Проблемы тэс в россии кратко

Обновлено: 07.07.2024

Из всех, существующих на нынешний день видов электростанций тепловые станции, работающие на органическом топливе, более всего загрязняют атмосферу. Объёмы загрязнения окружающей среды и вид загрязнения зависят от типа и мощности станций.

Результатом работы тепловых станций является загрязнение атмосферы углекислотой, выделяющейся при сжигании топлива, окисью углерода, окислами серы, углеводородами, окислами азота, огромными количествами твёрдых частиц (зола) и другими вредными веществами. Кроме того происходит значительное тепловое загрязнение водоёмов при сбрасывании в них тёплой воды.

Наряду с увеличением содержания углекислого газа, происходит уменьшение доли кислорода в атмосфере, который расходуется на сжигание топлива на тепловых станциях.

Вредное воздействие на животный и растительный мир оказывает загрязнение атмосферы окисью серы. Наибольшее загрязнение атмосферы серой приходится как раз на долю электростанций и отопительных установок.

Вредное воздействие окиси углерода на человека и животных состоит в том, что она, соединяясь с гемоглобином крови, очень быстро лишает организм кислорода.

Станции, работающие на угле потребляют его в больших количествах и больше всего выбрасывают загрязняющих атмосферу веществ. Выбросы в атмосферу зависят от качества сжигаемого угля.

Сбросы горячей воды в водоёмы и повышение вследствие этого их температуры приводят к нарушению экологического равновесия, установившегося в естественных условиях, что неблагоприятно влияет на флору и фауну. Тепловое загрязнение водоёмов может быть уменьшено с переходом на замкнутые циклы использования воды.

Таким образом мы видим, что влияние ТЭЦ на биосферу огромно и неблагоприятно. Но несмотря на это пока тепловые электростанции и теплоэлектроцентрали остаются преобладающими при производстве электроэнергии и тепла для нужд человека.

5.
Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС.


– котёл (парогенератор) предназначен для получения пара из питательной воды;

– питательный насос – для подачи питательной воды в котёл;

– дутьевой вентилятор – для подачи воздуха в топку котла, для поддерживания процесса горения;

– дымосос – для удаления дымовых газов из котла;

– багерный насос – для удаления золы и шлака из котла;

– пароперегреватель – для получения пара высоких параметров;

– электрический генератор – для выработки электроэнергии;

– конденсатор для охлаждения пара;

– циркуляционный насос – для подачи воды в конденсатор;

– конденсатный насос – для удаления конденсата из конденсатора;

– деаэратор – для удаления газов из конденсата; для восполнения потерь туда же подаётся химически очищенная вода;

– распределительное устройство высокого напряжения (110 кВ и выше)

– трансформатор собственных нужд;

– распределительное устройство собственных нужд – для электропитания двигателей и освещения;

Конденсационные электрические станции КЭС – это тепловые паротурбинные электростанции, в которых теплота, выделяющаяся при сжигании органического топлива превращается сначала в механическую энергию, а затем в электрическую.


Характерный признак КЭС – отработанный в турбине пар не используется для нестанционных нужд, а подвергается охлаждению (конденсации) в специальных устройствах – конденсаторах, после чего направляется обратно в котёл. Для работы КЭС требуется большое количество воды. Поэтому строят их вблизи водоёмов. В качестве топлива на конденсационных электрических станциях используется уголь, нефть или природный газ.

Твёрдое топливо (уголь) сначала дробится специальными дробилками, затем подсушивается и размельчается до пылевидного состояния специальными мельницами. Угольная пыль вместе с воздушным потоком подаётся в топку котла дутьевым вентилятором ДВ

для лучшего сгорания топлива.

Продукты сгорания топлива (дымовые газы) пройдя золоуловители с помощью дымососа Д

выбрасываются в атмосферу через дымовую трубу.

Теплота, получаемая при сжигании топлива, используется для получения пара. Пар из котла (парогенератора) подаётся в пароперегреватель ПП

, где его параметры (температура и давление) доводятся до необходимых величин, а затем по паропроводу поступает на рабочие лопатки паровой турбины
Т
.

Если между рабочими лопатками турбины не происходит расширения пара, то есть давление пара не меняется, то такая турбина называется активной

У реактивной

турбины происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара турбины характеризуются степенями реактивности. Сейчас турбины выполняют многоступенчатыми, причём в одной турбине могут быть как активные, так и реактивные (с разной степенью реактивности) ступени.

В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора Г

, вырабатывающего электрическую энергию.

Отработавший в турбине пар после своего расширения от начального давления на входе турбины – 30 МПа до конечного на выходе 0,0035 МПа поступает в конденсатор турбины Кр

, где превращается в воду – конденсат, который конденсатным насосом
КН
откачивается и проходит через деаэратор
Да
. Там из воды удаляются газы и к ней добавляется химически очищенная вода, чтобы восполнить потери. После чего вода вновь подаётся в котёл, и затем цикл превращения воды повторяется.

Система технического водоснабжения КЭС включает в себя источник водоснабжения (водоём)

, циркуляционные насосы
ЦН,
которыми охлаждающая вода из водоёма подаётся в конденсатор, а также подводящие и отводящие водоводы.

Основные особенности КЭС:

1. Строится по возможности ближе к месторождениям топлива.

2. Работает по свободному графику выработки электроэнергии (график выработки не зависит от теплового потребления).

3. Низкоманёвренные – разворот турбин и набор нагрузки из холодного состояния требует 3-10 часов).

4. Выработанная электроэнергия отдаётся в электрические сети повышенных напряжений 110 – 750 кВ.

5. Имеют сравнительно низкий КПД: 30 – 40 %, максимум 42 %.

Результат действия ТЭС

Каждый отдельный тип электростанции оказывает различное воздействие. По большей части, негативная энергетика вырабатывается от работы тепловых электрических станций. В ходе их функционирования атмосфера загрязняется небольшими элементами золы, поскольку преимущественная часть ТЭС применяет в качестве топлива измельченный уголь.

Воздействие ГЭС на природу

В целях борьбы с выбросами вредных частиц организовано массовое производство фильтров с КПД 95-99%. Однако это не помогает в полной мере решить проблему, поскольку на многих тепловых станциях, функционирующих на угле, фильтры пребывают в плохом состоянии, в результате чего их КПД сокращается до 80%.

Экология и энергетика

Влияние энергетики на экологию

Мир современной энергетики является основополагающим условием для развития разнообразных отраслей промышленности. Промышленно развитые страны отличаются стремительными темпами развития энергетики, которые опережают темпы развития отраслевой промышленности.

В свою очередь, энергетика является серьезным источником неблагоприятного воздействия на человека и окружающую среду. Это влияние сказывается на атмосфере, за счет высокого потребления кислорода, выбросов газов, твердых частиц и влаги.

Гидросфера страдает из-за потребления воды на нужды энергетики, создания искусственных водохранилищ, сбросов жидких отходов, нагретых и загрязненных вод. Существенно изменяется и литосфера по причине чрезмерного потребления ископаемых топливных ресурсов, изменения ландшафтов, выброса токсичных веществ.

Влияние на водные ресурсы

Современные гидроэнергетические технологии отличаются, как преимуществами, так и недостатками. К примеру, количество произведенной электроэнергии зависит от водных ресурсов, которые могут истощаться во время засухи.

Это играет огромную роль для энергетического комплекса страны. Энергетика и экология

– сомнительное сочетание, когда речь идет о строительстве плотин, переселении жителей, заилении водохранилищ, пересыхании русел рек, затоплении огромных территорий, значительной затратности проектов.

Изменение уровня воды в реках приводит к полной гибели растительности, плотины становятся серьезным препятствием для миграции рыб, ГЭС многокаскадного типа уже превратили реки в озера, перерастающие в болота. Россия получает при использовании гидроресурсов не более 20% энергии, а при строительстве только одной ГЭС затапливается более 6 миллионов гектар. Таким образом, энергетика влияет на экологию

, и это неравноценный по потерям для природы обмен.

Истощение, загрязнение

Что касается влияния энергии ТЭС на экологию, то можно отметить, как главный фактор, выделение вредных веществ в виде закиси углерода, соединений азота, свинца и значительного количества тепла. 5 миллиардов тонн угля ежегодно сжигается и более трех миллионов тонн нефти, что сопровождается гигантским выбросом в атмосферу Земли тепла.

Нынешние темпы потребления угля приведут к неминуемому истощению ископаемого через 150 – 200 лет, нефти — через 40 – 50 лет, газа, предположительно, — через 60. Полный спектр работ по добыче, транспортировке и сжигании данного вида топлива сопровождается процессами, ощутимо влияющими на загрязнение окружающей среды.

Влияние энергетики на экологию

связано с добычей угля и засолением водных ресурсов. Помимо этого, откаченная вода содержит радон и изотопы радия. А атмосфера загрязняется продуктами сжигания угля в виде оксидов серы – 120 тысяч тонн, окислов азота – 20 тысяч тонн, пепла 1500 тонн, оксида углерода – 7 миллионов тонн.

Кроме того, происходит при горении образование более 300 тысяч тонн золы, включающей в себя 400 тонн токсичных металлов в виде ртути, мышьяка, свинца и кадмия. Работу ТЭС можно сопоставить, по выбросам в атмосферу радиоактивных веществ, с работой АЭС аналогичной мощности.

Ежегодные выбросы оксидов углерода способствуют повышению температуры на Земле, что может привести к вполне предсказуемым климатическим изменениям.

Влияние энергетики на экологию

Как получить энергию без вреда для экологии

Солнце – неисчерпаемый источник тепла. Среди существующих традиционных видов альтернативной энергетики (энергия волн, земли, ветра, приливов, геотермальная энергия, а также энергия из газа от мусорных свалок и навоза на фермах) основным видом является энергия Солнца.

Человеческий мир, постоянно находящийся в поисках энергии, только недавно обратил внимание на источник энергетического изобилия. Использование энергии Солнца для нужд промышленности на данном этапе обходится дорого.

История развития человечества напрямую связана с производством различных видов энергии. Первым шагом на этом пути было разжигание костров в пещерах для того, чтобы приготовить еду и обогреть жилище. Следующий скачок произошел после изобретения колеса. Но резкий рост темпа производства и потребления энергии начался в период индустриализации пару веков назад. Сегодняшний быт трудно представить без использования электричества. Но не вызовут ли катастрофы экологические проблемы энергетики?

Структура производства электроэнергии

Экологические проблемы, связанные с современной энергетикой, и пути их решения

Кратко источники электроэнергии можно разделить на три основных типа:

  • полезные ископаемые (газ, нефть, уголь, сланцы);
  • возобновляемые ресурсы (вода, ветер, солнце, термальные воды);
  • расщепление атома.

Более 60% объема производства электричества приходится на ТЭЦ, тепловые электростанции, работающие на ископаемых источниках. Примерно по 16% производят ГЭС (гидроэлектостанции) и АЭС (атомные электростанции). Показатели выработки энергии из альтернативных источников незначительны.

Как влияет энергетика на экологию

Нет такой сферы деятельности, которая бы не зависела от электроэнергии прямо или косвенно. Польза энергетики неоспорима, и потому развивается она опережающими темпами. Но трудно отрицать и негативное воздействие этой отрасли на окружающую среду.

Несмотря на заметное отрицательное воздействие на природу в связи с наращиванием производства энергии, проблемы экологии долгое время не вызывали особого беспокойства в обществе. Но когда в середине 70-х годов двадцатого века были обнародованы обширные данные, свидетельствующие о катастрофических последствиях для климата, ученые стали уделять этой глобальной проблеме серьезное внимание.

Экологические проблемы электроэнергетики возникают как на этапе добычи топлива, так и во время производства и транспортировки энергии. Аварии на электростанциях могут вызвать экологические катастрофы, как было с Чернобыльской АЭС или АЭС Фукусима-1.

Экологические проблемы, связанные с современной энергетикой

Экологические проблемы, связанные с современной энергетикой, и пути их решения

По данным исследований самыми вредными для природы являются ТЭЦ. Но ГЭС и АЭС тоже вносят вклад в загрязнение окружающей среды. Проблемы в области экологии зависят от вида используемого топлива.

  1. Открытый способ добычи угля и торфа приводит к изменению ландшафта, что в свою очередь разрушает естественную среду обитания растений и животных.
  2. Нефть, разлитая во время добычи или транспортировки, убивает флору и фауну как на суше, так и в акватории океана.
  3. Плотины ГЭС, строящиеся на реках, вызывают затопление огромных участков плодородных земель и лесов. Из-за того, что перекрыты пути нереста, сокращаются ценные виды рыб.
  4. Высоковольтные линии электропередач, проложенные на пути миграции птиц, приводят к поражению их электрическим током.
  5. Замыкания на электроустановках и проводящих линиях могут вызывать пожары, приводящие к гибели лесов и их обитателей.
  6. Во время сжигания угля, нефти и газа на ТЭЦ в атмосферу выбрасываются тонны оксида серы, окислов азота и золы, состоящей из токсичных веществ, включающих мышьяк, ртуть, свинец и кадмий. Попадающий в воздух оксид углерода приводит к повышению средней температуры, грозящей глобальным потеплением на Земле.
  7. Производство электричества на АЭС приводит к накоплению радиоактивных отходов, сохраняющих свои ядовитые свойства сотни лет. Инженерного решения, позволяющего их безопасно перерабатывать, пока не найдено. В случае аварии на АЭС в атмосферу попадают радиоактивные вещества, опасные для жизни. Но даже во время штатного функционирования в воздух производится выброс углерода-14, криптона-85, стронция-90 и других вредных изотопов.

Выработка электричества с помощью энергии солнца, ветра или термальных вод является менее губительной, но и она тоже наносит некоторый вред экологии. Солнечные электрогенерирующие панели изменяют ландшафт, вертяки повышают уровень шума, геотермальные станции загрязняют почвы.

Человечество не может полностью отказаться от использования электроэнергии. Но для предотвращения катастрофических последствий для окружающей среды необходимо прикладывать усилия по уменьшению негативных явлений.

Пути решения проблем

Экологические проблемы, связанные с современной энергетикой, и пути их решения

Важным способом решения экологических проблем является развитие энергосберегающих технологий. Сокращение потребности в электричестве позволит уменьшить его выработку, что позитивно скажется на природной среде.

Пристальное внимание необходимо уделять контролю за процессом производства электроэнергии. С загрязнением атмосферы можно бороться следующими способами:

  • оптимизировать технологию сжигания нефти, угля и газа;
  • очищать топливо, чтобы в процессе переработки выделялось меньше вредных элементов;
  • фильтровать газы перед выбросом.

Важно!

Данные методы снижают КПД и увеличивают стоимость процесса производства, потому не являются достаточно эффективным решением.

Специалисты считают перспективным путем защиты природных ресурсов развитие альтернативных видов производства энергии. Солнечные, ветряные, приливные и геотермальные электростанции оказывают меньшее негативное влияние на экологию. Но они производят относительно мало электричества, их работа может зависеть от погодных факторов. Современные технологии не позволяют использовать альтернативные источники эффективно.

Так, электростанции, использующие энергию ветра, занимают очень большие площади. Они сильно шумят и обладают очень низкой мощностью. Массовое применение ветряков снижает силу воздушных потоков, что сказывается на изменении климата.

Приливные электростанции имеют низкую эффективность. Строиться они могут только на морском берегу, потому не могут служить заменой обычным электростанциям. Во время эксплуатации они меняют соляной состав воды, что наносит вред экосистеме океана, морским животным и растениям.

Геотермальные электростанции можно строить только в местах с определенными геологическими условиями. Недостатком таких установок является вероятность проседания грунта и возникновения сейсмической активности, вызванной воздействием на термальные воды. Добыча горячей воды из-под земли сопровождается выходом на поверхность газов, содержащих в том числе отравляющие вещества.

Солнечные электростанции не шумные, они не загрязняют воздух и почву выбросами. Но мощность их недостаточна для покрытия потребностей в электричестве, а работа зависит от погоды. Станции, преобразующие в электричество энергию солнца, материалоемки, но при этом имеют низкую эффективность. Максимум 20% улавливаемой энергии солнца превращается в электрическую.

Каждый способ производства электричества имеет свои достоинства и недостатки. Важной задачей современной науки является поиск новых методов производства электроэнергии, достаточно эффективных и в то же время наносящих минимальный вред экосистеме.

В настоящее время топливно-энергетический комплекс нашей страны находится в непростом положении, причиной которого стали, в первую очередь, старение теплоэнергетического оборудования и низкие инвестиции в сферу теплоснабжения.

По данным Доклада о состоянии теплоэнергетики и теплоснабжения в Российской Федерации за 2015-2016 годы, в теплоснабжении работает около 21 тысячи предприятий. 67% находятся в государственной и муниципальной собственности.

Основой систем централизованного теплоснабжения городов и поселений служат водогрейные котельные, общее количество отопительных котельных составляет около 73,8 тысяч. Общая протяженность тепловых сетей систем централизованного теплоснабжения по трассе составляет около 172 тыс. километров.

Постепенно трубы теплосетей меняются на новые, но этот процесс идет очень медленно. Около 1% труб в год в реальности меняют на новые, тогда как оптимальный показатель минимум 10%. Причём новые трубопроводы быстро приходят в негодность по причине отсутствия корректно работающих деаэраторов на 30% объектах теплоэнергетики.

Еще одна серьезная проблема всей отрасли в целом — задолженность по оплате услуг теплоснабжения. По данным Росстата общая сумма дебиторской задолженности организаций, оказывающих услуги теплоснабжения, в 2016 г. равнялась 475,7 млрд руб. Наибольшую долю занимают долги населения: 271,7 млрд руб. в 2016 г. (57,2%).

Кроме населения в указанной отчётности выделяется задолженность бюджетов всех уровней, а также организаций, финансируемых из бюджета, за предоставленные им ЖКУ. В 2016 г. она оказалась на уровне 19,3 млрд руб., превысив на 28% показатель 2015 г. (15 млрд руб.) и увеличившись в 2,1 раза по отношению к значению 2012 г.

Из общероссийской задолженности по оплате услуг теплоснабжения выделяется Москва и Московская обл., на долю которых приходится 17%. Наибольший темп роста задолженности с 2012 г. отмечен также в Ненецком АО (в 6,5 раз), затем следует Республика Башкортостан (в 3,3 раза). Интересно, что в этом спискеесть небольшие города Центральной России: Иваново, Тамбов, а также Волгоград и Воронеж (вместо, например, крупных сибирских городов-миллионников Красноярска (2,7 млрд руб. – 21 место) и Новосибирска (2,5 млрд руб. – 24 место), которое могло быть объяснено суровыми климатическими условиями).

Наличие больших объёмов задолженности, а также тенденция к его нарастанию снижает инвестиционную привлекательность отрасли. При этом теплоэнергетика является одной из отраслей с длительным сроком окупаемости.

Не стоит забывать и о том, что в России существует огромный избыток тепловой мощности, наследие СССР. По данным Минэнерго, на сегодня многие ТЭЦ загружены не более чем на 30% установленной мощности, а котельные – в среднем на 15%.

Таким образом, они не могут конкурировать на рынке и получают дотации от государства как вынужденные. Закрыть такие ТЭС невозможно, часто они служат единственным источником тепла в регионе. По оценкам Минэнерго, содержание подобных ТЭЦ обходится энергорынку более чем в 9 млрд руб ежегодно.

В регионах, где пользователи недоплачивают, тарифы постепенно вырастут, предусмотрен переходный период не менее 10 лет. Кроме того, законопроект обязывает единую теплоснабжающую организацию (ETO) отвечать за качество предоставляемых услуг. Она сможет заключать договоры на поставку тепла с наиболее эффективными источниками, а в случае нарушений (перерыва в снабжении или отклонения температуры) — взимать штрафы с поставщиков и выплачивать потребителям соответствующие компенсации.

Кроме того, совсем недавно Конституционный суд предписал внести изменение в законодательство, предусмотрев более эффективный и справедливый порядок определения платы за тепловую энергию. Теперь жильцы имеют право оплачивать отопление по счетчику, с условием, что последние работают исправно и установлены в соответствии с нормами законодательства.

Реформа создаст условия для долгосрочной, предсказуемой ценовой модели, считают в Минэнерго. А это в свою очередь создаст более благоприятные условия для инвестирования. Минэнерго ожидает, что приток инвестиций составит 2,5 трлн руб., а нагрузка на госбюджет снизится на 150 млрд руб. ежегодно.

Сегодня стоимость замены одного километра теплотрассы составляет более 7 миллионов рублей, в среднем за год по причине низкого качества водоподготовки приходит в негодность около 12 км трубопроводов теплосетей в одном теплоснабжающем предприятии, таким образом средние убытки за год составляют почти 84 миллиона рублей.

Использование нового современного оборудования, повышает межремонтный интервал в 5 раз, позволяя в год сэкономить отрасли около 64 миллионов рублей.

Планирование развития экономики и промышленного комплекса страны невозможно без учета энергообеспеченности. Для строительства новых и эксплуатации имеющихся заводов необходимо обеспечение их энергией. Получение заданных при планировании финансовых и производственных показателей должно достигаться вне зависимости от экономической конъюктуры и кризисных явлений. Именно поэтому стабильность и обеспеченность энергетического комплекса имеет особое значение.

башенные градирни ночью

По оценкам Международного энергетического агентства, спрос на электроэнергию вырастет на 80% к 2050 году, а увеличение объемов генерации будет движущей силой для всей мировой экономики. При этом доля использования ископаемых ресурсов заметно снизится, а возобновляемых источников энергии составит до 65%.

Одновременно по данным ООН к 2050 году население мира составит 9,7 млрд человек, из них 67% будет жить в регионах с дефицитом воды.

Очевидно, что развитие мировой экономики возможно при совершенствовании энергетических технологий, снижении потерь при производстве и передаче энергии.

Текущий уровень развития электроэнергетики и прогнозы на ближайшие 10-15 лет отражают факт, свидетельствующий о том, что основная доля выработки электроэнергии придется на тепловые атомные электростанции.

Учитывая, что для эффективной работы гидроэлектростанции препятствием становится нехватка уровня запаса воды в водохранилищах и сопутствующие решению данного вопроса проблемы, стоит больше внимания уделить эффективности работы ТЭС (тепловых электростанций). Так, потери от недостатка генерации составляют до 5% ВВП, а на 1 рубль потребления энергии приходится до 50 рублей ВВП.

башенные градирни днем

Основные проблемы эффективной работы электростанции

Тепловые станции подразделяются на ТЭЦ (теплоэлектростанции) и ГРЭС (государственные районные электростанции), отличающиеся режимом работы.

ГРЭС работает только в конденсационном режиме и вырабатывает электричество, а ТЭЦ еще и в теплофикационном, производя дополнительно тепло.

Станция – сложный технический объект, включающий машины и механизмы, требующие обслуживание. Поскольку номинальная мощность электростанции редко совпадает с реальной, то в энергетике анализируют их соотношение. Существует специальный коэффициент использования установленной мощности (КИУМ), который показывает насколько эффективна станция. Это интегральный коэффициент, учитывающий и техническое состояние, технологическое совершенство, квалификацию персонала и организацию работы.


Подобрать вентиляторную градирню

Ответьте на 5 вопросов и получите ТКП вентиляторной градирни для вашего производства и гарантированную скидку

К сожалению, среднее значение КИУМ в Росси составляет 46,3%, получается, что при правильном подходе на имеющихся электростанциях можно получить в 2 раза больше энергии.

Проблемами ограничения мощности энергетики занимаются не одно десятилетие, и получены весьма точные результаты.

Основные причины ограничений мощности:

  • недостаток охлаждающих устройств 42%
  • недостаток теплопотребления 32%
  • недостаток технического состояния основного оборудования 14%
  • прочее 12%

Основные причины ограничения мощности

Как видно, основная причина неэффективности тепловых электростанций – плохая работа охлаждающих устройств.

Кроме этого, вторая по величине проблема, связанная с недостаточностью потребления тепла, решается ввиду невозможности обеспечения его расчетного значения, перенаправлением всего парового потока в конденсаторы турбин с увеличением конденсационной мощности. А такой вариант зависит только от производительности и технической готовности систем водоохлаждения.

Подытожим: системы технического водоснабжения непосредственно влияют на ограничения мощности электростанций. Их доля в суммарной потере выработки - 74%.

Системы технического водоснабжения электростанций

СТВ-сложный комплекс природных и технических объектов (включающий теплообменные устройства, насосы, гидроохладители, очистные установки, конденсаторы турбин), предназначенные для отвода теплоты от установок электростанции с последующим рассеиванием ее в окружающую среду.

Системы техводоснабжения входят в низко накопительную часть электростанции, основная функция которой - передача тепла от отработавшего в турбине пара в атмосферу. Правильная работа НПЧ обеспечивает стабильный и экономически наиболее выгодный режим работы за счет поддержания вакуума в конденсаторах при любых их режимах работы.

Системы технического водоснабжения подразделяют на прямоточные (присущие ГРЭС) и замкнутые.

Водный кодекс с 2006 года предписывает проектирование ТЭС, включая ПГУ (парогазовые установки) с использованием оборотных систем водоснабжения с градирнями.

башенные градирни

Такое решение продиктовано описанными выше общемировыми проблемами водопотребления и дефицита ресурсов.

Эффективная работа низко потенциальной части напрямую зависит от точности расчетов и баланса параметров конденсаторов турбин, насосного оборудования и градирен для конкретных условий эксплуатации.

В основном системы технического водоснабжения ТЭЦ укомплектованы башенными, или испарительными вентиляторными градирнями большой мощности. Через них в окружающую среду рассеивается около 60% тепла низкопотенциальной части, полученной при сжигании топлива.

Если сравнить, то через дымовые трубы уходит всего 12% энергии. Поэтому качественная градирня, помимо увеличения производительности ТЭЦ, позволяет снизить выбросы СО2, SO2, NO в атмосферу.

От совершенства конструкции, правильности проектирования градирен зависит и расход топлива, и наличие ограничений мощности электростанции. Очевидно, что имеет смысл рассмотреть этот вопрос подробно.

Влияние градирен на ТЭП ТЭЦ

В энергосистеме ТЭЦ России на сегодня 748 электростанций мощностью 239,8 тысяч МВт, вырабатывающих порядка 1 триллиона кВт*ч электричества. Из них 63,7% составляют ТЭС, 19,25% АЭС, 17% ГЭС.

работа башенных градирен

Водопотребление за год составляет порядка 300 млрд м 3 . Учитывая, что наличие замкнутых систем должно увеличиваться темпами, значительно превышающими текущие.

В работе на электростанциях порядка 370 башенных и 70 вентиляторных градирен. Их суммарная площадь орошения около 700 000 м 2 , а производительность около 5 500 000 м 3 /час.

Основная часть установок построена с 1960 по 1985 года, новых градирен не более 40%. Многолетние испытания, проводимые специалистами ЕЭС, ОРГРЭС, ИНТЕРРАО, показывают, что недоохлаждение воды в системах составляет от 2 до 10 градусов. Нехватка воды для обеспечения охлаждения расчетных объемов пара в конденсаторах турбин 30-40%.

Так что же является основной проблемой? Старение парка градирен? Нет. Если бы это было так, то простое финансирование реконструкции охладителей за несколько лет исчерпало бы вопрос.

Основных проблем ограничения мощности из-за градирен несколько:

  • Технические задания для проектирования и строительства электростанций зачастую не согласованы. Создание сложных технических комплексов требует согласованности работы проектировщиков, изготовителей, наладчиков и эксплуатантов. А реальные случаи ее достижения можно пересчитать по пальцам рук. Часто запроектированные решения не согласуются с реалиями эксплуатации, или не позволяют вести ее в экономически оптимальных режимах, ввиду сложности последних. Многие регламентные документы не согласуются друг с другом
  • Разработанные технико-экономические обоснования не соответствуют проектам. Практика, когда проектирование и внесение изменений идут параллельно распространена. Времени на корректировку начальных исследований фактически не отводится
  • Система закупок ориентирована на минимизацию стоимости приобретаемого оборудования, а не на уменьшение ограничений мощности и стоимости генерации. Фактически приобретается оборудование с более дорогой стомостью владения
  • При расчетах водоохладителей и режимов работы ТЭЦ используются усредненные данные, тепловой и гидравлической баланс в расчет не берутся. В результате рассогласования параметров работы эффективность охлаждения градирен ТЭЦ мала. Часто при расчетах температура оборотной воды принимается завышенной (среднее значение-33 о С)
  • Значение проектных напоров и расходов насосного оборудования, рассчитанная при строительстве станций 30-40 лет назад, не соответствует характеристикам модернизированных градирен, что не позволяет обеспечить их оптимальную загрузку
  • Ремонтные работы и реконструкции ведутся различными фирмами без общего четкого плана и понимания общей конечной цели электростанции
  • При модернизации выбираются спорные технические решения, мотивированные низкой стоимостью. Например, сухие градирни, или системы Геллера. Принцип работы этих установок исключает наиболее эффективный режим охлаждения – испарение. Разница в температуре охлажденной воды достигает 7 градусов, по сравнению с испарительными градирнями
  • В ходе выполнения работ по обновлению парка градирен не учитывается согласование гидравлических параметров водораспределения смежных установок. В результате разница уровней достигает 3-5 метров водного столба, что ведет к перегрузке одних и недозагрузке других охладительных башен
  • Отсутствует должный уровень автоматизации процессов, исключающий ошибки из-за человеческого фактора и оптимизирующий режимы работы оборудования

Все эти проблемы ведут к неприятным последствиям. Эксплуатационники сталкиваются с тем, что отремонтированная градирня работает без улучшений параметров.

башенные градирни в рабочем состоянии

Подведем итог:

Влияние градирен на низкопотенциальную часть электростанций велико. Оно определяет наличие ограничений мощности, особенно в летний пиковый сезон.

Из-за сложившихся ограничений недовыработки ТЭЦ и АЭС исчисляются сотнями меговатт-часов.

Основные причины такого состояния дел возможно устранить техническим перевооружением.

Для получения стабильного, гарантированного результата модернизация должна базироваться на следующих принципах:

  • предварительные инженерные и экономические изыскания
  • проработка и согласование всех нормативных документов, задействованных на этапе планирования и проектирования
  • проведение расчетов для конкретных условий, с учетом текущих метеопараметров, гидравлического и теплового баланса, особенностей режима работы станции
  • внедрение современных технических разработок и устройств (ороситель, сопла, жалюзи)
  • автоматизация и согласование алгоритмов работы НПЧ станции (насосов, градирни, конденсаторов)
  • резервирование охлаждающих мощностей, влекущее увеличение бюджета, но уменьшение стоимости владения и генерации

Выбор комплексного подрядчика, или инжиниринговой компании, владеющей описанными компетенциями, существенно снижает риск ошибок и финансовых потерь.

Принцип работы тепловых электростанций (ТЭС) заключается в сжигании топлива в топках паровых котлов, где образуется тепловая энергия пара. Через паровую турбину энергия пара преобразуется в механическую, которая в турбогенераторе превращается в электроэнергию. Около 90% всей электроэнергии вырабатывается на тепловых электростанциях. Но и по степени воздействия на окружающую среду теплоэнергетика стоит тоже на первом месте. В связи с этим актуальность снижения негативного влияния теплоэлектростанций на экологию ни у кого не вызывает сомнений.

Основные экологические проблемы тепловых электростанций

Процесс преобразования тепловой энергии в электрическую включает в себя три стадии:

  1. Начальная - добыча, переработка и транспортировка топлива.
  2. Основная - производство тепла или электроэнергии.
  3. Заключительная - транспортировка и переработка отходов, их удаление.

Любая стадия технологического цикла оказывает существенное влияние на окружающую среду.

Вредные выбросы в атмосферу

Основными видами органического топлива, используемыми на тепловых электростанциях, являются газ, мазут, сланцы, уголь, торф. Среди них природный газ признан самым экологически безопасным топливом.

Уже на начальном этапе добычи топлива происходят значительные выбросы с мест добычи, например, с угольных разрезов. Пыль, углекислый газ, оксид азота и другие вещества, образующиеся при взрывных работах и выхлопах мощного карьерного транспорта, загрязняют территорию в радиусе 3-4 км от мест разработок.

При сжигании указанных видов топлива в атмосферу попадают токсические вещества:

  • природного газа - оксиды углерода, оксиды азота, бензапирен;
  • угля - к вышеперечисленному добавляются оксиды серы, зола, радиационные составляющие минеральной части;
  • мазута - добавляются оксиды ванадия.

Разрушение озонового слоя

Находясь в 30 км от поверхности земли, озоновый слой выполняет защитную функцию, поглощая излишнее агрессивное ультрафиолетовое излучение. Содержание в отводящих дымовых газах тепловых электростанций некоторых продуктов горения влияет на сохранность озонового слоя земли. Соединения водорода, азота и хлора в стратосфере вступают в реакцию с озоном и разрушают его. Образуются дыры в озоновом слое, которые приводят к повышению активности солнечной радиации. Это негативно влияет на растения, нарушая процессы фотосинтеза, а также на животных и человека, провоцируя ожоги и кожные болезни.

На улицы города опустился густой желтый туман. Есть ли повод для беспокойства и как обезопасить свое здоровье?

Основные виды естественных и искусственных источников загрязнения атмосферы и вред, которые они наносят

Кислотные дожди

Продукты горения органического топлива, такие, как метан, угарный газ, хлорфторуглероды, какое-то время находятся во взвешенном состоянии, а затем выпадают на землю в виде осадков, загрязняя почву и водоёмы. В частности, соединения серы и азота под действием солнечного света окисляются и образуют кислотные дожди. Они губительны для растений, вызывая химические ожоги и отмирание его частей, ухудшают качество сельскохозяйственной продукции. Человек, попав под кислотный дождь, рискует заболеть бронхо-лёгочными и сердечно-сосудистыми болезнями.

Сточные воды

Все стадии технологического процесса в теплоэлектростанциях требуют большого расходования воды. Большая часть воды направляется на охлаждение конденсаторов паровых турбин.

Около 7% от общего расхода воды станцией приходится на химическую промывку систем зольного, шлакоудалительного и прочего оборудований. Как правило, это растворы едкого натра, соляной кислоты, солей аммония. Они и являются основными составляющими примесного загрязнения сточных вод теплоэлектростанций.

Кроме этих химических элементов, сточные воды несут в себе нефтепродукты, фенолы, ванадий, фтор, различные реагенты и осветлители. При сбросе в водоёмы сточные воды предприятий теплоэнергетики неизбежно вызывают серьёзное химическое загрязнение окружающей гидросферы. Это приводит к уменьшению популяций гидробионтов и цепной реакции угнетения всей флоры и фауны водоёма.

Читайте также: