Представление графической информации в эвм кратко

Обновлено: 05.07.2024

Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.

Компьютерная графика - область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации.

Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.

История компьютерной графики

Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бума­гу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций . Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными .

Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) по­лучались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудря­лись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.

Рис. 1 Символьная печать.

Затем появились специальные устройства для графиче­ского вывода на бумагу — графопостроители (другое на­звание — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображе­ния: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.

Настоящая революция в компьютерной графике про­изошла с появлением графических дисплеев. На экране гра­фического дисплея стало возможным получать рисунки, чер­тежи в таком же виде, как на бумаге с помощью каранда­шей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Су­ществуют принтеры цветной печати, дающие качество ри­сунков на уровне фотографии.

Представление графической информации в компьютере

Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.

Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.

Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.


Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.

При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100x100 точек требуется 10000 бит.

Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).

Информационный объём такого изображения увеличивается в три раза: V = 30000бит.

Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).


Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.


Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).


Описание цвета пикселя является кодом цвета.

Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.

Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Чем больше глубина цвета, тем больше объем графического файла.

Для хранения растрового изображения размером 32x32 пикселя отвели 512 байтов памяти.

Каково максимально возможное число цветов в палитре изображения?

Решение . Число точек изображения равно 32 ⋅ 3 2 = 1024. Мы знаем, что 512 байтов = 512 ⋅ 8=4096 бит. Найдём глубину цвета 4096÷1024=4. Число цветов равно 24 = 16.


FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.

Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.

Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.

Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.

Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:

- координаты центра окружности;

- значение радиуса r;

- цвет заполнения (если окружность не прозрачная);

- цвет и толщина контура (в случае наличия контура).

Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.

Кодирование графической информации

Графическую информацию можно представлять в двух формах: аналоговой и цифровой.

Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.

Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.

Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.

Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.

Современная компьютерная графика

Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов науч­ных исследований, графическая обработка результатов рас­четов, проведение вычислительных экспериментов с нагляд­ным представлением их результатов (Рис. 6).


Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.

Деловая графика. Эта область компьютерной графики предназначена для со­здания иллюстраций, часто используемых в работе различ­ных учреждений.

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).


Рис. 7 Графики, круговые и столбчатые диаграммы.

Программные средства деловой графики обычно включа­ются в состав табличных процессоров (электронных таблиц).

Плановые показатели, отчетная докумен­тация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные ма­териалы (Рис. 7).

Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной гра­фики является обязательным элементом систем автомати­зации проектирования (САПР). Графика в САПР исполь­зуется для подготовки технических чертежей проектируе­мых устройств (Рис. 8).


Рис. 8. Графика в САПР.

Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наибо­лее удачной компоновки деталей, прогнозировать последст­вия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плос­кие изображения (проекции, сечения) и пространственные, трехмерные, изображения.

Иллюстративная графика. Программные средства иллюстративной графики позволя­ют человеку использовать компьютер для произвольного ри­сования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, лине­ек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. По­этому они относятся к прикладному программному обеспече­нию общего назначения.

Простейшие программные средства иллюстративной гра­фики называются графическими редакторами.

Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая попу­лярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и мно­гое другое.

Для создания реалистических изображений в графиче­ских пакетах этой категории используется сложный матема­тический аппарат.



Рис. 9 Художественная графика.

В недавнем прошлом художники-мультипликаторы со­здавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной ани­мации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объ­екта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опира­ющимися на математическое описание данного типа движе­ния. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Фрактальная графика. Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие (Фрактус – состоящий из фрагментов).

Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.


Рис.10 Фрактальная фигура.

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.

Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.

Как и любая другая информация в ЭВМ, графические изображения хранятся, обрабатываются и передаются по линиям связи в закодированном виде - т.е. в виде большого числа бит- нулей и единиц. Существует большое число разнообразных программ, работающих с графическими изображениями. В них используются самые разные графические форматы- т.е. способы кодирования графической информации. Расширения имен файлов, содержащих изображение, указывают на то, какой формат в нем использован, а значит какими программами его можно просмотреть, изменить (отредактировать), распечатать.

Несмотря на все это разнообразие существует только два принципиально разных подхода к тому, каким образом можно представить изображение в виде нулей и единиц (оцифровать изображение):

ПРИ ИСПОЛЬЗОВАНИИ РАСТРОВОЙ ГРАФИКИ С ПОМОЩЬЮ ОПРЕДЕЛЕННОГО ЧИСЛА БИТ КОДИРУЕТСЯ ЦВЕТ КАЖДОГО МЕЛЬЧАЙШЕГО ЭЛЕМЕНТА ИЗОБРАЖЕНИЯ - ПИКСЕЛА. Изображение представляется в виде большого числа мелких точек, называемых пикселами. Каждый из них имеет свой цвет, в результате чего и образуется рисунок, аналогично тому, как из большого числа камней или стекол создается мозаика или витраж, из отдельных стежков- вышивка, а из отдельных гранул серебра- фотография. При использовании растрового способа в ЭВМ под каждый пиксел отводится определенное число бит, называемое битовой глубиной. Каждому цвету соответствует определенный двоичный код (т.е. код из нулей и единиц). Например, если битовая глубина равна 1, т.е. под каждый пиксел отводится 1 бит, то 0 соответствует черному цвету, 1 -белому, а изображение может быть только черно-белым. Если битовая глубина равна 2, т.е. под каждый пиксел отводится 2 бита, 00- соответствует черному цвету, 01- красному , 10 - синему , 11- черному , т.е. в рисунке может использоваться четыре цвета. Далее, при битовой глубине 3 можно использовать 8 цветов, при 4 - 16 и т.д. Поэтому, графические программы позволяют создавать изображения из 2, 4, 8, 16 , 32, 64, . , 256, и т.д. цветов. Понятно, что с каждым увеличением возможного количества цветов (палитры) вдвое, увеличивается объем памяти, необходимый для запоминания изображения (потому что на каждый пиксел потребуется на один бит больше).

ОСНОВНЫМ НЕДОСТАТКОМ РАСТРОВОЙ ГРАФИКИ ЯВЛЯЕТСЯ БОЛЬШОЙ ОБЪЕМ ПАМЯТИ, ТРЕБУЕМЫЙ ДЛЯ ХРАНЕНИЯ ИЗОБРАЖЕНИЯ. Это объясняется тем, что нужно запомнить цвет каждого пиксела, общее число которых может быть очень большим. Например, одна фотография среднего размера в памяти компьютера занимает несколько Мегабайт, т.е. столько же, сколько несколько сотен (а то и тысяч) страниц текста.

ПРИ ИСПОЛЬЗОВАНИИ ВЕКТОРНОЙ ГРАФИКИ В ПАМЯТИ ЭВМ СОХРАНЯЕТСЯ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ КАЖДОГО ГРАФИЧЕСКОГО ПРИМИТИВА- ГЕОМЕТРИЧЕСКОГО ОБЪЕКТА (НАПРИМЕР, ОТРЕЗКА, ОКРУЖНОСТИ, ПРЯМОУГОЛЬНИКА И Т.П.), ИЗ КОТОРЫХ ФОРМИРУЕТСЯ ИЗОБРАЖЕНИЕ. В ЧАСТНОСТИ, ДЛЯ ОТРИСОВКИ ОКРУЖНОСТИ ДОСТАТОЧНО ЗАПОМНИТЬ ПОЛОЖЕНИЕ ЕЕ ЦЕНТРА, РАДИУС, ТОЛЩИНУ И ЦВЕТ ЛИНИИ. По этим данным соответствующие программы построят нужную фигуру на экране дисплея. Понятно, что такое описание изображения требует намного меньше памяти (в 10 - 1000 раз) чем в растровой графике, поскольку обходится без запоминания цвета каждой точки рисунка. ОСНОВНЫМ НЕДОСТАТКОМ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ НЕВОЗМОЖНОСТЬ РАБОТЫ С ВЫСОКОКАЧЕСТВЕННЫМИ ХУДОЖЕСТВЕННЫМИ ИЗОБРАЖЕНИЯМИ, ФОТОГРАФИЯМИ И ФИЛЬМАМИ. Природа избегает прямых линий, правильных окружностей и дуг. К сожалению, именно с их помощью (поскольку эти фигуры можно описать средствами математики, точнее- аналитической геометрии) и формируется изображение при использовании векторной графики. Попробуйте описать с помощью математических формул, картины И.Е.Репина или Рафаэля! (Но не "Черный квадрат" К.Малевича!) ПОЭТОМУ ОСНОВНОЙ СФЕРОЙ ПРИМЕНЕНИЯ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ ОТРИСОВКА ЧЕРТЕЖЕЙ, СХЕМ, ДИАГРАММ И Т.П.

Как отличить векторную графику от растровой? Если Вы видите на экране фотографию или рисунок с близким к естественному изображением, с большим числом цветов и оттенков, то, скорее всего, Вы имеете дело с растровой графикой. Если чертеж, диаграмму, простой стилизованный рисунок,- с векторной. Если программа позволяет стирать, копировать или перемещать целые фрагменты (площади) изображения, то это растровая графика. Если удалить, скопировать, переместить можно только какие-то определенные фигуры или их части, то это графика векторная.




Файлы *.bmp , *.pcx , *.jpg , *.msp , *.img и др. соответствуют форматам растрового типа, *.dwg , *.dxf , *.pic и др. - векторного.

Иногда, правда, растровые изображения могут входить в состав векторных как отдельные графические примитивы.

Как и любая другая информация в ЭВМ, графические изображения хранятся, обрабатываются и передаются по линиям связи в закодированном виде - т.е. в виде большого числа бит- нулей и единиц. Существует большое число разнообразных программ, работающих с графическими изображениями. В них используются самые разные графические форматы- т.е. способы кодирования графической информации. Расширения имен файлов, содержащих изображение, указывают на то, какой формат в нем использован, а значит какими программами его можно просмотреть, изменить (отредактировать), распечатать.

Несмотря на все это разнообразие существует только два принципиально разных подхода к тому, каким образом можно представить изображение в виде нулей и единиц (оцифровать изображение):

ПРИ ИСПОЛЬЗОВАНИИ РАСТРОВОЙ ГРАФИКИ С ПОМОЩЬЮ ОПРЕДЕЛЕННОГО ЧИСЛА БИТ КОДИРУЕТСЯ ЦВЕТ КАЖДОГО МЕЛЬЧАЙШЕГО ЭЛЕМЕНТА ИЗОБРАЖЕНИЯ - ПИКСЕЛА. Изображение представляется в виде большого числа мелких точек, называемых пикселами. Каждый из них имеет свой цвет, в результате чего и образуется рисунок, аналогично тому, как из большого числа камней или стекол создается мозаика или витраж, из отдельных стежков- вышивка, а из отдельных гранул серебра- фотография. При использовании растрового способа в ЭВМ под каждый пиксел отводится определенное число бит, называемое битовой глубиной. Каждому цвету соответствует определенный двоичный код (т.е. код из нулей и единиц). Например, если битовая глубина равна 1, т.е. под каждый пиксел отводится 1 бит, то 0 соответствует черному цвету, 1 -белому, а изображение может быть только черно-белым. Если битовая глубина равна 2, т.е. под каждый пиксел отводится 2 бита, 00- соответствует черному цвету, 01- красному , 10 - синему , 11- черному , т.е. в рисунке может использоваться четыре цвета. Далее, при битовой глубине 3 можно использовать 8 цветов, при 4 - 16 и т.д. Поэтому, графические программы позволяют создавать изображения из 2, 4, 8, 16 , 32, 64, . , 256, и т.д. цветов. Понятно, что с каждым увеличением возможного количества цветов (палитры) вдвое, увеличивается объем памяти, необходимый для запоминания изображения (потому что на каждый пиксел потребуется на один бит больше).

ОСНОВНЫМ НЕДОСТАТКОМ РАСТРОВОЙ ГРАФИКИ ЯВЛЯЕТСЯ БОЛЬШОЙ ОБЪЕМ ПАМЯТИ, ТРЕБУЕМЫЙ ДЛЯ ХРАНЕНИЯ ИЗОБРАЖЕНИЯ. Это объясняется тем, что нужно запомнить цвет каждого пиксела, общее число которых может быть очень большим. Например, одна фотография среднего размера в памяти компьютера занимает несколько Мегабайт, т.е. столько же, сколько несколько сотен (а то и тысяч) страниц текста.

ПРИ ИСПОЛЬЗОВАНИИ ВЕКТОРНОЙ ГРАФИКИ В ПАМЯТИ ЭВМ СОХРАНЯЕТСЯ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ КАЖДОГО ГРАФИЧЕСКОГО ПРИМИТИВА- ГЕОМЕТРИЧЕСКОГО ОБЪЕКТА (НАПРИМЕР, ОТРЕЗКА, ОКРУЖНОСТИ, ПРЯМОУГОЛЬНИКА И Т.П.), ИЗ КОТОРЫХ ФОРМИРУЕТСЯ ИЗОБРАЖЕНИЕ. В ЧАСТНОСТИ, ДЛЯ ОТРИСОВКИ ОКРУЖНОСТИ ДОСТАТОЧНО ЗАПОМНИТЬ ПОЛОЖЕНИЕ ЕЕ ЦЕНТРА, РАДИУС, ТОЛЩИНУ И ЦВЕТ ЛИНИИ. По этим данным соответствующие программы построят нужную фигуру на экране дисплея. Понятно, что такое описание изображения требует намного меньше памяти (в 10 - 1000 раз) чем в растровой графике, поскольку обходится без запоминания цвета каждой точки рисунка. ОСНОВНЫМ НЕДОСТАТКОМ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ НЕВОЗМОЖНОСТЬ РАБОТЫ С ВЫСОКОКАЧЕСТВЕННЫМИ ХУДОЖЕСТВЕННЫМИ ИЗОБРАЖЕНИЯМИ, ФОТОГРАФИЯМИ И ФИЛЬМАМИ. Природа избегает прямых линий, правильных окружностей и дуг. К сожалению, именно с их помощью (поскольку эти фигуры можно описать средствами математики, точнее- аналитической геометрии) и формируется изображение при использовании векторной графики. Попробуйте описать с помощью математических формул, картины И.Е.Репина или Рафаэля! (Но не "Черный квадрат" К.Малевича!) ПОЭТОМУ ОСНОВНОЙ СФЕРОЙ ПРИМЕНЕНИЯ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ ОТРИСОВКА ЧЕРТЕЖЕЙ, СХЕМ, ДИАГРАММ И Т.П.

Как отличить векторную графику от растровой? Если Вы видите на экране фотографию или рисунок с близким к естественному изображением, с большим числом цветов и оттенков, то, скорее всего, Вы имеете дело с растровой графикой. Если чертеж, диаграмму, простой стилизованный рисунок,- с векторной. Если программа позволяет стирать, копировать или перемещать целые фрагменты (площади) изображения, то это растровая графика. Если удалить, скопировать, переместить можно только какие-то определенные фигуры или их части, то это графика векторная.

Файлы *.bmp , *.pcx , *.jpg , *.msp , *.img и др. соответствуют форматам растрового типа, *.dwg , *.dxf , *.pic и др. - векторного.

Иногда, правда, растровые изображения могут входить в состав векторных как отдельные графические примитивы.

Предыдущая лекция | Содержание | Следующая лекция
Информатика. Лекция №6. Представление информации в компьютере.

Представление информации в компьютере.


Люди имеют дело со многими видами информации. Услышав прогноз погоды, можно записать его в компьютер, чтобы затем воспользоваться им. В компьютер можно поместить фотографию своего друга или видеосъемку о том как вы провели каникулы. Но ввести в компьютер вкус мороженого или мягкость покрывала никак нельзя.
Компьютер - это электронная машина, которая работает с сигналами. Компьютер может работать только с такой информацией, которую можно превратить в сигналы. Если бы люди умели превращать в сигналы вкус или запах, то компьютер мог бы работать и с такой информацией. У компьютера очень хорошо получается работать с числами. Он может делать с ними все, что угодно. Все числа в компьютере закодированы "двоичным кодом", то есть представлены с помощью всего двух символов 1 и 0, которые легко представляются сигналами.
Вся информация с которой работает компьютер кодируется числами. Независимо от того, графическая, текстовая или звуковая эта информация, что бы ее мог обрабатывать центральный процессор она должна тем или иным образом быть представлена числами.

Представление текстовых данных.

Представление изображений.


Все известные форматы представления изображений (как неподвижных, так и движущихся) можно разделить на растровые и векторные. В векторном формате изображение разделяется на примитивы - прямые линии, многоугольники, окружности и сегменты окружностей, параметрические кривые, залитые определенным цветом или шаблоном, связные области, набранные определенным шрифтом отрывки текста и т. д. (см. рис.). Для пересекающихся примитивов задается порядок, в котором один из них перекрывает другой. Некоторые форматы, например, PostScript, позволяют задавать собственные примитивы, аналогично тому, как в языках программирования можно описывать подпрограммы. Такие форматы часто имеют переменные и условные операторы и представляют собой полнофункциональный (хотя и специализированный) язык программирования.


Рис. Двухмерное векторное изображение

Каждый примитив описывается своими геометрическими координатами. Точность описания в разных форматах различна, нередко используются числа с плавающей точкой двойной точности или с фиксированной точкой и точностью до 16-го двоичного знака.
Координаты примитивов бывают как двух-, так и трехмерными. Для трехмерных изображений, естественно, набор примитивов расширяется, в него включаются и различные поверхности - сферы, эллипсоиды и их сегменты, параметрические многообразия и др. (см. рис.).


Рис. Трехмерное векторное изображение


Рис. Растровое изображение

Наиболее широко используемые цветовые модели - это RGB (Red, Green, Blue - красный, зеленый, синий, соответствующие максимумам частотной характеристики светочувствительных пигментов человеческого глаза), CMY (Cyan, Magenta, Yellow - голубой, пурпурный, желтый, дополнительные к RGB) и CMYG - те же цвета, но с добавлением градаций серого. Цветовая модель RGB используется в цветных кинескопах и видеоадаптерах, CMYG - в цветной полиграфии.
В различных графических форматах используется разный способ хранения пикселов. Два основных подхода - хранить числа, соответствующие пикселам, одно за другим, или разбивать изображение на битовые плоскости - сначала хранятся младшие биты всех пикселов, потом - вторые и так далее. Обычно растровое изображение снабжается заголовком, в котором указано его разрешение, глубина пиксела и, нередко, используемая цветовая модель.

Представление звуковой информации.

  1. Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства - аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код, поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
  2. Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания. Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.
  • цифровая запись, когда реальные звуковые волны преобразуются в цифровую информацию путем измерения звука тысячи раз в секунду;
  • MIDI-запись, которая, вообще говоря, является не реальным звуком, а записью определенных команд-указаний (какие клавиши надо нажимать, например, на синтезаторе). MIDI-запись является электронным эквивалентом записи игры на фортепиано.

Таким образом, рассмотрев принципы хранения в ЭВМ различных видов информации, можно сделать важный вывод о том, что все они так или иначе преобразуются в числовую форму и кодируются набором нулей и единиц. Благодаря такой универсальности представления данных, если из памяти наудачу извлечь содержимое какой-нибудь ячейки, то принципиально невозможно определить, какая именно информация там закодирована: текст, число или картинка.

Представление видео.


В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей, с позволения сказать, работой является просмотр кинофильмов и видеоклипов, а также (куда компьютерным пользователям без них!) многочисленные видеоигры. Более правомерно данным термином называть создание и редактирование такой информации с помощью компьютера.
Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные. В любительской киносъемке использовалась частота 16 кадров/сек., в профессиональной - 24.
Традиционный кадр на кинопленке "докомпьютерной" эпохи выглядел так, как показано на рис.1. Основную его часть, разумеется, занимает видеоизображение, а справа сбоку отчетливо видны колебания на звуковой дорожке. Имеющаяся по обоим краям пленки периодическая система отверстий (перфорация) служит для механической протяжки ленты в киноаппарате с помощью специального механизма.

Казалось бы, если проблемы кодирования статической графики и звука решены, то сохранить видеоизображение уже не составит труда. Но это только на первый взгляд, поскольку, как показывает разобранный выше пример, при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой. Достаточно очевидное усовершенствование состоит в том, чтобы первый кадр запомнить целиком (в литературе его принято называть ключевым), а в следующих сохранять лишь отличия от начального кадра (разностные кадры).
Принцип формирования разностного кадра поясняется рис.2, где продемонстрировано небольшое горизонтальное смещение прямоугольного объекта. Отчетливо видно, что при этом на всей площади кадра изменились всего 2 небольшие зоны: первая сзади объекта возвратилась к цвету фона, а на второй - перед ним, фон перекрасился в цвет объекта. Для разноцветных предметов произвольной формы эффект сохранится, хотя изобразить его будет заметно труднее.

Рис.2

Конечно, в фильме существует много ситуаций, связанных со сменой действия, когда первый кадр новой сцены настолько отличается от предыдущего, что его проще сделать ключевым, чем разностным. Может показаться, что в компьютерном фильме будет столько ключевых кадров, сколько новых ракурсов камеры. Тем не менее, их гораздо больше. Регулярное расположение подобных кадров в потоке позволяет пользователю оперативно начинать просмотр с любого места фильма: "если пользователь решил начать просмотр фильма с середины, вряд ли он захочет ждать, пока программа распаковки вычислит все разности с самого начала" Кроме того, указанная профилактическая мера позволяет эффективно восстановить изображение при любых сбоях или при "потере темпа" и пропуске отдельных кадров на медленных компьютерных системах.
Заметим, что в современных методах сохранения движущихся видеоизображений используются и другие типы кадров.
Существует множество различных форматов представления видеоданных. В среде Windows, например, уже более 10 лет (начиная с версии 3.1) применяется формат Video for Windows, базирующийся на универсальных файлах с расширением AVI (Audio Video Interleave - чередование аудио и видео). Суть AVI файлов состоит в хранении структур произвольных мультимедийных данных, каждая из которых имеет простой вид, изображенный на рис.3. Файл как таковой представляет собой единый блок, причем в него, как и в любой другой, могут быть вложены новые блоки. Заметим, что идентификатор блока определяет тип информации, которая хранится в блоке.

Рис.3

Внутри описанного выше своеобразного контейнера информации (блока) могут храниться абсолютно произвольные данные, в том числе, например, блоки, сжатые разными методами. Таким образом, все AVI-файлы только внешне выглядят одинаково, а внутри могут различаться очень существенно.
Еще более универсальным является мультимедийный формат Quick Time, первоначально возникший на компьютерах Apple. По сравнению с описанным выше, он позволяет хранить независимые фрагменты данных, причем даже не имеющие общей временной синхронизации, как этого требует AVI. В результате в одном файле может, например, храниться песня, текст с ее словами, нотная запись в MIDI-формате, способная управлять синтезатором, и т.п. Мощной особенностью Quick Time является возможность формировать изображение на новой дорожке путем ссылок на кадры, имеющиеся на других дорожках. Полученная таким способом дорожка оказывается несоизмеримо меньше, чем если бы на нее были скопированы требуемые кадры. Благодаря описанной возможности файл подобного типа легко может содержать не только полную высококачественную версию видеофильма, но и специальным образом "упрощенную" копию для медленных компьютеров, а также рекламный ролик, представляющий собой "выжимку" из полной версии. И все это без особого увеличения объема по сравнению с полной копией.
Все большее распространение в последнее время получают системы сжатия видеоизображений, допускающие некоторые незаметные для глаза искажения изображения с целью повышения степени сжатия. Наиболее известным стандартом подобного класса служит MPEG (Motion Picture Expert Group), который разработан и постоянно развивается созданным в 1988 году Комитетом (группой экспертов) международной организации ISO/IEC (International Standards Organization/International Electrotechnical Commission) по стандартам высококачественного сжатия движущихся изображений. Методы, применяемые в MPEG, непросты для понимания и опираются на достаточно сложную математику. Укажем лишь наиболее общие приемы, за счет которых достигается сжатие. Прежде всего, обрабатываемый сигнал из RGB-представления с равноправными компонентами преобразуется в яркость и две "координаты" цветности. Как показывают эксперименты, цветовые компоненты менее важны для восприятия и их можно проредить вдвое. Кроме того, производится специальные математические преобразования (DCT - дискретно-косинусное преобразование), несколько загрубляющее изображение в мелких деталях. Опять таки из экспериментов следует, что на субъективном восприятии изображение это практически не сказывается. Наконец, специальными методами (в том числе и методом, изображенным на рис.2) ликвидируется сильная избыточность информации, связанная со слабыми отличиями между соседними кадрами. Полученные в результате всех описанных процедур данные дополнительно сжимаются общепринятыми методами, подобно тому, как это делается при архивации файлов.
В последнее время все большее распространение получает технология под названием DivX (происходит от сокращения слов Digital Video Express, обозначающих название видеосистемы, которая "прославилась" неудачной попыткой взимать небольшую оплату за каждый просмотр видеодиска; к собственно технологии DivX это никакого отношения не имело). Благодаря DivX удалось достигнуть степени сжатия, позволившей вмесить качественную запись полнометражного фильма на один компакт-диск - сжать 4,7 Гб DVD-фильма до 650 Мб. И хотя это достижение, к сожалению, чаще всего используется для пиратского копирования, сам по себе этот факт не умаляет достоинств новой технологии. Как и то, что самая первая версия сжатия DivX была сработана французскими хакерами из MPEG-4 - современные версии DivX уже не имеют к этому событию никакого отношения.
Наиболее популярные программы проигрывания видеофайлов позволяют использовать замещаемые подсистемы сжатия и восстановления видеоданных - кодеки (от англ. compression/decompression - codec, сравните с образованием термина "модем").
Такой подход позволяет легко адаптировать новые технологии, как только те становятся доступными. Замещаемые кодеки хороши как для пользователей, так и для разработчиков программного обеспечения. Тем не менее, большое разнообразие кодеков создает определенные трудности для производителей видеопродукции. Часто в качестве выхода из создавшегося положения необходимые кодеки помещают на компакт-диск с фильмами или даже поставляют видеоматериалы в нескольких вариантах, предоставляя тем самым возможность выбрать подходящий. Все больше распространяется автоматизация распознавания, когда плейер, обнаружив информацию об отсутствующем кодеке, загружает его из Интеренет.

Тема 6: Представление графической информации в компьютере.

Существуют два принципа представления изображения на компьютере: растровый и векторный . В обоих случаях графическое изображение разбивается на части, которые легко описать с помощью кодов.

В процессе кодирования изображения производится его пространственное разбиение ( дискретизация ) на отдельные маленькие фрагменты - пиксели ( pixel ), причем каждому фрагменту присваивается значение его цвета, то есть код цвета (красный, зеленый, синий и так далее).

Качество кодирования изображения зависит от двух параметров.
Во-первых, качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение.

Во-вторых, чем большее количество цветов, то есть большее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов, которая связана с количеством памяти, предназначенной для хранения одного пикселя – глубиной цвета .

КОЛ-ВО ЦВЕТОВ = 2 ГЛУБИНА ЦВЕТА

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Применяют несколько систем кодирования цветных графических изображений: HSB, RGB и CMYK и др. Использование этих цветовых моделей связано с тем, что световой поток может формироваться излучениями, представляющими собой комбинацию " чистых" спектральных цветов: красного, зеленого, синего или их производных.

Различают аддитивное цветовоспроизведение (характерно для излучающих объектов) и субтрактивное цветовоспроизведение (характерно для отражающих объектов).

Модель HSB характеризуется тремя компонентами: оттенок цвета(Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Можно получить большое количество произвольных цветов, регулируя эти компоненты.

Принцип модели RGB заключается в следующем: известно, что любой цвет можно представить в виде комбинации трех цветов: красного (Red, R), зеленого (Green, G), синего (Blue, B). Другие цвета и их оттенки получаются за счет наличия или отсутствия этих составляющих. По первым буквам основных цветов система и получила свое название - RGB. Данная цветовая модель является аддитивной, то есть любой цвет можно получить сочетание основных цветов в различных пропорциях. При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Если совместить все три компоненты, то получим ахроматический серый цвет, при увеличении яркости которого происходит приближение к белому цвету.

При 256 градациях тона (каждая точка кодируется 3 байтами) минимальные значения RGB (0,0,0) соответствуют черному цвету, а белому - максимальные с координатами (255, 255, 255). Чем больше значение байта цветовой составляющей, тем этот цвет ярче. Например, темно-синий кодируется тремя байтами (0, 0, 128), а ярко-синий (0, 0, 255).

Модель CMYK используется при подготовке публикаций к печати. Каждому из основных цветов ставится в соответствие дополнительный цвет (дополняющий основной до белого). Получают дополнительный цвет за счет суммирования пары остальных основных цветов. Значит, дополнительными цветами для красного является голубой (Cyan,C) = зеленый + синий = белый - красный, для зеленого - пурпурный (Magenta, M) = красный + синий = белый - зеленый, для синего - желтый (Yellow, Y) = красный + зеленый = белый - синий. Причем принцип декомпозиции произвольного цвета на составляющие можно применять как для основных, так и для дополнительных, то есть любой цвет можно представить или в виде суммы красной, зеленой, синей составляющей или же в виде суммы голубой, пурпурной, желтой составляющей. В основном такой метод принят в полиграфии. Но там еще используют черный цвет (BlacК, так как буква В уже занята синим цветом, то обозначают буквой K). Это связано с тем, что наложение друг на друга дополнительных цветов не дает чистого черного цвета.

Различают несколько режимов представления цветной графики :
а) полноцветный ( True Color );
б) High Color ;
в) индексный .

При полноцветном режиме для кодирования яркости каждой из составляющих используют по 256 значений (восемь двоичных разрядов), то есть на кодирование цвета одного пикселя (в системе RGB) надо затратить 8*3=24 разряда. Это позволяет однозначно определять 16,5 млн цветов. Это довольно близко к чувствительности человеческого глаза. При кодировании с помощью системы CMYK для представления цветной графики надо иметь 8*4=32 двоичных разряда.

Режим High Color - это кодирование при помощи 16-разрядных двоичных чисел, то есть уменьшается количество двоичных разрядов при кодировании каждой точки. Но при этом значительно уменьшается диапазон кодируемых цветов.

При индексном кодировании цвета можно передать всего лишь 256 цветовых оттенков. Каждый цвет кодируется при помощи восьми бит данных. Но так как 256 значений не передают весь диапазон цветов, доступный человеческому глазу, то подразумевается, что к графическим данным прилагается палитра (справочная таблица), без которой воспроизведение будет неадекватным: море может получиться красным, а листья - синими. Сам код точки растра в данном случае означает не сам по себе цвет, а только его номер (индекс) в палитре. Отсюда и название режима - индексный.

При векторном подходе изображение рассматривается как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и пр., которые называются графическими примитивами. Базовым элементом изображения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Так как линия описывается математически как единый объект, то и объем данных для отображения объекта средствами векторной графики значительно меньше, чем в растровой графике. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.


Пример 1. Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200. Сколько страниц экрана одновременно разместится в видеопамяти при палитре 256 цветов?

Если палитра состоит из 256 цветов, то 8 бит глубина цвета.

Количество пикселей экрана 640200=128000. Для сохранения картинки экрана необходимо 1280008=1024000бит=128000байт=125 Кбайт.

512/125=4,096. Следовательно, в видеопамяти разместиться 4,096 страниц экрана.

Пример 2 . Сколько битов видеопамяти занимает информация об одном пикселе на черно-белом экране (без полутонов)?

Для черно-белого изображения без полутонов К = 2. Следовательно 2 N = 2. Отсюда N = 1 бит на пиксель.

Пример 3. Современный монитор позволяет получать на экране 16 777 216 различных цветов. Сколько битов памяти занимает 1 пиксель?

Поскольку К = 16 777 216 = 2 24 , то N = 24 бита на пиксель.

Пример 3 На экране с разрешающей способностью 640 х 200 высвечиваются только двухцветные изображения. Какой минимальный объем видеопамяти необходим для хранения изображения?

Так как битовая глубина двухцветного изображе­ния равна 1, а видеопамять, как минимум, должна вмещать одну страницу изображения, то объем видеопамяти равен 640 • 200 • 1 = 128 000 битов = 16 000 байт.

1. Какой объем видеопамяти необходим для хранения двух страниц изображения при условии, что разрешающая способ­ность дисплея равна 640 х 350 пикселей, а количество исполь­зуемых цветов — 16?

2. Какой объем видеопамяти необходим для хранения четЫР 61 страниц изображения, если битовая глубина равна 24, а Р^ решающая способность дисплея — 800 х 600 пикселей?

3. Объем видеопамяти равен 256 Кб, количество используемых цветов — 16. Вычислите варианты разрешающей способности дисплея при условии, что число страниц в видеопамяти может быть равно 1, 2 или 4.

4. Объем видеопамяти равен 1 Мб. Разрешающая способность дисплея 800 х 600. Какое максимальное количество цветов можно использовать при условии, что видеопамять делится на две страницы?

5. Объем видеопамяти равен 2 Мб, битовая глубина — 24, разрешающая способность дисплея — 640 х 480. Какое максимальное количество страниц можно использовать при этих условиях?

Похожие документы:

Представление графической информации в компьютере

. Представление графической информации в компьютере 10 класс Цель: сформировать у учащихся представление о том, как кодируется в компьютере графическая информация . Как кодируется графическая информация? 2. Какие приемы графической информации вам известны .

Представление нечисловой информации в компьютере

. , якутский, бурятский, татарский, осетинский и т.д.) Представление графической информации в компьютере Представить графическую информацию в памяти компьютера можно двумя способами – растровым .

Представление информации цифровое представление графической информации

ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ ЦИФРОВОЕ ПРЕДСТАВЛЕНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ Физический принцип получения разнообразных цветов . страницы изображения. Практически всегда в современных компьютерах в видеопамяти помещается одновременно несколько страниц .

. урока: - познакомиться с формами представления графической информации на компьютере; - воспитывать самостоятельность учащихся – . учащиеся должны иметь представление: о формах представления графической информации на компьютере; об ограничениях, .

Урок Тема урока: Кодирование графической информации

. Дискретизация. Графическая информация может быть представлена в аналоговой и дискретной формах. Примером аналогового представления графической информации может . Для того чтобы в процессе обмена информацией компьютеры могли найти друг друга, в Интернете .

ЛЕКЦИЯ ПРЕДСТАВЛЕНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ В ЭВМ

Как и любая другая информация в ЭВМ, графические изображения хранятся, обрабатываются и передаются по линиям связи в закодированном виде - т.е. в виде большого числа бит- нулей и единиц. Существует большое число разнообразных программ, работающих с графическими изображениями. В них используются самые разные графические форматы- т.е. способы кодирования графической информации. Расширения имен файлов, содержащих изображение, указывают на то, какой формат в нем использован, а значит какими программами его можно просмотреть, изменить (отредактировать), распечатать. Несмотря на все это разнообразие существует только два принципиально разных подхода к тому, каким образом можно представить изображение в виде нулей и единиц (оцифровать изображение)

ЛЕКЦИЯ
ПРЕДСТАВЛЕНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ В ЭВМ


Как и любая другая информация в ЭВМ, графические изображения хранятся, обрабатываются и передаются по линиям связи в закодированном виде - т.е. в виде большого числа бит- нулей и единиц. Существует большое число разнообразных программ, работающих с графическими изображениями. В них используются самые разные графические форматы- т.е. способы кодирования графической информации. Расширения имен файлов, содержащих изображение, указывают на то, какой формат в нем использован, а значит какими программами его можно просмотреть, изменить (отредактировать), распечатать.

Несмотря на все это разнообразие существует только два принципиально разных подхода к тому, каким образом можно представить изображение в виде нулей и единиц (оцифровать изображение):


ПРИ ИСПОЛЬЗОВАНИИ РАСТРОВОЙ ГРАФИКИ С ПОМОЩЬЮ ОПРЕДЕЛЕННОГО ЧИСЛА БИТ КОДИРУЕТСЯ ЦВЕТ КАЖДОГО МЕЛЬЧАЙШЕГО ЭЛЕМЕНТА ИЗОБРАЖЕНИЯ - ПИКСЕЛА. Изображение представляется в виде большого числа мелких точек, называемых пикселами. Каждый из них имеет свой цвет, в результате чего и образуется рисунок, аналогично тому, как из большого числа камней или стекол создается мозаика или витраж, из отдельных стежков- вышивка, а из отдельных гранул серебра- фотография. При использовании растрового способа в ЭВМ под каждый пиксел отводится определенное число бит, называемое битовой глубиной. Каждому цвету соответствует определенный двоичный код (т.е. код из нулей и единиц). Например, если битовая глубина равна 1, т.е. под каждый пиксел отводится 1 бит, то 0 соответствует черному цвету, 1 -белому, а изображение может быть только черно-белым. Если битовая глубина равна 2, т.е. под каждый пиксел отводится 2 бита, 00- соответствует черному цвету, 01- красному , 10 - синему , 11- черному , т.е. в рисунке может использоваться четыре цвета. Далее, при битовой глубине 3 можно использовать 8 цветов, при 4 - 16 и т.д. Поэтому, графические программы позволяют создавать изображения из 2, 4, 8, 16 , 32, 64, . , 256, и т.д. цветов. Понятно, что с каждым увеличением возможного количества цветов (палитры) вдвое, увеличивается объем памяти, необходимый для запоминания изображения (потому что на каждый пиксел потребуется на один бит больше).

ОСНОВНЫМ НЕДОСТАТКОМ РАСТРОВОЙ ГРАФИКИ ЯВЛЯЕТСЯ БОЛЬШОЙ ОБЪЕМ ПАМЯТИ, ТРЕБУЕМЫЙ ДЛЯ ХРАНЕНИЯ ИЗОБРАЖЕНИЯ. Это объясняется тем, что нужно запомнить цвет каждого пиксела, общее число которых может быть очень большим. Например, одна фотография среднего размера в памяти компьютера занимает несколько Мегабайт, т.е. столько же, сколько несколько сотен (а то и тысяч) страниц текста.


ПРИ ИСПОЛЬЗОВАНИИ ВЕКТОРНОЙ ГРАФИКИ В ПАМЯТИ ЭВМ СОХРАНЯЕТСЯ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ КАЖДОГО ГРАФИЧЕСКОГО ПРИМИТИВА- ГЕОМЕТРИЧЕСКОГО ОБЪЕКТА (НАПРИМЕР, ОТРЕЗКА, ОКРУЖНОСТИ, ПРЯМОУГОЛЬНИКА И Т.П.), ИЗ КОТОРЫХ ФОРМИРУЕТСЯ ИЗОБРАЖЕНИЕ. В ЧАСТНОСТИ, ДЛЯ ОТРИСОВКИ ОКРУЖНОСТИ ДОСТАТОЧНО ЗАПОМНИТЬ ПОЛОЖЕНИЕ ЕЕ ЦЕНТРА, РАДИУС, ТОЛЩИНУ И ЦВЕТ ЛИНИИ. По этим данным соответствующие программы построят нужную фигуру на экране дисплея. Понятно, что такое описание изображения требует намного меньше памяти (в 10 - 1000 раз) чем в растровой графике, поскольку обходится без запоминания цвета каждой точки рисунка. ОСНОВНЫМ НЕДОСТАТКОМ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ НЕВОЗМОЖНОСТЬ РАБОТЫ С ВЫСОКОКАЧЕСТВЕННЫМИ ХУДОЖЕСТВЕННЫМИ ИЗОБРАЖЕНИЯМИ, ФОТОГРАФИЯМИ И ФИЛЬМАМИ. Природа избегает прямых линий, правильных окружностей и дуг. К сожалению, именно с их помощью (поскольку эти фигуры можно описать средствами математики, точнее- аналитической геометрии) и формируется изображение при использовании векторной графики. Попробуйте описать с помощью математических формул, картины И.Е.Репина или Рафаэля! (Но не "Черный квадрат" К.Малевича!) ПОЭТОМУ ОСНОВНОЙ СФЕРОЙ ПРИМЕНЕНИЯ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ ОТРИСОВКА ЧЕРТЕЖЕЙ, СХЕМ, ДИАГРАММ И Т.П.


Как отличить векторную графику от растровой? Если Вы видите на экране фотографию или рисунок с близким к естественному изображением, с большим числом цветов и оттенков, то, скорее всего, Вы имеете дело с растровой графикой. Если чертеж, диаграмму, простой стилизованный рисунок,- с векторной. Если программа позволяет стирать, копировать или перемещать целые фрагменты (площади) изображения, то это растровая графика. Если удалить, скопировать, переместить можно только какие-то определенные фигуры или их части, то это графика векторная.

Пример изображения, созданного с использованием растровой графики:

Пример изображения, созданного с использованием векторной графики:

Файлы *.bmp , *.pcx , *.jpg , *.msp , *.img и др. соответствуют форматам растрового типа, *.dwg , *.dxf , *.pic и др. - векторного.

Иногда, правда, растровые изображения могут входить в состав векторных как отдельные графические примитивы.

УСТРОЙСТВА ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЯЮЩИЕ УСТРОЙСТВА.


ОСНОВНЫМ УСТРОЙСТВОМ ОБРАБОТКИ ИНФОРМАЦИИ В ЭВМ ЯВЛЯЕТСЯ АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙСТВО (АЛУ). ЕГО ОСНОВОЙ ЯВЛЯЕТСЯ ЭЛЕКТРОННАЯ СХЕМА, СОСТАВЛЕННАЯ ИЗ БОЛЬШОГО ЧИСЛА ТРАНЗИСТОРОВ, НАЗЫВАЕМАЯ СУММАТОРОМ. СУММАТОРОМ ВЫПОЛНЯЮТСЯ ПРОСТЕЙШИЕ ЛОГИЧЕСКИЕ И АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ДАННЫМИ, ПРЕДСТАВЛЕННЫМИ В ВИДЕ ДВОИЧНЫХ КОДОВ (НУЛЕЙ И ЕДИНИЦ). К логическим операциям относятся логическое умножение (операция "И"), логическое сложение (операция "ИЛИ") и логическое отрицание (операция "НЕ"). Результатом операции логического умножения является 1, если все переменные, являющиеся исходными данными равны 1, и 0, если хотя бы одна из них равна 0. Вспоминая, что 1 моделируется электрическим сигналом, а 0 - отсутствием сигнала, можно сказать, что на выходе устройства будет электрический сигнал тогда и только тогда, когда сигнал будет иметься на каждом входе:


Представьте себе, что подобное устройство осуществляет управление каким-либо процессом, например, пуском ракеты. От каждого исправного блока ракеты на устройство управления стартом должен прийти контрольный сигнал, и только в этом случае оно может выдать сигнал, разрешающий запуск.

Результатом операции логического сложения является 0, если все исходные переменные равны нулю, и 1, если хотя бы одна из них равна 1. Результатом операции логического отрицания является 1, если на входе- 0, и 0, если на входе -1.

На основе этих трех операций можно производить арифметические действия над числами, представленными в виде нулей и единиц. Теоретической основой для этого являются законы, разработанные еще в 1847 году ирландским математиком Джорджем Булем, известные как Булева алгебра, в которой используются только два числа- 0 и 1. Ранее считалось, что эти работы Буля никому не нужны, и их автор подвергался насмешкам. Однако, в 1938 году американский инженер Клод Шеннон положил Булеву алгебру в основу теории электрических и электронных переключательных схем- сумматоров, создание которых и привело к появлению ЭВМ, способных автоматически производить арифметические вычисления.

ВСЕ ОСТАЛЬНЫЕ ОПЕРАЦИИ, ПРОИЗВОДИМЫЕ ЭВМ, СВОДЯТСЯ К БОЛЬШОМУ ЧИСЛУ ПРОСТЕЙШИХ АРИФМЕТИЧЕСКИХ И ЛОГИЧЕСКИХ ОПЕРАЦИЙ, аналогично тому, как операцию умножения можно свести к большому числу операций сложения.

Иногда компьютеры называют "умными машинами". Мы видим, что это не совсем так. Компьютеры лишь выполняют простейшие арифметические и логические операции. Весь "интеллект" компьютера заключается не столько в нем самом, сколько в программах, которые сводят самые сложные действия к большому (как правило, очень большому) числу таких простейших арифметических и логических операций. Именно поэтому, производительность процессора при выполнении простейших операций определяет быстродействие ЭВМ.

В СОВРЕМЕННЫХ ЭВМ АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙСТВО ОБЪЕДИНЯЕТСЯ С УПРАВЛЯЮЩИМИ УСТРОЙСТВАМИ В ЕДИНУЮ СХЕМУ - ПРОЦЕССОР.

ПРОЦЕССОР- ЦЕНТРАЛЬНАЯ МИКРОСХЕМА ЭВМ, ОСУЩЕСТВЛЯЮЩАЯ ОПЕРАЦИИ ПО ОБРАБОТКЕ ИНФОРМАЦИИ И УПРАВЛЯЮЩАЯ РАБОТОЙ ОСТАЛЬНЫХ УСТРОЙСТВ ЭВМ.

Процессор представляет собой микросхему с большим числом контактов, имеющую прямоугольную или квадратную форму и легко помещающуюся на ладони.

Изобретателем микропроцессора как схемы, в которую собрана практически вся основная электроника компьютера, стала американская фирма INTEL, выпустившая в 1970 году процессор 8008. С их появления и началась история ЭВМ четвертого поколения.

По настоящее время фирма INTEL является лидером на мировом рынке в производстве и разработке новых типов процессоров. Основой для современных компьютеров стали процессоры семейства 8086:


1) процессор 8086 и его упрощенный вариант 8088, выпущенные в 1981 году,

2) процессор 80286, выпущенный в 1984 году,

3) процессор 80386, выпущенный в 1986 году,

4) процессор 80486, выпущенный в 1989 году,

5) процессор PENTIUM (греч. -пятый), выпущенный в 1993 году.

Фирма INTEL анонсировала еще на 1995 год выпуск принципиально иного процессора MERCED, однако вместо него появились процессоры, являющиеся развитием процессоров PENTIUM - PENTIUM PRO, PENTIUM II, PENTIUM III и др.

Важно отметить, что производство процессоров, в отличие от производства многих других компонентов компьютера- плат, корпусов, клавиатур и др. является чрезвычайно сложным и освоено только очень небольшим числом фирм-производителей. Однако все они, хоть и конкурируют с фирмой INTEL, ориентируются на ее продукцию. Например, фирма AMD выпускала процессор К5- более мощный и дешевый аналог процессора PENTIUM и процессор К6 - аналог PENTIUM II.

СОПРОЦЕССОР- УСТРОЙСТВО, УСКОРЯЮЩЕЕ РАБОТУ ПРОЦЕССОРА ПРИ ВЫПОЛНЕНИИ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ. ЕГО НАЛИЧИЕ НЕОБЯЗАТЕЛЬНО, НО ДЛЯ РАБОТЫ РЯДА ПРОГРАММ (ГРАФИЧЕСКИХ ИЛИ РАСЧЕТНЫХ) ОН НЕОБХОДИМ.

Честь создания сопроцессоров также принадлежит фирме INTEL, однако многие сопроцессоры, произведенные другими фирмами, например CYRIX, оказывались производительнее и дешевле оригиналов- сопроцессоров фирмы INTEL семейства 8087:

1) сопроцессор 8087 - для совместной работы с процессором 8086,

2) сопроцессор 80287 - для совместной работы с процессором 80286,

3) сопроцессор 80387 - для совместной работы с процессором 80386, и.т.д.

В ПОСЛЕДНИХ МОДЕЛЯХ ЭВМ СОПРОЦЕССОР ВСТРАИВАЕТСЯ В ПРОЦЕССОР. Это, в частности, касается всех процессоров класса PENTIUM. Поэтому, в ближайшем будущем сопроцесор, как отдельное устройство, по-видимому, уйдет в историю.

Читайте также: