Применение жиров в химии кратко

Обновлено: 02.07.2024

Физические свойства. Жиры при обычной температуре имеют плотную или мягкую консистенцию. Жирные масла являются густыми, прозрачными жидкостями.

На бумаге жиры оставляют жирное пятно, которое при нагревании еще сильнее расплывается (отличие от эфирных масел).

Окраска, запах и вкус жиров зависят от сопутствующих веществ.

Окраска чаще белая или желтоватая. Запах отсутствует или слабый, специфический. Вкус нежный и маслянистый, реже неприятный, как у касторового масла.

Жиры легче воды, плотность от 0,910 до 0,970.

Большинство жиров оптически неактивны. Исключение составляет касторовое масло.

Показатель преломления (коэффициент рефракции) характерен и постоянен для каждого масла. Так, у оливкового масла он составляет 1,46-1,71. Чем выше молекулярная масса глицеридов и чем больше двойных связей, тем выше показатель преломления.

Все жиры нерастворимы в воде, мало растворимы в этаноле, легко растворимы в эфире, хлороформе, петролейном эфире.

Исключение: касторовое масло легко растворимо в 96 % этаноле, трудно — в петролейном эфире.

Сами жиры являются хорошими растворителями для многих лекарственных веществ (камфора, гормоны, эфирные масла и др.). Жиры хорошо смешиваются между собой.

Химические свойства жиров обусловлены наличием:

1) сложных эфирных связей;

2) двойных связей в углеводородных радикалах жирных кислот;

3) наличием глицерина в составе жира.

Жиры легко подвергаются гидролитическому расщеплению при участии ферментов с образованием глицерина и жирных кислот. Ферментативный гидролизпроисходит ступенчато. Фермент липаза содержится во всех семенах масличных растений. Гидролизу способствуют влага и повышенная температура. Происходит гидролитическое прогоркание жира. Указанное свойство учитывается при хранении жиров.

Жиры и масла. Свойства жиров и масел.

Жиры расщепляются под действием щелочей с образованием глицерина и солей жирных кислот. Соли называют мылами: калиевые мыла — жидкие, натриевые — твердые. Процесс называют омылением.

Свойство используется при анализе жиров. На нем основано производство мыл и шампуней.

По двойным связям жирных кислот могут присоединяться водород, галогены, кислород.

2.1. Присоединение водорода — гидрирование жиров (гидрогенизация жиров) идет при повышенной температуре в присутствии катализатора (никель). Непредельные жирные кислоты переходят в предельные, жидкие масла превращаются в твердые.

Получают саломассы, их используют в медицинской практике как мазевые и суппозиторные основы (бутирол) и в пищевой промышленности (производство маргарина).

2.2. Присоединение галогенов используют в анализе жиров при определении химической константы — йодного числа.

Присоединение кислорода воздуха приводит к окислению и прогорканию жиров. Различают химическое окисление (альдегидное) и биохимическое при участии микроорганизмов (кетонное).

Жиры приобретают специфический вкус и запах и становятся непригодными к употреблению. Изменяется цвет жира (чаще жиры обесцвечиваются); изменяются физические и химические свойства: увеличиваются плотность и кислотное число, уменьшаются йодное число и вязкость.

Различают 3 вида окислительного прогоркания:

а) неферментативное — кислород присоединяется по месту двойных связей, образуя пероксиды; при разложении пероксидов жирных кислот получаются альдегиды.

б) ферментативное с участием липоксидаз и липоксигеназ, образуются гидропероксиды.

Гидропероксиды способны окислять биологически активные вещества, содержащиеся в масле, например каротиноиды.

Гидропероксиды подвергаются разложению с образованием альдегидов и кетонов.

Свойство учитывают при хранении жиров и при их анализе.

в) ферментативное (кетонное) — происходит при участии микроорганизмов.

Глицерин,входящий в состав жира, подвергается окислению и дегидратации при нагревании жира с концентрированной кислотой серной. При этом образуется альдегид акролеин, имеющий неприятный запах.

Акролеиновая проба позволяет отличить жиры от жироподобных веществ.

Природные эфиры – жиры и масла, которые образованы трехатомным спиртом глицерином и высшими карбоновыми кислотами неразветвленного состава. Жиры входят в состав растительных и животных организмов и играют важную биологическую роль. Они служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.


Наиболее часто встречаются следующие жирные кислоты:


Физические свойства жиров и масел.

Делят на жидкие и твердые жиры.

Триглицериды

Агрегатное состояние определяется природой жирных кислот. Твердые жиры образованы предельными кислотами, а жидкие – непредельными. Температура плавления выше, чем больше у кислоты содержания углеводородной цепи. Также она зависит от длины углеводородной цепи жирной кислоты, температура плавления повышается с ростом углеводородного радикала.

Химические свойства жиров и масел.


2. Гидрогенизация жиров – присоединение водорода к остатком непредельных кислот. При этом непредельные кислоты переходят в остатки предельных, из жидких превращаются в твердые:


Жиры могут прогорать при действии влаги, кислорода воздуха, света и тепла.

Применение жиров и масел.


Жиры широко используются в пищевой, косметической и фармацевтической промышленности.

Жиры в природе представленны довольно широко — растительных иживотных организмах и входят в состав растительных и животных клеток. Для практического применения важны растения и те их органы, где жиры накапливаются в повышенных количествах.

Жирные масла. Классификация жиров

В растениях жирные масла преимущественно накапливаются в плодах (маслины, облепиха) и семенах (лен, подсолнечник, кукуруза, клещевина. Их содержаниеколеблется от 2-3% до 70% и выше.

Жиры локализуются главным образом в клетках паренхимнойткани семенного ядра; находятся в очень тонко диспергированном состоянии, в виде эмульсии с белками и углеводами.

В живом растении жиры всегда в жидком состоянии.

Накапливают жиры растения многих семейств, особенно астровые, капустные, сельдерейные, розоцветные, молочайные, маковые, яснотковые.

В организме животных жир откладывается в специальных жировых клетках в подкожной клетчатке и в сальниках.

Жиром богата печень некоторых жир­ных и рыб (печень трески).

Процесс образования и накопления жиров зависит от факторов внешней среды и от генетических особенностей видов и сортов.

Учеными установлена общая закономерность: растения северных и умеренных широт вырабатывают жиры, богатые радикалами непредельных кислот, растения южных областей, субтропического и тропического поясов чаще образуют жиры, богатые триглицеридами насыщенных кислот.

Повышение влажности, калийные и фосфорные минеральные удобрения положительно влияют на накопление жиров.

Одновременно меняется качественный состав: накапливается больше непредельных кислот. Азотные удобрения, напротив, снижают синтез жиров и способствуют синтезу белка. На плодородных почвахтакже уменьшается накопление жиров.

Сырьевая база жирномасличных растений.

Жиромасличными называют растения, в семенах или плодах которых жиры накапливаются в количествах, экономически оправдывающих их промышленную переработку.

Главное место среди масличных занимают культурные растения, превосходящие по свойствамисходные дикорастущие. Жиромасличные растения относятся к наиболее древним культивируемым видам.

Археологические раскопки показывают, что клещевина культивировалась уже в 6-7 тысячелетии до нашей эры на территории современного Ирана.

Родиной жиросодержащих растений являются:

Северная Америка — для подсолнечника,

Центральная Америка (Мексика) — для кукурузы и шоколадного дерева,

Южная Америка (Бразилия) — для арахиса,

Тропическая Африка (Эфиопия) — для клещевины,

Страны Средиземноморья (Сирия, Южная Анатолия) — для маслины,

горы Кавказа и Средней Азии — для абрикоса и миндаля.

Жиромасличные растения культивируют в России и странах ближнего зарубежья.

В центрально-черноземных областях культивируют кукурузу и подсолнечник. Севернее — в Нечерноземных областях России культивируют лен посевной — это Калининградская, Псковская, Вологодская области, Поволжье, Западная Сибирь и Прибалтика.

Не культивируют в России и ближнем Зарубежье шоколадное дерево, масличную пальму и кокосовую пальму.

Это сырье только импортное.

Получение и очистка жиров

Способ получения жиров зависит от природы и особенностей исходного сырья. Что касается твердых растительных жиров (например, масло какао) и жидких жиров (например, рыбий жир), то они добываются по специфическим для каждого из них способам.

Растительное сырье очищают от посторонних примесей, семена освобождают от плодовой оболочки, косточки, шелухи и измельчают.

Растительные масла обычно получают способом прессования.

На маслобойных заводах семена предварительно пропускают через сортировочные машины для удаления примесей, подсушивают, если в этом есть необходимость, после чего на специальных обдирочных машинах освобождают от твердых семенных оболочек. Освобожденные семенные ядра измельчают, полученную массу слегка поджаривают и смачивают водой, после чего мезгу с помощью шнека подают в обогреваемый гидравлический пресс.

А) При горячем способепрессования удается отжать максимальное количество жирного масла, поскольку белки отчасти свертываются и масло легче освобождается из тканей, не говоря уже о том, что при этом масло становится более подвижным.

Горячее прессование сопровождается большим переходом сопутствующих веществ, а также высокоплавких фракций масла (например, тристеарина, смол, фитостеринов).

Они имеют кислую реакцию среды из-за частичного расщепления триглицеридов. Их используют после очистки для наружного и внутреннего применения, но не парентерально.

Б) Отжим семян в холодных прессах — для медицинских целей масла получают холодным прессованием, т.е. без обжаривания семян и в холодных прессах.

При этом выход масла уменьшается, а качество улучшается. Этим методом получают масла, используемые (в особенности для приготовления парентеральных растворов) они предпочтительнее, поскольку могут использоваться без рафинирования (миндальное, персиковое, т.е. невысыхающие масла).

2. Жирные масла получают также путем экстрагирования семян летучими органическими растворителями (чаще низкокипящими фракциями бензина).

Экстракция проводится на заводах в установках, работающих по принципу аппарата Сокслета, с последующей отгонкой экстрагента.

Экстракцией достигается больший выход масла, но и с большим количеством нежелательных сопровождающих веществ (смол и пигментов). Экстракционные масла, если они предназначаются для пищевых и медицинских целей, нуждаются в тщательном рафинировании.

3. Животные жиры получают путем вытапливанияжировой ткани, снятой с внутренних органов животных (почек, брыжейки, большого сальника).

Перед этим собранный жир очищают от остатков других тканей.

Различают мокрый и сухой способ.

По первому способу сырье обрабатывают острым паром под давлением в 3 — 4 атм. или в автоклавах.

По второму способу жир вытапливают на открытом огне. Расплавленный жир сливают в отстойники для отделения воды и белков.

Для улучшения качества жира его в дальнейшем вновь расплавляют, отстаивают, рафинируют.

Для удаления нежелательных сопровождающих веществ и образующихся примесей жиры (масла) подвергаются рафинированию, то есть процессу очистки.

Рафинирование представляет комплексный процесс, состоящий из нескольких последовательно протекающих процессов обработки жиров различными агентами, комбинируемыми в зависимости от состава и свойств удаляемых веществ.

Рафинирование жира не должно вызывать изменений в его химическом составе.

Метод очистки жира зависит от характера и природы примесей.

Современные методы рафинирования жиров условно делятся на три группы:

Физическими методами рафинации являются отстаивание, фильтрация и центрифугирование.

Этими методами удаляются механические взвеси и части коллоидно-растворенных веществ, выпадающих из масла при хранении.

Химическими методами являются сернокислотная рафинация, гидратация, отделение госсипола (в хлопковом масле), щелочная рафинация, окисление красящих веществ.

Физико-химические методы включают адсорбционную рафинацию и дезодорирование жиров.

Различают методы рафинирования:

Метод механический — отстаивание, центрифугирование, фильтрование, т.е. отделение механических примесей (обрывков паренхимы, сосудов).

2. Метод коагулирования — для удаления белковых и слизистых веществ. Осуществляется путем пропускания горячего пара температуры около 60 градусов. После коагулирования отстаивают и жир фильтруют.

Метод нейтрализации (щелочная очистка) — для удаления свободных жирных кислот. Одновременно жиры осветляются. Мыла отмывают водой.

4. Метод вымораживания — для удаления глицеридов предельных кислот от невысыхающих медицинских масел, применяемых для парентерального применения.

Для освобождения от дурнопахнущих веществ (летучих жирных кислот).

Применяют метод дезодорации. Масло обрабатывают перегретым паром под вакуумом.

Дезодорацию окислителями для медицинских масел не проводят

Жиры хранят в стеклянной или металлической таре, заполненной до верху, без доступа кислорода воздуха, влаги и прямых солнечных лучей.

Хранят по общему списку в прохладном и чистом помещении, в условиях, не допускающих развития микроорганизмов.

Например, льняное масло содержит глицерид ненасыщенной линолевой кислоты. При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях.

Значительное количество твердых и мягких технических жиров добавляют в корма животных, чтобы улучшить вкус кормов и облегчить их гранулирование.

Животные жиры и масла представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина.

Жиры – ценный химический продукт, один из главных компонентов животных и растительных клеток. Этот урок будет посвящен изучению строения и наиболее характерных свойств жиров.

Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Животные жиры содержатся в живых организмах

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода.

II. История открытия жиров

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль, основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии "Химические исследования тел животного происхождения".

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде.Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.

III. Синтез жиров

В 1854 французский химик Марселен Бертло (1827–1907) провел реакцию этерификации, то есть образования сложного эфира между глицерином и жирными кислотами и таким образом впервые синтезировал жир.


Жиры – сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами.

Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

В составе животных жиров

Ненасыщенные:

олеиновая (C17H33COOH, 1 двойная связь)

линолевая (C17H31COOH, 2 двойные связи)

линоленовая (C17H29COOH, 3 двойные связи)

арахидоновая (C19H31COOH, 4 двойные связи, реже встречается)

В составе растительных жиров

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.


V. Физические свойства жиров

При комнатной температуре жиры (смеси триглицеридов) – твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Консистенция жиров зависит от их состава:

  • в твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления;
  • для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления.

Причиной снижения температуры плавления триглицеридов с остатками ненасыщенных кислот является наличие в них двойных связей с цис-конфигурацией. Это приводит к существенному изгибу углеродной цепи, нарушающему упорядоченную (параллельную) укладку длинноцепных радикалов кислот.

Сравним пространственное строение ненасыщенной и насыщенной и кислот с равным числом углеродных атомов в цепи: олеиновой C17H33COOH и стеариновой C17H35COOH.

На молекулярной модели олеиновой кислоты виден изгиб цепи по связи С=С, препятствующий плотной упаковке молекул.

В углеродной цепи стеариновой кислоты отсутствуют изгибы, поэтому ее молекулы способны к плотной параллельной укладке.

Чем плотнее упаковка молекул вещества, тем выше температуры его фазовых переходов (т.плав., т.кип.). Соответственно, температура плавления тристеарата глицерина (71 o C) существенно больше, чем у триолеата (–17 o C).

Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях – эфире, бензоле, хлороформе, бензине.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

При правильном питании примерно треть потребляемых человеком жиров должны составлять жидкие растительные, содержащие остатки ненасыщенных кислот.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями:

Именно они обладают наибольшей биологической активностью. Организм человека синтезировать такие кислоты не может и должен получать их готовыми с пищей. Поэтому полиненасыщенные жирные кислоты получили название "незаменимых".

VI. Химические свойства жиров

1. Гидролиз, или омыление

Происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо). При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла — это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров

Это превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


  • Пищевая промышленность
  • Фармацевтика
  • Производство мыла и косметических изделий
  • Производство смазочных материалов

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.


На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.


Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!


Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Жиры и масла (жидкие жиры) – важные природные соединения. Все жиры и масла растительного происхождения почти целиком состоят из сложных эфиров глицерина (триглицеридов). В этих соединениях глицерин этерифицирован высшими карбоновыми кислотами.

Жиры имеют общую формулу:

Общая формула жиров

Здесь R, R’, R’’ – углеводородные радикалы.

Три гидроксогруппы глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Триолеин, олеодистеарин, олеопальмитостеарин

Основные предельные кислоты, образующие жиры – пальмитиновая С15Н31СООН и стеариновая С17Н35СООН; основные непредельные кислоты – олеиновая С17Н33СООН и линолевая С17Н31СООН.

Физические свойства жиров

Жиры, образованные предельными кислотами, — твердые вещества, а непредельными – жидкие. Все жиры очень плохо растворимы в воде.

Получение жиров

Жиры получают по реакции этерификации, протекающей между трехатомным спиртом глицерином и высшими карбоновыми кислотами:

Реакции этерификации для получения жиров

Химические свойства жиров

Среди реакций жиров особое место занимает гидролиз, который можно осуществить действием как кислот, так и оснований:

а) кислотный гидролиз


б) щелочной гидролиз


Для масел (жидких жиров) характерны реакции присоединения:

— гидрирование (реакция гидрирования (гидрогенизации) лежит в основе получения маргарина)



Мерой ненасыщенности остатков кислот, которые входят в состав жиров, служит йодное число, выражаемое массой йода (в граммах), который может присоединиться по двойным связям к 100г жира. Йодное число важно при оценке высыхающих масел.

Масла (жидкие жиры) также подвергаются реакциям окисления и полимеризации.

Применение жиров

Жиры нашли широкое применение в пищевой промышленности, фармацевтике, в производстве масел и различных косметических средств, в производстве смазочных материалов.

Примеры решения задач

Задание Растительное масло массой 17,56 г нагрели с 3,36 г гидроксида калия до полного исчезновения масляного слоя. При действии избытка бромной воды на полученный после гидролиза раствор образуется только одно тетрабромпроизводное. Установите возможную формулу жира.
Решение Запишем в общем виде уравнение гидролиза жира:


На 1 моль жира при гидролизе приходится 3 моль гидроксида калия. Найдем количество вещества гидроксида калия и жира, причем, количество жира втрое меньше:


Зная количество и массу жира, можно найти его молярную массу:


На три углеводородных радикала R кислот приходится 705 г/моль:


Зная, что тетрабромпроизводное получено только одно, можно сделать вывод, что все кислотные остатки одинаковы и содержат по 2 двойные связи. Тогда получаем, что в каждом радикале содержится 17 атомов углерода, это радикал линолевой кислоты:


Возможная формула жира:


Задание Напишите две возможные формулы жира, имеющего в молекуле 57 атомов углерода и вступающего в реакцию с иодом в соотношении 1:2. В составе жира имеются остатки кислот с четным числом углеродных атомов.
Ответ Общая формула жиров:



Процесс получения сложных эфиров носит название реакции этерификации. Эта реакция с использованием общих формул описывается уравнением


Именно реакцией этерификации в 1759 г. в результате взаимодействия уксусной кислоты с этиловым спиртом был получен первый сложный эфир — этиловый эфир уксусной кислоты:


Обратите внимание на то, как строится название сложного эфира. Оно состоит из четырёх слов, указывающих на название углеводородного радикала и исходной кислоты. Например, продукт взаимодействия муравьиной кислоты с метиловым спиртом — метиловый эфир муравьиной кислоты:

Катион водорода в схеме реакции указывает на то, что реакция этерификации протекает в присутствии кислоты в качестве катализатора.

Сложные эфиры с небольшой молекулярной массой представляют собой легковоспламеняющиеся жидкости с характерным, часто приятным запахом. Они нерастворимы в воде, но прекрасно растворяют различные органические вещества.

Нахождение в природе и применение сложных эфиров

Сложные эфиры широко распространены в природе. Неповторимый аромат цветов и фруктов часто обусловлен присутствием веществ именно этого класса. Сложные эфиры с большой молекулярной массой представляют собой твёрдые вещества — воски. Пчелиный воск — это смесь сложных эфиров, образованных карбоновыми кислотами и спиртами с длинными углеводородными цепями.

Синтетические сложные эфиры используют в пищевой промышленности в качестве добавок для придания фруктовых запахов напиткам и кондитерским изделиям. Благодаря хорошей растворяющей способности сложные эфиры входят в состав растворителей лаков и красок.

Жиры, их строение и свойства

Люди стали использовать жиры в повседневной жизни значительно раньше, чем задумались об их химическом строении. Животные и растительные жиры — важные компоненты пищи. Жиры необходимы для построения клеточных мембран и как источник энергии, поскольку калорийность жиров в 2 раза выше, чем других питательных веществ — углеводов и белков. У позвоночных животных жиры откладываются в жировой ткани, сосредоточенной в основном в подкожной жировой клетчатке и сальнике. В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50%.

Жиры используют не только в пищевой промышленности. Их используют в качестве смазки, косметических и лекарственных средств, для приготовления масляных красок и олифы.

В 1779 г. шведский химик К. Шееле получил из оливкового масла вязкую жидкость, сладкую на вкус, — простейший трёхатомный спирт глицерин. Вскоре выяснилось, что глицерин входит в состав молекул любых жиров. Позднее французский химик М. Шеврёль доказал, что, помимо глицерина, при нагревании жиров в присутствии кислоты образуются и карбоновые кислоты.


Общую формулу жиров можно представить в следующем виде:

В состав жиров чаще всего входят остатки карбоновых кислот, содержащих чётное число атомов углерода и неразветвлённую углеродную цепь. Наиболее часто в составе жиров встречаются остатки пальмитиновой, стеариновой и олеиновой кислот. В одной молекуле кислотные остатки могут быть различными, поэтому в общей формуле жиров углеводородные радикалы R обозначены разными цифрами.

Сравните состав стеариновой (С17Н35СООН) и олеиновой (С17Н33СООН) кислот. У стеариновой кислоты углеводородный радикал отвечает формуле СnН2n+1, т. е. является предельным. Следовательно, стеариновая кислота относится к предельным карбоновым кислотам. В углеводородном радикале олеиновой кислоты на два атома водорода меньше, поскольку в нём содержится одна двойная углерод-углеродная связь. Олеиновая кислота относится к непредельным карбоновым кислотам.

Жиры животного происхождения имеют твёрдую консистенцию (есть и исключения, например жидкий рыбий жир). В состав молекул твёрдых жиров входят остатки предельных кислот. Растительные жиры, которые часто называют растительными маслами, образованы остатками непредельных кислот, имеют жидкую консистенцию (исключение — твёрдое пальмовое масло). Кстати, название олеиновой кислоты произошло от латинского слова oleum — масло.

Жиры гидрофобны, т. е. нерастворимы в воде, но хорошо растворяются в органических растворителях: этиловом спирте, гексане, тетрахлорметане.


Жиры проявляют все характерные для сложных эфиров химические свойства. Главное из них — это гидролиз. Молекулы воды атакуют связи между кислотным остатком и фрагментом глицерина, в результате чего происходит распад молекулы жира:


Для жира, образованного стеариновой кислотой (такое вещество называют тристеаратом глицерина), уравнение реакции гидролиза выглядит следующим образом:

В качестве катализатора гидролиза жиров выступают кислоты. Такой гидролиз так и называют — кислотный гидролиз. Жирные руки трудно отмыть холодной водой, но стоит только протереть их ломтиком лимона, как они становятся заметно чище. Даже при таком непродолжительном контакте с лимонной кислотой жир частично гидролизуется.


Гидролиз жиров в присутствии щелочей называют щелочным гидролизом:

Щёлочь действует как катализатор, а также связывает образующиеся кислоты, превращая их в соли карбоновых кислот. Соли не способны вступать в реакцию этерификации с глицерином, и гидролиз становится необратимым. Неслучайно бытовые средства для удаления жира и засоров в раковинах более чем наполовину состоят из щёлочи.

Щелочной гидролиз жиров называют также омылением. Это название обусловлено тем, что образующиеся при этом натриевые и калиевые соли высших карбоновых кислот являются мылами.


Твёрдые жиры животного происхождения более ценны и дорогостоящи, чем жидкие растительные масла. Можно ли превратить жидкий жир в твёрдый химическим путём? Если вы вспомните, что растительные масла, в отличие от животных жиров, содержат остатки непредельных кислот, то нетрудно догадаться: гидрированием двойных связей С=С растительные масла превращают в аналог твёрдых жиров. Полученный продукт называют саломасом, его используют для приготовления маргарина и других продуктов питания:

Подобный процесс в больших масштабах проводят на жировых комбинатах.

Двойные связи непредельных кислот в жидких жирах сохраняют способность к реакциям полимеризации. Это свойство используют при изготовлении олифы — натуральной (на основе льняного или конопляного масла) или синтетической. При нанесении на деревянную поверхность олифа под действием кислорода воздуха полимеризуется с образованием прочной защитной плёнки. Олифу используют и при изготовлении и разбавлении масляных красок.

Справочная таблица

Читайте также: