Потенциал электростатического поля кратко

Обновлено: 05.07.2024

Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:


Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).


Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Потенциал - скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ - потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:

Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.

Работа сил электростатического поля. Понятие потенциала

Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆ l → формулу работы можно записать так: ∆ A = F · ∆ l · cos α = E q ∆ l cos α = E l q ∆ l .

Рисунок 1 . 4 . 1 . Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.

У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.

Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:

Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0 . Поле, обладающее таким свойством, называется консервативным, или потенциальным.

Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q , а также две траектории перемещения пробного заряда q в другую точку. Символом ∆ l → на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:

∆ A = F ∆ l cos α = E q ∆ r = 1 4 π ε 0 Q q r 2 ∆ r .

Следовательно, зависимость существует только между работой и расстоянием между зарядами, а также их изменением Δ r . Проинтегрируем данное выражение на интервале от r = r 1 до r = r 2 и получим следующее:

A = ∫ r 1 r 2 E · q · d r = Q q 4 π ε 0 1 r 1 - 1 r 2 .

Рисунок 1 . 4 . 2 . Траектории перемещения заряда и работа кулоновских сил. Зависимость от расстояния между начальной и конечной точкой траектории.

Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.

Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов. Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле. Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.

Поскольку у электростатического поля есть свойство потенциальности, мы можем добавить новое понятие – потенциальная энергия заряда в электрическом поле. Выберем какую-либо точку, поместим в нее разряд и примем его потенциальную энергию за 0 .

Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.

Обозначив энергию как W , а работу, совершаемую зарядом, как A 10 , запишем следующую формулу:

Обратите внимание, что энергия обозначается именно буквой W , а не E , поскольку в электростатике E – это напряженность поля.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2 , нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.

A 12 = A 10 + A 02 = A 10 – A 20 = W p 1 – W p 2 .

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Он обозначается буквой φ . Это важная энергетическая характеристика электростатического поля.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

A 12 = W p 1 – W p 2 = q φ 1 – q φ 2 = q ( φ 1 – φ 2 ) .

Потенциал электрического поля измеряется в вольтах ( В ) .

1 В = 1 Д ж 1 К л .

Разность потенциалов в формулах обычно обозначается Δ φ .

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

Чтобы вычислить потенциал точечного заряда на расстоянии r , на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r ≥ R , что следует из теоремы Гаусса.

Изображение электрических полей с помощью эквипотенциальных поверхностей

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

Рисунок 1 . 4 . 3 . Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Δ A 12 = q E Δ l = q ( φ 1 – φ 2 ) = – q Δ φ ,

где Δ φ = φ 1 - φ 2 – изменение потенциала. Отсюда выводится, что:

E = - ∆ φ ∆ l , ( ∆ l → 0 ) или E = - d φ d l .

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:


Проявление электрического поля заключается в силовом взаимодействии между зарядами. Электрическое поле имеет ряд характеристик, одной из которых является потенциал. Рассмотрим это понятие, выведем формулу потенциала электростатического поля точечного заряда.

Понятие потенциала

Из курса электродинамики в 10 классе известно, что для определения взаимного влияния электрических зарядов используется понятие напряженности.

Напряженность электрического поля

Рис. 1. Напряженность электрического поля.

Однако для электротехники такая характеристика поля неудобна. В самом деле, напряженность — это векторная величина, предполагающая движение зарядов в пространстве. Но в электротехнических схемах заряды могут двигаться только по проводникам, направление которых однозначно определено. И имеет значение только движение вдоль проводников. Здесь было бы удобнее рассматривать не векторную, а скалярную характеристику поля.

Для введения такой скалярной характеристики вспомним, что основной задачей электротехники является получение и преобразование энергии. А электрическое поле — потенциально, и работа в нем не зависит от пути, по которому двигался заряд. Важна лишь разница потенциальных энергий в конечных точках траектории.

Все это позволяет ввести специальную энергетическую характеристику электростатического поля — потенциал.

Потенциальная энергия взаимодействия двух зарядов равна:

Из этой формулы следует, что потенциальная энергия электрического поля пропорциональна заряду, и отношение потенциальной энергии к этому заряду постоянно. Это отношение и есть потенциал $\varphi$:

Как и в случае с потенциальной энергией, конкретная величина потенциала не несет большой информации. Практически всегда используется разность потенциалов между двумя точками. Зная ее, можно рассчитать работу, которую совершает заряд при движении от одной точки к другой.

Потенциал поля точечного заряда

Из двух приведенных выше формул легко получить формулу потенциала точечного заряда. Подставив первую во вторую, получим:

Коэффициент $k$ здесь, как и в законе Кулона, зависит от выбранной системы единиц. Для системы СИ ($\varepsilon_0$ — электрическая постоянная):

Таким образом, потенциал электростатического поля точечного заряда пропорционален величине заряда и обратно пропорционален расстоянию от него. Если $r=∞$, то $\varphi=0$. По сути, потенциал поля точечного заряда равен энергии, которая необходима для удаления единичного пробного заряда в бесконечность.


Рис. 2. Силовые линии точечного заряда.

Потенциал системы точечных зарядов

Поскольку электрическое поле потенциально, и в нём действует принцип суперпозиции, это позволяет легко находить потенциал системы зарядов. Он равен алгебраической сумме элементарных зарядов:

Эта же формула используется в том случае, если заряд распределен по телу неравномерно. Тело разбивается на множество элементарных областей, в каждой из которых заряд можно считать точечным. После этого потенциал всех областей суммируется.


Рис. 3. Потенциал системы зарядов.

Что мы узнали

Электростатический потенциал — это скалярная энергетическая характеристика электростатического поля. Она равна работе, которую надо совершить для того, чтобы удалить пробный единичный заряд из поля в бесконечность. Поскольку электрическое поле потенциально, и в нём работает принцип суперпозиции, потенциал системы точечных зарядов равен сумме потенциалов каждого заряда.

Изучением взаимодействия неподвижных зарядов между собой занимается наука электростатика. Как установлено учёными, существует два рода частиц, влияющих друг на друга. Одни из них обладают положительной энергией, а другие — отрицательной. Её изменение в состоянии покоя тела описывается с помощью физической характеристики — потенциала электростатического поля, возникающего из-за наэлектризованности. Причём в этом случае справедлив принцип суперпозиции.

Потенциал электрического поля

Общие сведения

Существует несколько видов взаимодействий. Например, гравитация определяется силой тяжести, а трение и упругость имеют электромагнитную природу. Изучает их электродинамика, одним из разделов которой является электростатика. Суть этой науки заключается в изучении взаимодействия зарядов, находящихся в неподвижном состоянии.

Потенциал электростатического поля

В 1729 году член Парижской Академии наук Шарль Дюфе, изучая силы взаимодействия разных тел, установил, что существует два вида энергии. Один он получал при трении стекла о шёлк (стеклянный), а другой — смолы о шерсть (смоляной). В результате было установлено ключевое отличие возникающих сил от гравитационных. Первые обладали не только притяжением, но и отталкиванием.

Бенджамин Франклин предложил разделять существующие заряды по знаку на положительные и отрицательные. Таким образом, были сформулированы следующие природные свойства:

Потенциал это

  • каждые тела состоят из элементарных носителей энергии;
  • электрический заряд является численной характеристикой;
  • частицы с одинаковым знаком отталкиваются друг от друга, а с одноимённым — притягиваются;
  • в мире количество положительных зарядов совпадает с числом отрицательных.

То есть при определённом действии, например, трении можно создать условия, при котором в телах произойдёт разделение зарядов, при этом величина их будет одинакова. Этот эффект назвали суперпозицией. Причём между разделёнными частицами возникает электростатическое поле, за энергетическую характеристику которой приняли потенциал.

Работа электростатического поля

Пусть имеется заряд, находящийся в электрическом поле. На него действует постоянная сила. Если носитель энергии перемещается из одной точки пространства в другую, то говорят о выполнении им работы. В простейшем случае можно рассмотреть однородное поле. В качестве него можно использовать конденсатор. В нём правая пластина пусть будет заряжена положительно, а левая — отрицательно.

Считается, что линии электрического поля будут направлены от плюса к минусу. В некоторой точке этого однородного состояния находится заряд. Для конкретики его можно принять положительным и обозначить буквой A. Под действием сил он перемещается в точку Б. Задача состоит в нахождении работы, совершаемой полем для изменения положения заряженной частицы.

Из механики известно, что такое действие может быть определенно произведением действующей на заряд силы и модуля перемещения, умноженным на косинус угла между ними: A = F * S * cos (a). Так как заряд положительный, то его направление будет совпадать с линиями электрического поля (напряжённостью E). Сила находится по формуле: F = q * E. Тогда, подставляя модуль этого вектора в выражение для работы, можно записать: A = q * E * S * cos (a).

Потенциал поля формула

Произведение S * cos (a) представляет собой проекцию отрезка перемещения на направление электрического поля. Изобразить её можно как перпендикуляр, опущенный на E. В результате получится прямоугольный треугольник. Обозначить прилежащий катет (проекцию) можно буквой d. В итоге формула для работы примет вид: A = q * E * d, где:

  • q — заряд;
  • E — напряжённость;
  • d — проекция перемещения.

Пусть заряд перемещается по кривой. Например, проходит путь А-С-В. Значит, будет существовать два вектора S1 и S2. Тогда работа будет определяться как сумма A = Σ ΔAi. То есть если поле однородное (электростатическое), то работа по перемещению заряда не зависит от траектории, а определяется только начальным и конечным положением носителя заряда.

Свойства потенциала

Между находящимися частицами в электрическом поле существует напряжение. Оно равно отношению работы к числу заряда. Находят его по формуле: U = A / q. За единицу измерения напряжения принимают вольт. Обозначают его буквой В, характеризуется эта величина отношением джоуль на кулон. Так как разность потенциалов фактически является напряжением, то и измеряют её тоже в этих величинах.

Обозначают электрический потенциал буквой φ (фи). Он позволяет описывать электрическое поле, поэтому его называют энергетической характеристикой. Это скалярная величина. Определяется она как отношение потенциальной энергии заряда к его значению. В то же время напряжённость является силовой характеристикой. Так как эти два явления описывают одно и то же, то между ними существует связь.

Электростатика

Напряжённость позволяет определить силу, действующую на носитель энергии: E = F /q. Если вектор во всех точках пространства имеет одинаковое направление, то поле однородное. В нём на заряд действует сила F, определяемая как произведение заряда на вектор напряжённости. Пусть частица переместилась из А в В. Тогда она пройдёт расстояние d.

Совершённая работа будет определяться как A = q * E * d. Это то же, что A = U * q. Записанные выражения можно приравнять, причём сократить левую и правую часть на q. В результате получится связь между величинами: U = E * d. Так как напряжение — это разность потенциальности начальной и конечной точек, то формулу можно переписать так: φ1 — φ2 = E * d.

Отсюда можно сделать выводы:

Потенциал в электростатике

  1. Если в определённой области пространства поля нет (E = 0), значит, φ 1 = φ 2, то есть потенциал равняется константе. Другими словами, φ во всех точках будет одинаковой. Например, во всех точках проводника потенциал будет одним и тем же.
  2. По сути, потенциальная энергия — это материя, определяющая электрическое взаимодействие тел. Поэтому, чтобы её определить, нужно знать значение φ в начальном положении и после перемещения заряда. Для удобства исходное состояние принимают за ноль. В электротехнике за нулевой уровень потенциал берут величину Земного шара. В теоретической же физике считается, что φ = 0 в бесконечности. Там, где нет электрического поля.
  3. Эквипотенциальные поверхности и силовые линии взаимно перпендикулярны.

Для понимания следует дать определение эквипотенциальной поверхности. За неё принимают пространство, во всех точках которого потенциал одинаков.

Решение задач

Для успешного решения заданий, связанных с электрическим потенциалом, нужно не только знать несколько формул, но и понимать суть явления. Кроме этого, часто приходится пользоваться справочником по электрофизике. Например, для выяснения массы зарядов.

Вот несколько типовых задач, рассчитанных на самостоятельную проработку учащимися в рамках школьной программы:

Задачи по электростатике

  1. В проводнике на удалении друг от друга находятся два точечных заряда q1 = 100 нКл и q2 = 10 нКл. Расстояние между ними равно 10 сантиметров. Найти их потенциальную энергию. Для решения задачи нужно использовать то, что сила взаимодействия зарядов определяется законом Кулона: F = k * q / r, где k — справочная величина (электрическая постоянная). Учитывая, что φ = q / (4 * p * E0 * r), для рассматриваемого случая можно записать: E = (q1 * q2) / (4 * p * E0 * r) = (10 -7 * 10 -8 ) / (4 * 3,14 * 8,85 * 10 -12 * 0,1) = 9 * 10 -5 Дж.
  2. Электрический заряд из точки А переместился в В. При этом появилось напряжение, равное 1 кВ. Работа, затраченная на перемещение, составила 40 мкДж. Определить значение заряда. Используя то, что напряжение — это разность потенциалов, находимая как отношение работы к величине энергии: Δ φ = A / q, решить пример можно в одно действие: q = A / U = 400 * 10 -6 Дж / 1 * 10 3 В = 40 * 10 -9 Кл.
  3. Сферу из металла радиусом в один метр положили на пол. Её заряд составляет 10 -6 Кл. Определить, во сколько раз снизится потенциал поля сферы на расстоянии 60 см от центра шара, если его радиус увеличится в 3 раза. Исследуемая точка находится внутри тела. Так как в этом случае потенциал точки в середине и на поверхности одинаков, то он зависит от радиуса сферы: φ1 = K * q / r. В итоге он станет втрое меньше, чем вначале: φ2 = K * q / 3r.
  4. При перемещении точечного заряда q =10 нКл из бесконечности в точку, находящуюся на расстоянии r = 10 см от поверхности заряженной сферы, была выполнена работа А = 0,5 мкДж. Радиус шара составляет 4 см. Вычислить поверхностный потенциал. Решение примера будет выглядеть так: φ = A * (R + r) / q0 * R = 0,5 *10 -6 Дж * (0,2 м + 0,0 4 м) / 10 * 10 -9 Кл * 0, 2 м = 3 *10 2 В = 0,3 кВ.

Таким образом, решать задачи, связанные с потенциалом, просто. Но при этом важно следить, в чём должны измеряться подставляемые величины. Все вычисления выполняют в Международной системе единиц (СИ).

Читайте также: