точке поля, при равновесном состоянии поверхности заряда наличие эквипотенциальной поверхности проводника.

Если имеется проводник, заряженный до заряда q , то его распределение выполнится таким образом, что он будет находиться в равновесии. Произведем выделение замкнутой поверхности в переделах указанного тела. Внутри проводник отсутствует, поэтому поток вектора напряженности через избранную поверхность будет равняться нулю. По теореме Гаусса-Остроградского внутри поверхности зарядов нет, соответственно их сумма равна 0 .

Выбранная поверхность – произвольная, поэтому в равновесном состоянии зарядов просто не может быть внутри. Они все распределяются по поверхности с плотностью σ . В проводнике отсутствуют некомпенсированные заряды, поэтому при удалении вещества из него не произойдет перемен в равновесии зарядов. Они просто не могут находиться на поверхности полости проводника в таком состоянии.

Истечение заряда с острия

При наличии большего расстояния от проводника, чем его размеры, рисунок линий похож на поле точечного заряда. Эквипотенциальные поверхности имеют форму сферы, как и у точечного заряда. Вблизи выступов эквипотенциальные поверхности располагаются гуще, тогда напряженность поля больше. Отсюда следует, что особенно большая плотность заряда наблюдается на выступах. Напряженность поля на острие может быть настолько велика, что возникает ионизация молекул газа, который окружает проводник.

Уменьшение заряда проводника происходит в процессе нейтрализации, то есть стекание с острия. Это явление называется стечением заряда с острия.

Электрическое смещение поля в однородном изотропном диэлектрике около заряженного проводника равняется:

D = σ с σ , обозначающей поверхность распределения зарядов и зависящей от кривизны поверхности.

Запись формулы напряженности приобретает вид:

E = σ ε ε 0 , где ε 0 - электрическая постоянная, а ε - диэлектрическая проницаемость среды.

На элемент поверхности проводника с площадью d S действует сила d F , которая вычисляется по формуле:

d F = σ 2 d S ε ε 0 = ε ε 0 E 2 d S 2 , где E → является напряженностью поля в диэлектрике, в точке нахождения проводника, а d F → направлена в сторону внешней нормали к поверхности проводника.

Примеры решения задач

Описать поведение линий поля при внесении проводника, не обладающего зарядом в электростатическом поле.

Решение

Если внести нейтральный проводник в электрическое поле, то заряды разделяются на отрицательные и положительные – происходит образование индуцированных зарядов. Их перераспределение начинается с момента выполнения условий о равенстве нулю напряженности внутри проводника и перпендикулярности вектора напряженности поля поверхности проводника.

Нейтральный проводник участвует в разрыве части линий напряженности поля, они заканчиваются на отрицательных индуцированных зарядах, которые возникли на поверхности проводника, и снова начинаются с положительных. Распределение индуцированных зарядов идет по поверхности проводника, как указано на рисунке 1 . При имеющейся полости внутри проводника в равновесном состоянии поле внутри нее равняется нулю.

Примеры решения задач

Положительный точечный заряд создает электростатическое поле. В него вносится шар, являющийся проводником. Какими будут эквипотенциальные поверхности и силовые линии результирующего поля?

Решение

При внесении в поле незаряженного проводящего шара, на нем индуцируются заряды, которые распределяются по поверхности шара так, чтобы внутри него поле равнялось нулю, а линии напряженности перпендикулярны к любой точке шара. На рисунке 2 изображены распределения индуцированных зарядов.

Примеры решения задач

Если силовые линии удалять от заданной системы, то по виду они приближаются к радиальным. Эквипотенциальные поверхности результирующего поля становятся сферами.

Получить формулу напряженности поля в вакууме около поверхности заряженного проводника, если положительный заряд распределен по поверхности проводника с поверхностной плотностью σ .

Решение

Решение данного задания возможно при применении теоремы Гаусса-Остроградского. Необходимо выделить небольшую цилиндрическую поверхность на поверхности проводника таким образом, чтобы ось цилиндра была перпендикулярна поверхности, как показано на рисунке 3 .

Примеры решения задач

Расположение линий напряженности поля относительно поверхности проводника перпендикулярно и параллельно относительно осей цилиндра. Определение потока вектора напряженности через площадку ∆ S , используя теорему Гаусса-Остроградского, равняется:

Для определения находящегося внутри выделенной поверхности заряда следует использовать формулу:

Далее нужно совершить подстановку E ∆ S = q ε 0 в q = σ · ∆ S и выразить напряженность поля:

E ∆ S = σ · ∆ S ε 0 → E = σ ε 0 .

Ответ: E = σ ε 0 . При положительном заряде σ > 0 направление вектора напряженности следует от поверхности.

Читайте также: