Приведите классификацию мутаций по уровню изменений наследственного материала кратко

Обновлено: 30.06.2024

Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают две основные формы изменчивости: наследственная и ненаследственная.

Наследственная, или генотипическая, изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала.

Ненаследственная, или фенотипическая, или модификационная, изменчивость — изменения признаков организма, не обусловленные изменением генотипа.

Мутации

Мутации — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

  1. Мутации возникают внезапно, скачкообразно, без всяких переходов.
  2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.
  3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.
  4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  5. Одни и те же мутации могут возникать повторно.
  6. Мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенезом, а факторы среды, вызывающие появление мутаций, — мутагенами.

По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

По адаптивному значению выделяют: полезные, вредные (летальные, полулетальные) и нейтральные мутации. Полезные — повышают жизнеспособность, летальные — вызывают гибель, полулетальные — снижают жизнеспособность, нейтральные — не влияют на жизнеспособность особей. Следует отметить, что одна и та же мутация в одних условиях может быть полезной, а в других — вредной.

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно.

В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы. Благодаря генным мутациям возникают множественные аллели одного и того же гена.

Заболевания, причиной которых являются генные мутации, называются генными (фенилкетонурия, серповидноклеточная анемия, гемофилия и т.д.). Наследование генных болезней подчиняется законам Менделя.

Хромосомные мутации

Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — межхромосомные мутации (транслокация).

Делеция — утрата участка хромосомы (2); инверсия — поворот участка хромосомы на 180° (4, 5); дупликация — удвоение одного и того же участка хромосомы (3); инсерция — перестановка участка (6).

Строение ядра

Хромосомные мутации: 1 — парахромосом; 2 — делеция; 3 — дупликация; 4, 5 — инверсия; 6 — инсерция.

Транслокация — перенос участка одной хромосомы или целой хромосомы на другую хромосому.

Геномные мутации

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n), тетраплоиды (4n) и т.д.

Гетероплоидия (анеуплоидия) — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Наиболее вероятной причиной гетероплоидии является нерасхождение какой-либо пары гомологичных хромосом во время мейоза у кого-то из родителей. В этом случае одна из образовавшихся гамет содержит на одну хромосому меньше, а другая — на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида: нулесомия (2n - 2), моносомия (2n - 1), трисомия (2n + 1), тетрасомия (2n + 2) и т.д.

На генетических схемах, приведенных ниже, показано, что рождение ребенка с синдромом Клайнфельтера или синдромом Тернера-Шерешевского можно объяснить нерасхождением половых хромосом во время анафазы 1 мейоза у матери или у отца.

1) Нерасхождение половых хромосом во время мейоза у матери

Р ♀46, XX × ♂46, XY
Типы гамет 24, XX 24, 0 23, X 23, Y
F 47, XXX
трисомия
по Х-хромосоме
47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского
45, Y0
гибель
зиготы

2) Нерасхождение половых хромосом во время мейоза у отца

Р ♀46, XX × ♂46, XY
Типы гамет 23, X 24, XY 22, 0
F 47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского

Заболевания, причиной которых являются геномные мутации, также относятся к категории хромосомных. Их наследование не подчиняется законам Менделя. Кроме вышеназванных синдромов Клайнфельтера или Тернера-Шерешевского, к таким болезням относятся синдромы Дауна (47, +21), Эдвардса (+18), Патау (47, +15).

Полиплодия характерна для растений. Получение полиплоидов широко используется в селекции растений.

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки — у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволил самому Н.И. Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Наследственное варьирование признаков * Рожь Пшеница Ячмень Овес Просо Сорго Кукуруза Рис Пырей
Зерно Окраска Черная + + + + + + +
Фиолетовая + + + + + +
Форма Округлая + + + + + + + + +
Удлиненная + + + + + + + + +
Биол. признаки Образ жизни Озимые + + + + +
Яровые + + + + + + + +

Открытый Н.И. Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев — у птиц, чешуи — у рыб, шерсти — у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет большое значение для селекции, поскольку позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза.

Искусственное получение мутаций

В природе постоянно идет спонтанный мутагенез, но спонтанные мутации — достаточно редкое явление, например, у дрозофилы мутация белых глаз образуется с частотой 1:100 000 гамет.

Факторы, воздействие которых на организм приводит к появлению мутаций, называются мутагенами. Обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Название группы
мутагенов
Примеры
Физические Рентгеновские лучи, гамма лучи, ультрафиолетовое излучение, высокие и низкие температуры и др.
Химические Соли тяжелых металлов, алкалоиды, чужеродные ДНК и РНК, аналоги азотистых оснований нуклеиновых кислот, мн. алкилирующие соединения и др.
Биологические Вирусы, бактерии

Индуцированный мутагенез имеет большое значение, поскольку дает возможность создания ценного исходного материала для селекции, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет большую роль в формировании признаков организмов. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Примером изменчивости признаков под действием факторов внешней среды является разная форма листьев у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидную. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) появляется загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна.

Модификационная изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки); 3) соответствие изменений действию фактора среды; 4) зависимость пределов изменчивости от генотипа.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Это объясняется тем, что генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови). Знание нормы реакции имеет большое значение для практики сельского хозяйства.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n). Степень выраженности изучаемого признака у членов выборочной совокупности различна. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v. Частота встречаемости отдельных вариант обозначается буквой p. При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака.

Например, если взять 100 колосьев пшеницы (n = 100), подсчитать число колосков в колосе (v) и число колосьев с данным количеством колосков, то вариационный ряд будет выглядеть следующим образом.

Варианта (v) 14 15 16 17 18 19 20
Частота встречаемости (p) 2 7 22 32 24 8 5

Вариационная кривая

На основании вариационного ряда строится вариационная кривая — графическое отображение частоты встречаемости каждой варианты.

Среднее значение признака подсчитывается по формуле:

где М — средняя величина признака; ∑(v·p) — сумма произведений вариант на их частоту встречаемости; n — количество вариант.

В данном примере среднее значение признака (числа колосков в колосе) равно 17,13.

Знание закономерностей модификационной изменчивости имеет большое практическое значение, поскольку позволяет предвидеть и заранее планировать степень выраженности многих признаков организмов в зависимости от условий внешней среды.

Вопрос 1. Какие виды изменчивости вам известны?
Существует два основных вида изменчивости — ненаследственная и наследственная. Ненаследственная (фенотипическая или модификационная) изменчивость — это процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. В качестве примера можно привести дуб, листья которого в процессе развития приобрели разную площадь в зависимости от освещенности (маленькую — при яркой освещенности, большую — при слабой).
Наследственная изменчивость связана с изменениями генотипа; признаки и свойства, приобретенные вследствие этого, передаются следующим поколениям.
Существует два типа наследственной изменчивости — комбинативная и мутационная.
Комбинативная изменчивость заключается в появлении новых признаков в результате образования новых комбинаций генов родителей в генотипах потомков. Комбинативную изменчивость обеспечивают случайное расхождение гомологичных хромосом в мейозе, обмен участками гомологичных хромосом в профазе I мейоза, случайная встреча гамет при оплодотворении, случайный выбор родительских пар.
Мутационная изменчивость обусловлена изменениями генов и хромосом.

Вопрос 2. Что такое норма реакции?
Норма реакции (иначе — пределы модификационной изменчивости) — это пределы, в которых возможно изменение признака при определенном генотипе. Норма реакции может быть как очень широкой (вес человека), так и очень узкой (группа крови). Обычно узкой нормой реакции обладают признаки, обеспечивающие жизненно важные качества организма. Важно также то, что от родителей потомству передается не жестко запрограммированное значение того или иного признака, а его норма реакции.

Вопрос 3. Почему фенотипическая изменчивость не передается по наследству?
Фенотипическая изменчивость не затрагивает генотип, обеспечивая лишь то или иное проявление заложенных в нем признаков. Она обычно предсказуема и у разных особей одного вида проходит однонаправленно. Например, если пшеничное поле не получает достаточно влаги, то у всех его растений плохо формируется колос. Генотип у особей в этом случае остается неизменным, поэто-му передачи информации о модификациях потомству не происходит. Следовательно, фенотипическая изменчивость не наследуется.

Вопрос 4. Что такое мутации? Охарактеризуйте основные свойства мутаций.
Мутации — это внезапные естественные или вызванные искусственно изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Основные свойства мутаций:
• спонтанность — мутации возникают случайно;
• неспецифичность — могут возникать в любом участке генома;
• скачкообразность — вызывают новые качественные изменения;
• ненаправленность — возникшие изменения генотипа и фенотипа могут быть как биологически вредными, так и полезными.

Вопрос 5. Приведите классификацию мутаций по уровню изменений наследственного атериала.
Различают три основных типа мутаций:
• генные мутации вызывают изменения в отдельных генах, нарушая порядок и число нуклеотидов в цепи ДНК. Это приводит к синтезу измененного (как правило, дефектного) белка. Следствием генных мутаций являются такие заболевания, как фенилкетонурия и мышечная дистрофия Дюшена;
• хромосомные мутации затрагивают значительный участок хромосомы, вызывая нарушения сразу в нескольких (иногда — многих) генах. Описаны случаи потери участка хромосомы, его переворота, перемещения, удвоения и т. п.;
• геномные мутации приводят к изменению числа хромосом в кариотипе. Они возникают в результате нарушения расхождения гомологичных хромосом. Примером может служить синдром Дауна, который возникает при появлении лишней 21-й хромосомы. При этом общее число хромосом становится равным 47.Другим примером геномных мутаций является формирование полиплоидных растений (чаще всего тетраплоидных).
Мутации бывают доминантные и рецессивные. Большинство мутаций рецессивны и не проявляются у гетерозигот. Это очень важно для существования вида. Мутации и в данных условиях оказываются, как правило, вредными, так как вносят нарушения в тонко сбалансированную систему биохимических реакций. При изменении условий внешней среды некоторые мутации могут оказываться полезными и носители таких мутаций получают преимущество в процессе естественного отбора.
В гомозиготном состоянии мутации нередко понижают жизнеспособность или плодовитость особи. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называются полулетальными или летальными. У человека к таким мутациям относятся ген гемофилии и ген серповидно-клеточной анемии, определяющий синтез аномального гемоглобина.
Если мутация возникает в половых клетках, то она обнаруживается только в следующем поколении. Такие мутации называют генеративными. Мутации могут происходить и в соматических клетках, проявляясь лишь у данного организма. Но при бесполом размножении они могут передаваться потомству.

Вопрос 6. Назовите основные группы мутагенных факторов. Приведите примеры мутагенов, относящихся к каждой группе.
Мутагенные факторы можно разделить на три группы:
• физические мутагены — все типы ионизирующих излучений (гамма -лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температура;
• химические мутагены — аналоги нуклеиновых кислот, перекиси, соли тяжелых металлов (свинца, ртути), азотистая кислота, многие органические соединения;
• биологические мутагены — чужеродная ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.

Мутации — это внезапные, естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению признаков организма. Основы учения о мутациях заложены Г. де Фризом в 1901г. и оформлены затем в мутационную теорию.

Мутации характеризуются рядом свойств:

— возникают внезапно, скачкообразно, без всяких переходных форм;

— мутации — изменения качественные и, в отличие от ненаследственных изменений, не образуют непрерывных рядов и не группируются вокруг среднего значения;

— возникают ненаправленно — под влиянием одного и того же мутагенного фактора может мутировать любая часть структуры, несущей генетическую информацию, приводя тем самым к изменению самых разнообразных признаков;

— сходные мутации могут возникать неоднократно;

— мутации передаются из поколения в поколение.

Мутационная изменчивость — тип наследственной изменчивости, обусловленной появлением различных изменений в структуре генов, хромосом или генома. Фенотипически мутации проявляются только тогда, когда становятся гомозиготными.

Мутагенные факторы

Физические мутагены составляют высокоэнергетичные частицы крайне малой величины, из-за чего они обладают высокой способностью глубоко проникать в ткани и вызывать молекулярные нарушения.

— температура и другие.

Химические мутагены должны обладать следующими свойствами: 1 - высокой проникающей способностью; 2 - свойством изменять коллоидное состояние хромосом и 3 - определенным действием на изменение гена или хромосомы.

Делятся на 9 классов:

1 — алкилирующие соединения;

4 — азотистая кислота;

5 — соли тяжелых металлов;

7 — антиметаболиты, в том числе аналоги оснований ДНК;

8 — красители, обладающие основными свойствами;

9 — ряддр. веществ, преимущественно ароматического ряда (канцерогены, алкалоиды, некоторые лекарственные вещества, гербициды, инсектициды и др.)

Биологические мутагены - это, главным образом, вирусы, вызывающие наследственные изменения генетического материала у прокариот и эукариот.

— Токсины плесневых грибов и бактерий

Классификация мутаций схема

Общая классификация мутаций схема

Таблица виды мутаций, классификация

Виды мутаций, классификация

Характеристика, примеры, описание

Мутации по уровню возникновения

Генная, или точечная, мутация происходит в одиночном локусе хромосомы, чаще всего путем делеции, добавления или замещения нуклеотидного основания. Примеры: серповидноклеточная анемия, фенилкетонурия, кистозный фиброз.

1. Генные дупликации — удвоение пары или нескольких пар нуклеотидов (удвоение пары Г—Ц).

2. Генные инсерции — вставка пары или нескольких пар нуклеотидов (вставка пары Г—Ц между А—Т и Т—А).

3. Генные делеции — выпадение нуклеотидов (выпадение комплементарной пары Т—А между А—Т и Г—Ц).

4. Генные инверсии — перестановка фрагмента гена (во фрагменте исходная последовательность нуклеотидов Т—А, Г—Ц заменяется на обратную Г—Ц, Т—А).

5. Замены нуклеотидов — замена пары нуклеотидов на другую; при этом общее число нуклеотидов не меняется (замена Т—А на Ц—Г). Один из наиболее частых типов мутаций.

А. Внутрихромосомные мутации

1. Хромосомные дупликации — удвоение участка хромосомы.

2. Хромосомные делеции — утрата хромосомой какого-либо участка.

3. Хромосомные инверсии — разрыв хромосомы, переворачивание оторвавшегося участка на 180° и встраивание его на прежнее место.

Б. Межхромосомные мутации

1. Транслокация — обмен участками между негомологичными хромосомами (в мейозе).

2. Транспозиция — включение участка хромосомы в другую, негомологичную хромосому без взаимного обмена.

Геномные мутации — изменение числа хромосом. Они могут быть вызваны нерасхождением хромосом при мейозе, что приводит к появлению у гамет нового набора хромосом. Геномные мутанты могут быть представлены гаплоидами (с вдвое меньшим числом хромосом), анеуплоидами (с лишней или недостающей хромосомой), полиплоидами (с кратным увеличением наборов хромосом).

Анеуплоидия (обычно потеря или приобретение одной хромосомы) возникает в результате нерасхождения хромосом в анафазе мейоза. Наиболее известными примерами являются синдром Дауна (лишняя 21-я хромосома), синдром Кляйнфельтера (мужчины с лишней Х-хромосомой) и синдром Тернера (женщины без второй Х-хромосомы).

Полиплоидия (наличие дополнительных полных наборов хромосом) возникает чаще всего, когда одна или обе сливающиеся гаметы диплоидны при оплодотворении формируется полиплоид. У животных это встречается редко, но среди растений есть много важных примеров полиплоидии; в частности, бананы - триплоиды, тетраплоидные томаты крупнее и содержат больше витамина С.

Гаплоидия — уменьшение числа хромосом вдвое. Такой организм (гаплоид) имеет в соматических клетках гаплоидный набор хромосом. Поскольку он имеет лишь по одной хромосоме из каждой гомологичной пары, то в его фенотипе проявляются все имеющиеся рецессивные аллели.

Мутации по типу аллельных взаимодействий

Большинство мутаций рецессивно, и проявиться они могут только в гомозиготном состоянии. Вероятность такого события мала, поэтому рецессивные мутации долгое время накапливаются в популяции в скрытом виде.

Доминантные мутации проявляются сразу и подвергаются действию естественного отбора (полезные сохраняются, вредные убираются).

Мутации по характеру проявления (по Г. Мёллера)

Гипоморфные мутации — группа мутаций по характеру их проявления. Действуют в том же направлении, что и нормальный аллель, но дают несколько ослабленный эффект. Например, у дрозофилы окраска глаз при мутации значительно бледнее.

Группа мутаций по характеру их проявления в фенотипе. Неактивны в отношении типичного эффекта нормального аллеля. Например, ген альбинизма полностью тормозит образование пигмента у животных или хлорофилла у растений.

Это группа мутаций по характеру их проявления в фенотипе. Оказывают действие, противоположное действию нормального аллеля. Так, у кукурузы исходный аллель дает пурпурную окраску семян, а мутантный — вызывает образование бурого пигмента.

Это группа мутаций, нетипичных по характеру их проявления в фенотипе. Их действие совершенно отлично от действия исходного нормального аллеля.

По происождению мутации делятся на:

Возникают в естественных условиях обитания организма. Считается, что на их появление не оказывается никакого воздействия извне, они всегда неожиданны и непредсказуемы и действительные причины таких мутаций во многом остаются неизвестными.

Возникают под воздействием внешних факторов. Такие факторы называются мутагенными, или мутагенами. В зависимости от природы их делят на физические, химические и биологические.

Мутации по месту возникновения

Генеративные мутации возникают в первичных половых клетках или в гаметах, передаются по наследству при половом размножении (например, гемофилия, синдром Дауна у человека).

Соматические мутации возникают в любых клетках, кроме гамет. Они затрагивают часть организма (например, разная окраска лепестков в одном цветке, разный цвет глаз у человека и животных).

По фенотипическому проявлению

Мутации, изменяющие или полностью блокирующие синтез определенных веществ в организме. Наиболее хорошо они изучены у микроорганизмов.

Связаны с изменением в строении органов, тканей или отдельных структур клетки. К ним относятся: коротконогость у крупного рогатого скота и овец; безглазость и бескрылость у насекомых;

По влиянию на жизнеспособность особей

Это мутация, вызывающая гибель содержащего её организма. Доминантная летальная мутация губительна для всех (как гомозигот, так и гетерозигот), а рецессивная летальная мутация — только для гомозигот.

Вредные мутации нередко понижают жизнеспособность или плодовитость. Могут быть полулетальными и летальными.

Нейтральные мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).

Полезные мутации – мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам), в конечном итоге, повышают приспособленность особей.

Схема мутации по уровню возникновения

Мутации по уровню возникновения общая схема

Значение мутации

Мутации, так же как и рекомбинации, дают новые состояния генотипов. Однако, в отличие от последних, мутации приводят к образованию новых аллелей и даже генов. Следовательно, они являются причиной любого качественного изменения генофонда, что, согласно теории эволюции, определяет микро- и макроэволюционные процессы. Для хозяйственной деятельности человека мутации (особенно индуцированные) важны в качестве метода, позволяющего получить разнообразие племенного материала с последующим отбором наиболее ценных форм.

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.

3. Весь курс школьной программы в схемах и таблицах: биология /-СПб.:Тригон,2007.

Изменчивость — это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

Вопрос 2. Приведите классификацию мутаций по уровню изменений наследственного материала.

По уровню изменений наследственного материала выделяют следующие виды мутаций:

1. Геномные мутации - изменения кариотипа, кратные (3п, 4п, 8п. ) и некратные (2п ± 1; 2п 2. ) гаплоидному числу хромосом. Например, при болезни Дауна в кариотипе присутствуют три хромосомы 21-й пары.

2. Генные, или точковые, мутации - изменения, обусловленные заменой, выпадением или вставкой одного или нескольких нуклеотидов в пределах одного гена. Они влекут за собой изменение структуры белков, заключающееся в появлении новой последовательности аминокислот в полипептидной цепи.

3. Хромосомные мутации - изменение Структуры хромосом. Эти мутации могут возникать вследствие утраты хромосомой своей части или приобретение нового, нехарактерного для нее участка, что может принести к гибели организма.

Вопрос 3. Что такое полиплоидия и каково её значение?

Полиплоидия - увеличение числа хромосом, кратное гаплоидному набору. Часто подобное явление встречается в простейших и растений. Полиплоидия позволяет повысить надежность генетической системы, уменьшает опасность снижения жизнеспособности в случае возникновения мутаций, повышает жизнеспособность, плодовитость и другие свойства. В растениеводстве этим пользуются, искусственно получая полиплоидные сорта культурных растений, которые отличаются высокой урожайностью и жизнестойкостью.

Вопрос 4. Перечислите свойства мутаций.

Мутации передаются по наследству, чем обусловлена их роль в эволюции: только наследственные изменения могут стать достоянием последующих поколений при условии успешного размножения и выживания особей с этими мутациями.

Мутации вызываются различными внешними и внутренними факторами. Ультрафиолетовые лучи, колебания температуры, изменение химических реакций в клетке в связи с ее старением, действие различных химических веществ могут привести к изменениям структуры ДНК и целых хромосом.

Возникают мутации внезапно, скачкообразно, у отдельных особей вида и в большинстве случаев вредны для организма, так как расшатывают исторически сложившийся генотип. Одни и те же мутации могут возникать повторно.

Мутации ненаправленны: мутировать может любой ген, вызывая изменения как незначительных, так и жизненно важных признаков. При этом один и тот же фактор, например рентгеновское излучение, действуя на клетки, может вызвать самые разные мутации, которые трудно предвидеть.

Вопрос 5. На каких уровнях возникают новые комбинации генов?

Новые комбинации генов возникают на различных уровнях:

1. перекомбинация генов в группе сцепления вследствие кроссинговера в профазе I мейотического деления;

2. расхождение гомологичных хромосом из бивалентов в I мейотическом делении;

3. расхождение дочерних хромосом во II мейотическом делении. Всего во время мейоза образуется 2^46 комбинаций.;

4. слияние половых клеток, принадлежащих разным организмам (292 комбинаций).

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. Благодаря чему формируется резерв наследственной изменчивости? Каково его значение?

Вопрос 2. С помощью каких воздействий можно повысить частоту мутаций?

Чтобы повысить частоту мутаций необходимо воздействовать на клетки различными мутагенными факторами, такими как:

1. Ультрафиолетовое излучение;

2. Химическими соединениями не встречающимися в природе (пестициды, некоторые лекарственные препараты и др.)

3. Органическими и неорганическими соединениями естественного происхождения (окислы азота, нитраты, радиоактивные соединения, алкалоиды).

Вопрос 3. Приведите примеры комбинативной изменчивости, вытекающие из закономерностей наследования признаков, выявленных Г. Менделем.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса: независимое гомологичных хромосом, Взаимный обмен участками гомологичных хромосом, или кроссинговер, Случайное сочетание гамет при оплодотворении.

У цветка ночная красавица есть ген красного цвета лепестков А, и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.


Наследственная изменчивость. Виды мутаций

Ключевые слова конспекта: наследственная (генотипическая) изменчивость: комбинативная, мутационная; мутации: биохимические, физиологические, анатомо-морфологические, прямые, обратные, спонтанные, индуцированные, ядерные, цитоплазматические, половые, соматические. Раздел ЕГЭ: 3.6. Закономерности изменчивости… Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины…

В отличие от модификационной изменчивости наследственная, или генотипическая, изменчивость затрагивает генотип и передаётся по наследству. Она бывает двух видов : комбинативная и мутационная.

Комбинативная изменчивость

Появление новых сочетаний признаков вследствие комбинации генов приводит к комбинативной изменчивости. Часто у потомков появляются такие сочетания признаков, которые не были характерны для родителей. Например, появление зелёных гладких и жёлтых морщинистых семян у гороха посевного при скрещивании гетерозиготных особей с гладкими жёлтыми семенами — результат комбинации признаков. Комбинация двух доминантных генов у кроликов приводит к появлению новых фенотипов. Примером комбинации служит проявление признаков у потомков при комплементарном взаимодействии генов (при скрещивании особей с розовидным и гороховидным гребнями появляются куры с ореховидным гребнем).


Комбинация признаков окраски и длины шерсти у кроликов

Основой комбинативной изменчивости являются следующие факторы:

  • 1) случайная комбинация негомологичных хромосом в мейозе и, как следствие, независимое наследование признаков;
  • 2) рекомбинация генов в результате кроссинговера в процессе мейоза;
  • 3) половой процесс, приводящий к случайному сочетанию отцовских и материнских генов.

Комбинативная изменчивость определяет разнообразие особей и способствует приспособлению вида к условиям окружающей среды. Наличие комбинаций определяет появление особей со специфическими признаками, которые используют при выведении новых сортов растений и пород животных.

Мутационная изменчивость

Мутации ослинника (энотеры)

Мутации ослинника (энотеры): 1 — нормальная форма; 2 — карликовая форма.

Мутации (от лат. mutatio — изменение) — это внезапные скачкообразные изменения наследственного материала клетки. Они, в отличие от модификаций, наследуются и связаны с изменением генотипа.

Мутационная изменчивость — это наследственные изменения генотипического материала (хромосом и генов). Под воздействием внешней среды могут возникнуть ошибки в репликации ДНК, нарушения в процессе деления клетки. Например, в результате мутации в гене у дрозофилы не развиваются крылья и появляются бескрылые особи. Иногда под воздействием химических агентов или при механических повреждениях у растений ядро клеток начинает делиться быстрее, чем сама клетка. Вследствие этого возникают клетки с удвоенным набором хромосом, которые могут дать начало цветкам и семенам с другим генотипом. Облучение зёрен пшеницы перед посевом рентгеновскими лучами приводит либо к образованию неполноценных колосьев, либо к отсутствию сформированного колоса, а иногда — к формированию более крупного полноценного колоса. Воздействие одинаковых условий вызывает разную реакцию у организма. В результате мутаций появляются новые типы белков, которые обусловливают появление новых признаков.

Наследственная изменчивость

Мутационная изменчивость имеет следующие особенности.

  1. Изменения затрагивают генотип организма и наследуются.
  2. Изменения носят скачкообразный характер. Не наблюдается последовательности в изменении свойств, модификации отсутствуют.
  3. Изменения индивидуальны и возникают у единичных особей.
  4. Изменения не адекватны условиям окружающей среды, т. е. носят независимый характер, и могут быть нейтральными, полезными, но чаще всего являются вредными.
  5. Мутации могут привести к образованию новых признаков у организма или к его гибели. Например, мутация окраски глаз у дрозофил привела к образованию в природе белоглазых мух.

Классификация мутаций

1) По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими. При биохимических мутациях изменению подвергаются белки-ферменты, которые могут ускорить синтез структурных белков, а в некоторых случаях, наоборот, прекратить его. Например, альбинизм — мутация, связанная с отсутствием в организме фермента, ответственного за синтез пигмента меланина.

При анатомо-морфологических мутациях наблюдаются аномалии в формировании органов или систем органов, например: недоразвитие желудка у серых каракулевых овец, гомозиготных по доминантному гену серой окраски. Большое количество мутаций выявлено у дрозофилы

Мутации у дрозофилы

Мутации у дрозофилы: 1 — величина и форма крыльев; 2 — пигментация и форма глаз

2) По степени приспособленности мутации делят на полезные и вредные. Чаще мутации вредны, так как понижают жизнеспособность особей, а иногда могут быть летальными и вызывать гибель организма.

Мутация всегда изменяет приспособленность организмов. Степень полезности или вредности мутации выявляется со временем. Если мутация позволяет организму лучше приспособиться к условиям среды, даёт дополнительный шанс выжить, то она закрепляется у организмов. Примером может служить серповидно-клеточная анемия у человека. При наличии такой мутации возникают нарушения в структуре гемоглобина, что приводит к образованию эритроцитов серповидной формы:


Неполное доминирование при серповидно-клеточной анемии: 1 — нормальные эритроциты (АА); 2 — гетерозиготы (Аа); 3 — аномальные эритроциты (аа)

Они не способны транспортировать достаточное количество кислорода, поэтому организм испытывает кислородное голодание и в конце концов погибает. Однако у гетерозигот по этому признаку эритроциты изменены незначительно, и организм вполне жизнеспособен. При этом у таких людей появляется одна особенность: они устойчивы к заболеванию малярией, так как в их изменённых эритроцитах не способен размножаться малярийный плазмодий — возбудитель малярии. В результате при массовом заболевании малярией гомозиготы с нормальными эритроцитами могут погибнуть, тогда как гетерозиготы выживают. В Африке, где свирепствует малярия, среди людей чаще, чем в других местах земного шара, встречаются гетерозиготы.

3) По направленности мутации бывают прямые и обратные:

ген А → ген А*, ген А* → ген А.

Последние встречаются реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность обратной мутации в той же точке очень мала, чаще всего мутациям подвергаются другие гены.

4) По способу возникновения различают спонтанные и индуцированные мутации. Спонтанные мутации происходят в природе самопроизвольно. Они зависят как от внутренних, так и от внешних факторов. Индуцированные мутации возникают при воздействии на организмы мутагенов — факторов, вызывающих мутации. Это физические (радиация, электромагнитное излучение, температура и т. д.), химические (ароматические углеводороды, гербициды и т. д.), биологические (бактерии и вирусы) факторы.

5) По локализации в клетке мутации бывают ядерными и цитоплазматическими. Ядерные мутации связаны с аномалиями в хромосомном аппарате ядер и передаются по наследству. Цитоплазматические мутации связаны с нарушением ДНК в таких органоидах цитоплазмы, как хлоропласты и митохондрии. Так как эти органоиды сохраняются только в яйцеклетках, то цитоплазматическая мутация передаётся по материнской линии. Например, ДНК хлоропластов клеток растений управляет образованием пигмента хлорофилла, который обеспечивает развитие зелёной окраски. Решающим для окраски листа потомков является содержание генов пластид в яйцеклетках, а не в клетках пыльцевых зёрен. Митохондриальная ДНК регулирует синтез дыхательных ферментов в клетке. Нарушения проявляются по материнской линии, так как митохондрии содержатся в цитоплазме яйцеклетки — из сперматозоида при оплодотворении в зиготу переходит только ядро.


Соматическая мутация окраски глаза у дрозофилы. Пигментация в части глаза отсутствует

6) В зависимости от типа клеток различают половые и соматические мутации. Если изменения связаны с хромосомами половых клеток, то они передаются следующим поколениям при половом размножении. Мутации могут происходить и в соматических клетках, но они не наследуются. Примером соматической мутации является нарушение пигментации глаза у дрозофилы.

У человека появление белой пряди волос на голове иногда связано с соматической мутацией — нарушением образования пигмента. Эта мутация появляется не сразу, а в процессе жизни. Однако белая прядь волос может быть обусловлена и половой мутацией. В этом случае она передаётся по наследству и проявляется сразу при рождении.

У растений соматические мутации передаются по наследству при вегетативном размножении, например, пестролистность комнатных растений.

Большинство мутаций рецессивные, поэтому они скрыты и лишь изредка проявляются у единичных особей только в гомозиготном состоянии. Доминантные мутации встречаются гораздо реже, они проявляются сразу же и в случае летальности быстро исчезают с гибелью особей.


классификация мутаций

Читайте также: