Практическое значение адсорбции кратко

Обновлено: 02.07.2024

АДСО́РБЦИЯ (от лат. ad – на и sorbeo – по­гло­щать), по­гло­ще­ние ве­ще­ст­ва из га­зо­вой фа­зы или жид­ко­го рас­тво­ра по­верх­но­ст­ным сло­ем твёр­до­го те­ла или жид­ко­сти. Яв­ле­ние А. вы­зы­ва­ет­ся на­личи­ем ад­сорбц. cилового по­ля, соз­да­вае­мо­го за счёт не­ском­пен­си­ро­ван­но­сти меж­мо­ле­ку­ляр­ных cил в по­верх­но­ст­ном слое. Ве­ще­ст­во, соз­даю­щее та­кое по­ле, на­зы­ва­ет­ся ад­сор­бен­том, ве­ще­ст­во, мо­ле­ку­лы ко­то­ро­го мо­гут ад­сор­би­ро­вать­ся, – ад­сор­бти­вом, уже ад­сор­би­ров. ве­ще­ст­во – ад­сор­ба­том. Про­цесс, об­рат­ный А., – де­сорб­ция. А. – ча­ст­ный слу­чай сорб­ции . При­ме­не­ние ад­сорбц. про­цес­сов да­ти­ру­ет­ся кон. 18 в., ко­гда не­зависи­мо и прак­ти­че­ски од­но­вре­мен­но поя­ви­лись три пуб­ли­ка­ции: итал. на­ту­ра­лист Ф. Фон­та­на и К. Шее­ле в 1777 опи­са­ли по­гло­ще­ние га­зов дре­вес­ным уг­лем, в 1785 Т. Е. Ло­виц об­на­ру­жил спо­соб­ность та­ких уг­лей обес­цве­чи­вать рас­тво­ры вин­ных ки­слот, по­гло­щая ор­га­нич. при­ме­си.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Муниципальное бюджетное общеобразовательное учреждение

Итоговый проект

ученик 9 класса.

Руководитель:

Сергеева Вера Николаевна,

2017-2018 учебный год

1. Актуальность работы.

2. Объект исследования.

5. Задачи исследования.

6. Методы исследования.

8. Практическая значимость исследования.

II. Основное содержание работы

1.1. Понятие адсорбция. Первые исторические сведения о процессе.

1.2. Виды адсорбции: физическая и химическая и их механизм.

1.3. Особенность процессов адсорбции.

1.4. Адсорбенты: их структура и применение.

1.5. Активированный уголь - его получение.

1.6. Практическое значение адсорбции.

2. Экспериментальная часть.

2.1. Учебно-исследовательский эксперимент “ Поглощение запаха различными адсорбентами”.

2.2. Учебно-исследовательский эксперимент “Обесцвечивание раствора йода различными адсорбентами ”.

2.3. Учебно-исследовательский эксперимент “ Обесцвечивание раствора бриллиантового зеленого различными адсорбентами”.

2.4. Учебно-исследовательский эксперимент “ Обесцвечивание раствора мандаринного сока различными адсорбентами”.

2.5. Учебно-исследовательский эксперимент “Обесцвечивание раствора свекольного сока различными адсорбентами ”.

2.6. Выводы по результатам экспериментов.

III. Выводы по работе

IV. Источники

1. Актуальность работы. Я считаю, что на данный момент эта тема имеет большое значение как в деятельности человека, так и в его жизни. Так как загрязнение окружающей среды очень пагубно влияет на природу, тем самым воздействуя на человека.

2. Объект исследования. Объектом моего исследования стал такой процесс как “ Адсорбция” и различные адсорбенты.

3.Гипотеза. Адсорбент спасает жизнь человека: очищая воду, воздух, желудочно-кишечный тракт при отравлениях, а также выбросы в окружающую среду с химических предприятий, очистных сооружений. Используемые человеком различные адсорбенты обладают различными адсорбционными свойствами.

4.Цель исследования. Целью моего исследования является изучение процесса “Адсорбция”, её характеристик и свойств различных адсорбентов.

5. Задачи исследования. Изучить сущность процесса адсорбции, ее классификацию, механизм; сравнить вещества, обладающие высокой адсорбционной способностью; ознакомиться с использованием данного явления в быту и промышленности; изучить свойства отдельных адсорбентов.

6. Методы исследования.

а). Библиографический анализ литературы и материалов сети интернета.

г). Сравнительный анализ.

д). Проведение лабораторного опыта.

е). Проведение учебно-исследовательского эксперимента.

ж). Анализ полученных результатов эксперимента.

з). Компьютерное моделирование.

7. Теоретическая значимость исследования.

Теоретические знания, приобретенные мною при работе над проектом, могут пригодиться на уроках химии, биологии, ОБЖ, при поступлении в высшие учебные заведения, связанные с химией и биологией, также могут пригодиться при службе в армии.

8. Практическая значимость исследования. Значимость исследовательской работы состоит в том, что она может быть использована для повышения образовательного уровня школьников, при изучении предметов химии, биологии, ОБЖ и подготовки к экзаменам при изучении темы адсорбция.

II. Основное содержание работы

1.1. Понятие адсорбция. Первые исторические сведения о процессе.

Адсо́рбция - (от лат. ad — на, при и sorbeo — поглощаю), поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости.

Создатель изотермы адсорбции Ленгмюра и крупный исследователь в физико-химии поверхностным явлениям.

Родился 31 января 1881 г., Нью-Йорк, США.

Умер 16 августа 1957 г. (76 лет),

Награды: Нобелевская премия по химии.

В 1915 году русский учёный Николай Дмитриевич Зелинский разработал первый фильтрующий угольный противогаз (Приложение 2) , который в 1916 году был принят на вооружение войсками Антанты. В качестве основного сорбирующего материала в нем впервые в истории использовался активированный уголь.

1.2. Виды адсорбции: физическая и химическая и их механизм. Адсорбция бывает 2-х видов: химическая и физическая.

Химическая адсорбция (так называемая хемосорбция). Хемосорбция представляет собой процесс поглощения поверхностью жидкого или твердого тела веществ из окружающей среды, сопровождающийся образованием химических соединений. При хемосорбции выделяется значительное количество теплоты. Обычно теплоты хемосорбции лежат в пределах 80 – 125 кДж/моль. Взаимодействие кислорода с металлами (окисление). При химической адсорбции молекула адсорбированного вещества реагирует химическими связями на поверхности адсорбента.

Физической адсорбции адсорбированные молекулы остаются стабильными, сохраняя свою индивидуальность. Адсорбированный слой связан с поверхностью слабыми межатомными связями. Теплота физической адсорбции, как правило, невелика и редко превосходит несколько десятков кДж/моль (~ 40 кДж/моль).

Процесс физической адсорбции обратим, относится к не активируемым, протекает очень быстро, как только молекулы адсорбента окажутся на поверхности твердого или жидкого тела.

1.3. Особенность процессов адсорбции.

Особенностью процессов адсорбции являются: избирательность и обратимость. Благодаря этой особенности процесса возможно поглощение из паро-газовых смесей или растворов одного или нескольких компонентов, а затем в других условиях, десорбирование их, т. е. выделение нужного компонента из твердой фазы в более или менее чистом виде.

1.4. Адсорбенты: их структура и применение.

Адсорбент должен обладать следующими основными свойствами:

2).отсутствием каталитической активности и химической инертностью к компонентам разделяемой смеси;

4).достаточной механической прочностью;

5).линейностью изотермы адсорбции;

Адсорбенты применяют в противогазах, в качестве носителей катализаторов, для очистки газов, спиртов, масел, при переработке нефти, в медицине для поглощения газов и ядов.

Адсорбент, используемый в промышленности - это адсорбент с высокоразвитой поверхностью.

Адсорбция лежит в основе клинического анализа крови на СОЭ (Скорость Осаждения Эритроцитов). Так, при инфекционных заболеваниях в крови происходит обменная адсорбция: вместо ионов электролитов поверхность эритроцитов занимают молекулы белков. При этом заряд эритроцитов понижается и они быстрее объединяются и оседают.

Адсорбционная терапия применяется для удаления токсинов и вредных веществ из пищеварительного тракта. Такие адсорбенты, как гидроксид алюминия, оксид магния, фосфат алюминия, входят в состав препаратов алмагель, фосфалюгель. (Приложение 3)

Характерной особенностью твердых поверхностей является их пористость (отношение суммарного объема пор к общему объему адсорбента). Природа поверхности адсорбента, размеры и форма его пор влияют на адсорбцию, изменяют ее характеристики, т.е. механизм адсорбции.

Особенности адсорбции на поверхности твердых тел. Твердые поверхности в качестве адсорбентов используются для адсорбции газов или жидкостей, а адсорбционные процессы при этом протекают на границе раздела твердое тело - газ и твердое тело — жидкость. Твердые адсорбенты имеют поры различного размера.

1.5. Активированный уголь - его получение.

Активированный уголь – это максимально естественное и простое средство для очищения организма. ( Приложение 4) Пористое вещество, которое получают из различных углеродосодержащих материалов органического происхождения: древесного угля , каменноугольного кокса , нефтяного кокса, скорлупы кокосовых орехов и других материалов. Содержит огромное количество пор и поэтому имеет очень большую удельную поверхность на единицу массы, вследствие чего обладает высокой адсорбционной способностью. В зависимости от технологии изготовления, 1 грамм активированного угля может иметь поверхность от 500 до 1500 м². Применяют в медицине и промышленности для очистки, разделения и извлечения различных веществ.

1.6. Практическое значение адсорбции.

Применение адсорбции для поглощения паров или газообразных веществ используется чаще всего для очистки воздуха. При этом сохраняют свое значение те же закономерности, которые были найдены для адсорбции из жидкой фазы, в частности зависимость между степенью адсорбции и диэлектрической проницаемостью. Так, вещества, поглощенные полярным адсорбентом, легко можно вытеснить парами воды или спирта.

Области применения адсорбции непрерывно расширяются, возникают новые технологические операции, основанные на адсорбции, В последние годы в результате разработки более совершенной аппаратуры и улучшения качества сорбентов созданы адсорбционные установки для облагораживания бензиновых фракций с целью получения моторных топлив с повышенным октановым числом. Эти установки по экономичности не только не уступают абсорбционным или ректификационным установкам, но в ряде случаев превосходят их.

При помощи различных твёрдых адсорбентов производится улавливание ценных паров и газов, осветление растворов в производстве сахаров, глюкозы, многих формацевтических препаратов, нефтепродуктов.

Адсорбцией извлекают малые количества веществ, растворенных в больших объёмах жидкости. Используются при крашении волокон, при обогащении полезных ископаемых. Ионообменная адсорбция нашла широкое применение в пищевой промышленности.

Адсорбцию из жидких растворов широко используют как метод очистки сточных вод для обезвреживания их от веществ, растворенных как в виде молекул, так и в виде ионов: красителей, пестицидов, гербицидов, фенолов, кислот, щелочей, солей, ПАВ и многих других.

Адсорбционные явления лежат в основе процессов крашения, стирки, хроматографии, гетерогенного катализа.

Использование различных адсорбентов при промышленном производстве пищевых продуктов позволяет осветлять растительные масла, вина, пиво; отбеливать сахарный сок.

В медицине − при лечении желудочных заболеваний, различного рода токсических отравлениях также активно протекают десорбционные процессы. Вкусовые ощущения человека связаны с адсорбцией пищевых веществ на определенных участках языка.

При помощи ионообменной адсорбции питаются растения, восстанавливается плодородие почв вносимыми удобрениями, умягчается и опресняется соленая вода, формируются вторичные рудные месторождения.

Адсорбенты применяют в:

1. противогазах ; (Приложение 5)

2. в качестве носителей катализаторов; (Приложение 5)

3. для очистки газов, спиртов, масел, бензина; (Приложение 5)

4. для разделения спиртов ; (Приложение 5)

5. при переработке нефти ; (Приложение 5)

6. в медицине для поглощения газов и ядов . (Приложение 5)

2. Экспериментальная часть.

Все стаканы и пробирки пронумерованы от 1 до 3. Под №1 находится адсорбент Активированный уголь; под №2 – Полисорб МП (кремния диаксид коллоидный); под №3 – Энтеросгель (Полиметилсилоксана полигидрат). (Приложение 6)

2.1. Учебно-исследовательский эксперимент “ Поглощение запаха различными адсорбентами”.

Этот эксперимент был сделан для того, чтобы проверить, какие адсорбенты (которые можно купить в обычной аптеке) лучше справятся с устранением едкого запаха аммиака. В пронумерованные пробирки я распределил адсорбенты и залил аммиак. Но для того, чтобы это вещество не улетучилось, я закупорил горлышки пробирок ваткой. После определял, где запах уменьшился. Этот эксперимент показал, что лучшим устранителем запаха аммиака является активированный уголь (Приложение 7).

2.2. Учебно-исследовательский эксперимент “Обесцвечивание раствора йода различными адсорбентами ”.

Для этого эксперимента мне понадобилось: пронумерованные стаканчики; выбранные мной адсорбенты и раствор йода. С начала я сделал р-р йода и разлил по стаканчикам. После погрузил адсорбенты и через полчаса наблюдал, что раствор в стаканчике №1 обесцветился, №2 - почти не изменился, №3 - чуть потускнел (Приложение 8). Лучшим адсорбентом вновь стал активированный уголь.

2.3. Учебно-исследовательский эксперимент “ Обесцвечивание раствора бриллиантового зеленого различными адсорбентами”.

В 3-м опыте я проверил действие адсорбентов на раствор бриллиантового зелёного. В первый и последующие стаканчики я погрузил адсорбенты. После 30 минут я наблюдал, что р-р с активированным углём почти полностью потерял цвет. Во втором же и третьем стаканчике цвет р-ра лишь немного потускнел (Приложение 9). Снова активированный уголь показал лучшие адсорбирующие свойства.

2.4. Учебно-исследовательский эксперимент “ Обесцвечивание раствора мандаринного сока различными адсорбентами”.

Для этого эксперимента мне понадобилось: пронумерованные стаканчики; различные адсорбенты и мандаринный сок. Для начала я выжал из мандарина сок и разместил по стаканчикам. После погрузил адсорбенты и через полчаса наблюдал, что сок в первом стаканчике обесцветился, во втором почти не изменил цвет, в третьем стал менее ярким (Приложение 10). Я вновь убедился, что активированный уголь - лучший адсорбент.

2.5. Учебно-исследовательский эксперимент “Обесцвечивание раствора свекольного сока различными адсорбентами ”.

2.6. Выводы по результатам экспериментов.

При проведении учебно-исследовательских экспериментов я удостоверился, что лучшим адсорбентом является Активированный уголь.

Явление адсорбции широко используется в хроматографии, для хроматографического разделения различных веществ, в промышленных методах очистки газов и растворов, а также осушки газов. Наиболее широко используются в качестве адсорбентов активные (активированные) угли, цеолиты, силикагель.

Активные угли приготавливают специальной обработкой каменного и древесного угля. Получают пористые крупнозернистые порошки с удельной поверхностью 200 – 450 м 2 /г. Активные угли применяют, например, для улавливания оксидов серы, азота, выбрасываемых предприятиями цветной металлургии, для очистки воздуха помещений промышленных предприятий от сероуглерода, сероводорода, ацетона, бензола и других вредных веществ.

Кроме активного угля используют также углеродистые волокнистые адсорбенты. Их получают высокотемпературной обработкой природных и синтетических волокон в среде водяного пара или СО2 при 600 – 1000 0 С. Углеродистые волокнистые адсорбенты имеют удельную поверхность 500 – 2000 м 2 /г. Такие адсорбенты используются для изготовления средств индивидуальной защиты органов дыхания. Они нашли широкое применение в медицине для очистки крови и других биологических жидкостей, а также в повязках при лечении ран и ожогов. В качестве лекарственного средства этот адсорбент используется при отравлениях (поглотитель ядов).

Цеолиты– специально прогретые белые, иногда бесцветные порошки алюмосиликатов, являются молекулярными ситами – микропористыми материалами, способными избирательно поглощать вещества, размеры молекул которых меньше размеров микропор. Цеолиты используют в промышленности для выделения и очистки химических соединений.

Для получения синтетических цеолитов алюмосиликатные горные породы быстро нагревают при высокой температуре, в результате чего алюмосиликаты превращаются в пузырчатый материал, насыщенный микропорами. Природные и синтетические цеолиты способны избирательно поглощать вещества. Благодаря такому свойству в зону адсорбционной полости попадает только определенный сорт молекул.

Порошки силикагеля (аморфная форма оксида кремния) имеют удельную поверхность 5 – 800 м 2 /г. Силикагель как адсорбент применяют для осушки газов и органических жидкостей от влаги. Бумажные пакетики с силикагелем можно обнаружить в упаковке бытовых приборов. Они положены туда с целью защиты приборов от сырости.

Ионообменные смолы используют для умягчения воды, используемой в теплоснабжении. Известно, что растворимые в воде соли Ca(НСО3 - )2 и Mg(НСО3 - )2 при нагревании распадаются с образованием нерастворимых в воде осадков CaСО3 и MgСО3, покрывающих внутренние стенки котлов и трубопроводов. Прежде, чем использовать жесткую воду в качестве теплоносителя, её с помощью ионообменных смол освобождают от ионов Ca 2+ и Mg 2+ .

Краткий итог темы

1. Любое конденсированное тело содержит в поверхностном слое микрочастицы, равнодействующая сил межмолекулярного (ионного) взаимодействия которых направлена внутрь тела, что создает поверхностное натяжение.

2. Следствием межмолекулярного взаимодействия на поверхности раздела фаз являются такие процессы, как смачивание, адгезия и адсорбция.

3. Для проявления смачиваниянеобходимо, чтобы жидкость вступала во взаимодействие с твердым телом в присутствии газа или другой жидкости, которая не смешивается с первой.

4. Явление адгезии (прилипания) наблюдается в случае, когда между телами реализуется преимущественно ван-дер-ваальсово взаимодействие или водородные связи. Два тела прилипают при контакте поверхностями в результате уменьшения энергии поверхностного натяжения.

5. Физическая адсорбция – процесс концентрирования вещества на поверхности, который осуществляется под действием сил Ван дер Вальса или в результате образования водородных связей.

6. Химическая адсорбция отличается от физической адсорбции необратимостью вследствие того, что адсорбат участвует в химической реакции с активными центрами поверхностного слоя адсорбента.

7. Ионная адсорбция происходит в результате обратимого ионного обмена.

Термины для запоминания

Адгезив– тело, которое прилипает.

Адгезия это прилипание находящихся в контакте поверхностей разной природы.

Адсорбат адсорбированное вещество.

Адсорбентомназывается тело, на поверхности которого происходит концентрирование вещества из объема.

Адсорбтивомназывается вещество, которое находится в объеме жидкой или газовой фазы, способное адсорбироваться на поверхности.

Адсорбция– концентрирование вещества на поверхности раздела фаз.

Активные (активированные) угли приготавливают специальной обработкой каменного и древесного угля. Получают пористые крупнозернистые порошки с удельной поверхностью 200 – 450 м 2 /г.

Волокнистые углеродистые адсорбенты имеют удельную поверхность 500 – 2000 м 2 /г. Используются для изготовления средств индивидуальной защиты органов дыхания.

Ионообменная адсорбция – обратимый процесс стехиометрического обмена ионами между ионообменной смолой и раствором электролита.

Поверхностно-активное вещество (ПАВ) – это химическое соединение, структура которого включает неполярную углеводородную цепь (например, такую группу, как СН3(СН2)nСН2-), соединенную с полярной группой, например такой, как -СООNa.

Поверхностное натяжение s определяется количеством энергии в форме работы, приходящегося на изменение единицы площади поверхности дисперсной фазы.

Силикагель (аморфная форма оксида кремния SiO2) в виде порошка с удельной поверхность 5 – 800 м 2 /г. применяют как адсорбент для осушки газов и органических жидкостей от влаги.

Смачивание- прилипание (адгезия) жидкости к твердой поверхности.

Субстрат– тело, к которому прилипает адгезив.

Физическая адсорбция – обратимый процесс концентрирования вещества на поверхности, который осуществляется под действием сил Ван дер Ваальса или в результате образования водородных связей.

Химическая адсорбция необратимая химическая реакция адсорбтива с адсорбентом на поверхности раздела фаз.

Цеолиты– специально прогретые белые, иногда бесцветные порошки алюмосиликатов, являются молекулярными ситами – микропористыми материалами, способными избирательно поглощать вещества, размеры молекул которых меньше размеров микропор.

Вопросы для проверки знаний

1. В чем причина нескомпенсированности сил межмолекулярного взаимодействия на границе раздела фаз?

3. Какие межмолекулярные взаимодействия определяют явления смачивания и адгезии?

5. Почему поверхностно-активные вещества уменьшают поверхностное натяжение?

6. В чем различие между физической, химической и ионообменной адсорбцией?

7. В чем различие между адсорбентом, адсорбтивом и адсорбатом?

Упражнение

1. Докажите, к физической или химической адсорбции относится адсорбционный процесс, сопровождающийся выделением 300 кДж/моль энергии.

АДСО́РБЦИЯ (от лат. ad – на и sorbeo – по­гло­щать), по­гло­ще­ние ве­ще­ст­ва из га­зо­вой фа­зы или жид­ко­го рас­тво­ра по­верх­но­ст­ным сло­ем твёр­до­го те­ла или жид­ко­сти. Яв­ле­ние А. вы­зы­ва­ет­ся на­личи­ем ад­сорбц. cилового по­ля, соз­да­вае­мо­го за счёт не­ском­пен­си­ро­ван­но­сти меж­мо­ле­ку­ляр­ных cил в по­верх­но­ст­ном слое. Ве­ще­ст­во, соз­даю­щее та­кое по­ле, на­зы­ва­ет­ся ад­сор­бен­том, ве­ще­ст­во, мо­ле­ку­лы ко­то­ро­го мо­гут ад­сор­би­ро­вать­ся, – ад­сор­бти­вом, уже ад­сор­би­ров. ве­ще­ст­во – ад­сор­ба­том. Про­цесс, об­рат­ный А., – де­сорб­ция. А. – ча­ст­ный слу­чай сорб­ции . При­ме­не­ние ад­сорбц. про­цес­сов да­ти­ру­ет­ся кон. 18 в., ко­гда не­зависи­мо и прак­ти­че­ски од­но­вре­мен­но поя­ви­лись три пуб­ли­ка­ции: итал. на­ту­ра­лист Ф. Фон­та­на и К. Шее­ле в 1777 опи­са­ли по­гло­ще­ние га­зов дре­вес­ным уг­лем, в 1785 Т. Е. Ло­виц об­на­ру­жил спо­соб­ность та­ких уг­лей обес­цве­чи­вать рас­тво­ры вин­ных ки­слот, по­гло­щая ор­га­нич. при­ме­си.

Читайте также: