Принципиальное различие между фенотипической и генотипической изменчивостью кратко

Обновлено: 04.07.2024

Фенотип и генотип представляют собой термины, которые применяются в генетике для описания характерных особенностей организма. Они помогают объяснить принципы наследования и эволюции тех или иных черт. При этом существуют определенные отличия между фенотипом и генотипом. Если проводить анализ определенного признака или особенности, первый термин причисляют к физическому выражению, тогда как второй считается генетическим составом.

Что такое генотип?

Понятие используется для обозначения генетической структуры организма. Большая часть генов включает два или больше разных аллелей. Их сочетание формирует ген. Он выражает любую доминирующую в паре черту, а также может отражать комбинацию указанных параметров или показывать обе черты одинаково.

Сочетание двух аллелей и представляет собой рассматриваемое понятие. Для его обозначения используется 2 буквы. Доминантный аллель записывают как заглавную букву. При этом для рецессивного аллеля применяется такая же буква, но в строчной форме.

В качестве примера стоит привести эксперименты Грегора Менделя с горохом. В результате исследований ученый заметил, что цветы получаются пурпурными или белыми. В первом случае речь идет о доминантном признаке, во втором – о рецессивном. Растение с пурпурными цветами может обозначаться как РР или Рр. Для гороха с белыми цветами характерно обозначение рр.

Генетическая изменчивость может быть комбинативной и мутационной. В первом случае речь идет об обмене гомологичными фрагментами гомологичных хромосом во время мейоза. В итоге возникают новые комбинации генов.

Чтобы определить генотип, требуется выполнить генетический анализ. В племенном животноводстве и растениеводстве для выделения требуемого гена применяют анализирующее скрещивание.

Что такое фенотип?

Под этим термином понимают признак, который проявляется за счет кодирования в генотипе. Фенотип используется для обозначения реальных физических особенностей, которые проявляются организмом.

Чтобы разобраться в этом понятии, стоит также рассмотреть пример с горохом. Если в растении присутствует доминантный аллель пурпурных цветков, фенотип будет пурпурным. Если бы генотип обладал одним аллелем пурпурного оттенка и одним рецессивным аллелем белого цвета, фенотип всего равно был бы пурпурным. В такой ситуации доминантный аллель пурпурного приводит к маскировке рецессивного аллеля белого цвета.

В качестве примера внешних признаков рассматриваемого понятия стоит привести следующее:

  • строение волос;
  • оттенок и разрез глаз;
  • размеры и форма ушей;
  • внешний вид носа.

При этом существуют и внутренние признаки:

  • анатомические – к ним относят структуру и локализацию внутренних органов;
  • физиологические – в эту группу включают строение и функционирование клеток;
  • биохимические – речь идет о строении белка, влиянии ферментов, составе гормонов.

Разница между генотипом и фенотипом

Между рассматриваемыми понятиями имеется прочная взаимосвязь. Так, генотип оказывает влияние на фенотип. Однако значительно большее воздействие на второе понятие производят внешние факторы.

При этом рассматриваемые термины существенно отличаются друг от друга. Основные различия между ними заключаются в следующем:

  1. Генотип включает генетические данные организма в виде гена, который находится в ДНК. Он остается постоянным всю жизнь. Фенотип представляет собой явные признаки, которые считаются проявлением генов. Однако они меняются со временем. В качестве примера стоит привести изменение человека от младенца до взрослого.
  2. Под генотипом понимают генетический материал. Он находится в клетках организма. В отдельных случаях другой генотип может создавать одинаковые фенотипы. Однако, если речь идет о фенотипе, даже незначительные отличия будут обладать новым генотипом. Они распознаются как внешность человека.
  3. Генотип включает наследственные проявления. Однако они могут передаваться или не передаваться последующим поколениям. Один генотип дает такой же фенотип в определенной среде. Но в случае фенотипа наследования признаков не происходит.
  4. Физические признаки в виде роста, цвета глаз или волос можно выявить визуально. Для идентификации генетических проявлений стоит применять научные инструменты – в частности, полимеразную цепную реакцию. Она позволяет определить тип генов.
  5. В случае с генотипом происходит частичное наследование от индивида к потомству как одного из двух аллелей во время репродукции. Фенотип представляет собой проявление наследственной особенности родителя, но не наследуется.

Отличия затрагивают и изменчивость в процессе жизни. По фенотипу этот параметр называют модификационным или фенотипическим. Он приобретается на протяжении жизни, но не может передаваться по наследству. Генотипическая изменчивость делится на такие виды:

  • комбинативная – представляет собой формирование новых сочетаний генов во время мейоза;
  • мутационная – это скачкообразные изменения генов, которые передаются по наследству.

Таблица сравнение

Основные особенности и отличия приведены в таблице:

Критерий Генотип Фенотип
Суть Представляет собой наследственную информацию организмов в форме гена в ДНК. Она не меняется в течение жизни. Представляет собой выражение генов и имеет видимые параметры, которые меняются на протяжении всей жизни.
Состав Наследственные признаки организмов проявляются или не проявляются в последующем поколении. Признаки не наследуются.
Местонахождение Внутри организма, в качестве генетического материала Вне тела, в качестве внешности
Наследование Частично наследуется, передаваясь в процессе размножения. Не наследуется.
Определение Применение научных методов – в частности, полимеразной цепной реакции. Наблюдение за организмами.
Источники воздействия Находится под влиянием генов. Находится под воздействием генотипа и других внешних факторов.
Примеры Склонность к болезням, ДНК Оттенок глаз, цвет волос, вес

структура генома

Выводы

Фенотип отличается от генотипа множеством особенностей. Первое понятие представляет собой физическое выражение, а второе – относится к генетической конституции.

При этом генотип организмы получают вследствие соединения двух носителей генетической информации. Фенотип образуется на его базе и находится под влиянием множества факторов и мутаций.

Под изменчивостью понимают способность организмов приобретать признаки и свойства, отличные от родительских, характерных для данного вида. Изменчивость является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Традиционно различают ненаследственную и наследственную изменчивость.

Виды изменчивости

Модификационная изменчивость

Модификационная (фенотипическая) изменчивость - изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не приводит к изменениям генотипа особи - все изменения касаются только фенотипа.

Напомню, что генотипом называют генетическую конституцию - совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino - обнаруживаю) - совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).

Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.

Модификационная изменчивость

Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.

Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для хищников.

Относительность приспособленности

Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное развитие протекает в условиях повышенной температуры.

Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.

В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление признака.

Изменения окраски шерсти у гималайских кроликов

Вам известно, что человек, побывавший на солнце, получает его "отпечаток" - загар. Потемнение цвета кожи в данном случае связано с активной выработкой пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.

Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени - все дело в норме реакции.

Норма реакции

Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Узкая и широкая норма реакции

  • Причина изменения - влияние факторов внешней среды
  • Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
  • Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
  • Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость

Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) - форма изменчивости, вызванная изменениями генотипа организма, которые могут быть связаны с мутационной или комбинативной изменчивостью.

В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она - наследственная.

Наследственная изменчивость

Комбинативная изменчивость

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера - обмена участками между гомологичными хромосомами.

  • Случайная комбинация генов в ходе кроссинговера
  • Независимое расхождение хромосом в мейозе
  • Случайная встреча гамет при оплодотворении

Комбинативная изменчивость

Я всегда говорю ученикам, что комбинативная изменчивость - это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере, не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.

То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Сходство детей и родителей

Мутационная изменчивость

Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio - изменение) - внезапные, возникающие спонтанно или вызванные мутагенами наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

  • Мутации - резкие спонтанные изменения генотипа
  • Стойкие, передаются потомкам через половые клетки (гаметы)
  • Ненаправленные. Большинство мутаций - вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
  • Носят индивидуальный характер

Гетерохромия

Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).

Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру: изначально триплет ДНК "ТАЦ" кодировал аминокислоту "Мет", нуклеотид "Т" выпал из триплета произошла вставка нуклеотида "Г". В результате вместо аминокислоты "Мет" теперь синтезируется аминокислота Вал.

Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной схеме - изменении фенотипа в результате изменений генотипа.

Генные мутации

В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия), перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

Хромосомные мутации

    Автополиплоидию - кратное увеличение числа наборов хромосом

В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов более крупные и сочные плоды.

В селекции полиплоидию у растений вызывают добавлением специального химического вещества - колхицина, который блокирует образование нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке - набор хромосом увеличивается в 2 раза.

Полиплоидия у растений

Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m).

В результате такого скрещивания в 1875 году в Шотландии был получен первый искусственный стерильный гибрид - тритикале. Тритикале дает отличный урожай, в дальнейшем путем полиплоидии стерильность данного гибрида была преодолена.

Тритикале

Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) - мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.

Мул

Анеуплоидия - изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке ("лишние" хромосомы).

В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом - нуллисомии. Если к паре хромосом добавляется одна лишняя, говорят о трисомии.

Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна - мы более детально обсудим в следующей статье, которая посвящена наследственным заболеваниям.

Синдром Дауна

Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.

Инбридинг (англ. in — в, внутри + breeding — разведение) - скрещивание близкородственных форм, в результате которого в ряду поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.

Инбридинг

Гетерозис (греч. ἕτερος - другой + -ωσις - состояние) - явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.

Гетерозис

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


В 1909 году датский биолог и генетик Вильгельм Иогансен ввёл понятия генотип и фенотип. Без знания данных терминов невозможно изучать генетику.


Что это такое

Выделить конкретную особь из массы других можно, рассказав кратко о генотипе и фенотипе.

Генотип – это набор генов, присущий определённому организму. Гены передаются по наследству от родителей и влияют друг на друга, формируя индивидуальный генотип.

Фенотип – совокупность внешних и внутренних признаков, свойств, черт организма, приобретённых в процессе онтогенеза (индивидуального развития).


Рис. 2. Фенотип.

Примеры внешних признаков фенотипа:

которые читают вместе с этой





  • окраска;
  • структура волос или шерсти;
  • цвет и разрез глаз;
  • размер и форма уха;
  • форма носа.

Внутренние признаки фенотипа:

  • анатомические – строение и расположение внутренних органов и тканей;
  • физиологические – строение и работа клеток;
  • биохимические – структура белка, воздействие ферментов, состав гормонов.

Между фенотипом и генотипом прослеживается прочная связь. Генотип определяет фенотип. Однако большое влияние на фенотип оказывает окружающая среда. В определённых условиях разные генотипы могут создавать схожие фенотипы, и наоборот, одинаковые генотипы – разные фенотипы под действием разных условий окружающей среды.

Изменчивость

Для каждой особи характерен индивидуальный генотип и фенотип. Не всегда гены определяют внешнее и внутреннее строение тела. Например, гены определяют склонность к ожирению, но под действием окружающей среды (здоровое питание, спорт) ожирение не является признаком фенотипа. Другой пример: в процессе жизни человек сломал и изменил форму носа. По генотипу человек имеет прямой нос, по фенотипу – с горбинкой.

Изменчивость по фенотипу в процессе жизни называется модификационной или фенотипической и появляется под действием факторов окружающей среды. Она приобретается в течение жизни, но не передаётся по наследству.

Генотипическая изменчивость бывает двух видов:

Мутации, как и фенотипические изменения, накапливаются в течение жизни, но не всегда отражаются на фенотипе. Однако могут влиять на генотип следующих поколений.

Геном и генофонд

Не следует путать понятие генотипа с двумя схожими терминами – геномом и генофондом.

В отличие от генотипа (совокупность генов) геном – представляет собой совокупность всего наследственного материала клетки, то есть всей ДНК (ядерной и митохондриальной). Геном несёт наследственную информацию организма, заключённую в клетке.

Генофонд – совокупность всех аллелей, соответствующая определённой популяции. Генофонд определяет качественные признаки популяции.

Что мы узнали?

Фенотип и генотип тесно взаимосвязаны между собой. Генотип определяет фенотип, который может изменяться под действием внешней среды. Фенотип не передаётся по наследству, наследуется только генотип со всеми накопленными мутациями. Генотип отличается от генома (последовательности генов) и генофонда (совокупности генов в пределах популяции).

Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x
Vinaora Nivo Slider 3.x

60. Генотипическая и фенотипическая изменчивость. Мутационная природа изменчивости

Изменчивость – это универсальное свойство живых организмов приобретать новые признаки под действием среды (как внешней, так и внутренней). Различают два вида изменчивости:

  • фенотипическую (модификационная),
  • генотипическую.

Фенотипическая изменчивость – это изменение организмов под действием факторов среды и эти изменения не наследуются. Эта изменчивость не затрагивает гены организма, наследственный материал не изменяется.

Модификационная изменчивость признака может быть очень велика, но она всегда контролируется генотипом организма. Границы фенотипической изменчивости, контролируемые генотипом организма, называют нормой реакции. Широкая норма реакции приводит к повышению выживаемости. Интенсивность модификационной изменчивости можно регулировать. Модификационная изменчивость направлена. К статистическим закономерностям модификационной изменчивости относятся вариационный ряд изменчивости признака и вариационная кривая.

Вариационный ряд представляет ряд вариант, (есть значений признака) расположенных в порядке убывания или возрастания (например, если собрать листья с одного и того же дерева и расположить их по мере увеличения длины листовой пластинки, то получается вариационный ряд изменчивости данного признака). Вариационная кривая – это графическое изображение зависимости между размахом изменчивости признака и частотой встречаемости отдельных вариант данного признака. Наиболее типичный показатель признака – это его средняя величина, то есть среднее арифметическое вариационного ряда.

Различают следующие виды фенотипической изменчивости:

  • модификации,
  • морфозы,
  • фенокопии.

Модификации – это ненаследственные изменения генотипа, которые возникают под действием фактора среды, носят адаптивный характер и чаще всего обратимы (например, увеличение эритроцитов в крови при недостатке кислорода).

Морфозы – это ненаследственные изменения фенотипа, которые возникают под действием экстремальных факторов среды, не носят адаптивный характер и необратимы (например, ожоги, шрамы).

Фенокопии – это ненаследственное изменение генотипа, которое напоминает наследственные заболевания (увеличение щитовидной железы на территории, где в воде или земле не хватает йода).

При генотипической изменчивости происходит изменение наследственного материала и, обычно, эти изменения наследуются. Это основа разнообразия живых организмов. Различают два вида генотипической изменчивости:

  • мутационная,
  • комбинативная.
  • Комбинативная изменчивость основывается на возникновении новых комбинаций генов родителей. При комбинативной изменчивости в результате слияния родительских гамет возникают новые комбинации генов, однако сами гены и хромосомы остаются неизменными (пример: каждый новый организм является новый комбинацией генов родителей). Механизмы комбинативной изменчивости:
  • независимое расхождение хромосом в анафазу І мейоза.
  • кроссенговер
  • случайное слияние гамет
  • случайный подбор родительских пар

Мутационная изменчивость в основе этой изменчивости лежит изменение структуры гена, хромосомы или изменения числа хромосом. Мутация – это спонтанное изменение генетического материала. Мутации возникают под действием мутагенных факторов:

  • физических (радиация, температура, электромагнитное излучение);
  • химических (вещества, которые вызывают отравление организма: алкоголь, никотин, колхицин, формалин);
  • биологических (вирусы, бактерии).

Различают несколько классификаций мутаций.

Мутации бывают полезные, вредные и нейтральные. Полезные мутации: мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам). Вредные мутации: глухота, дальтонизм. Нейтральные мутации: мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).

Мутации бывают соматические и генеративные. Соматические (чаще всего они не наследуются) возникают в соматических клетках и затрагивают лишь часть тела. Они будут наследоваться следующим поколениям при вегетативном размножении. Генеративные (они наследуются, т.к. происходят в половых клетках): эти мутации происходят в половых клетках. Генеративные мутации делятся на ядерные и внеядерные (или митохондриальные).

По характеру изменений в генотипе мутации подразделяются на:

  • генные,
  • хромосомные,
  • геномные.

Генные мутации (точковые) не видны в микроскоп, связаны с изменением структуры гена (генные мутации изменяют последовательность нуклеотидов в молекуле ДНК и ген перестаёт работать). Эти мутации происходят в результате потери нуклеотида, вставки нуклеотида, замены одного нуклеотида другим. Эти мутации могут приводить к генным болезням: дальтонизм, гемофилия. Таким образом, генные мутации приводят к появлению новых признаков.

Хромосомные мутации связаны с изменением структуры хромосом. Может произойти делеция – потеря участка хромосомы, дупликация – удвоение участка хромосомы, инверсия – поворот участка хромосомы на 1800, транслокация – это перенос части или целой хромосомы на другую хромосому. Причиной этого может быть разрыв хроматид и их восстановление в новых сочетаниях.

Геномные мутации приводят к изменению числа хромосом. Различают анеуплоидию и полиплоидию. Анеуплоидия связана с изменением числа хромосом на несколько хромосом (1, 2, 3):

  • моносомия общая формула 2n-1 (45, Х0), болезнь – синдром Шерешевского-Тернера.
  • трисомия общая формула 2n+1 (47, ХХХ или 47, ХХУ) болезнь – синдром Клайнфельтра.
  • полисомия

Полиплоидия – это изменение числа хромосом, кратное гаплоидному набору (например: 3n 69). Организмы могут быть автоплоидными (одинаковые хромосомы) и аллоплоидными (разные наборы хромосом).

Мутации имеют ряд свойств:

  • Возникают внезапно, и мутировать может любая часть организма, т.е. они не направлены.
  • Чаще бывают рецессивными, реже – доминантными.
  • Могут быть вредными, полезными, нейтральными.
  • Передаются из поколения в поколение.
  • Вызываются внешними и внутренними факторами.
  • Представляют собой стойкие изменения наследственного материала.
  • Это качественные изменения, которые, как правило, не образуют непрерывного ряда вокруг средней величины признака.
  • Могут повторяться.
  • Мутации являются и элементарным эволюционным материалом и не направляющим элементарным эволюционным фактором.
  • Мутационный процесс – источник резерва наследственной изменчивости популяций.

Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. Мутационная изменчивость является одним из главных факторов эволюционного процесса. В результате мутаций могут возникать полезные признаки, которые под действием естественного отбора дадут начало новым видам и подвидам.

Читайте также: