Последовательность событий приводящих к активации фосфолипазы с кратко

Обновлено: 07.07.2024

Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ, - ключевой фермент аденилатциклазной системы передачи сигнала. Аденилатциклаза обнаружена во всех типах клеток. Фермент относят к группе интегральных белков клеточной мембраны, он имеет 12 трансмембранных доменов. Внеклеточные фрагменты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного посредника, участвующего в регуляции активности фермента протеинкиназы А На активность аденилатциклазы оказывают влияние как внеклеточные, так и внутриклеточные регуляторы. Внеклеточные регуляторы (гормоны, эйкозаноиды, биогенные амины) осуществляют регуляцию через специфические рецепторы, которые с помощью α-субъединиц G-белков передают сигналы на аденилатциклазу. αs-Субъединица (стимулирующая) при взаимодействии с аденилатциклазой активирует фермент, α-субъединица (ингибирующая) ингибирует фермент. В свою очередь, аденилатциклаза стимулирует проявление ГТФ-фосфатазной активности α-субъединиц. В результате дефосфорилирования ГТФ образуются субъединицы αs-ГДФ и αi-ГДФ, не комплементарные аденилатциклазе. Из 8 изученных изоформ аденилатциклазы 4 - Са 2+ -зависимые (активируются Са 2+ ). Регуляция аденилатциклазы внутриклеточным кальцием позволяет клетке интегрировать активность двух основных вторичных посредников цАМФ и Са 2+ . При участии аденилатциклазной системы реализуются эффекты сотни различных по своей природе сигнальных молекул - гормонов, нейромедиаторов, эйкозаноидов. Функционирование системы трансмембранной передачи сигналов обеспечивают белки: Rs-рецептор сигнальной молекулы, которая активирует аденилатциклазу, и Ri-рецептор сигнальной молекулы, которая ингибирует аденилатциклазу; Gs-стимулирующий и Gj-ингибирующий аденилатциклазу белки; ферменты аденилатциклаза (АЦ) и протеинкиназа А (ПКА).

Последовательность событий, приводящих к активации аденилатциклазы:

  • связывание активатора аденилатциклазной системы, например гормона (Г) с рецептором (Rs), приводит к изменению конфор-мации рецептора и увеличению его сродства к Gs-белку. В результате образуется комплекс [Г][R][О-ГДФ];
  • присоединение [Г][R] к G-ГДФ снижает сродство α-субъединицы Gs -белка к ГДФ и увеличивает сродство к ГТФ. ГДФ замещается на ГТФ;
  • это вызывает диссоциацию комплекса. Отделившаяся субъединица α, связанная с молекулой ГТФ, обладает сродством к адени-латциклазе:

[Г][R][0-ГТФ] → [Г][R] + α-ГТФ + βγ;

  • взаимодействие α-субъединицы с аденилатциклазой приводит к изменению конфор-мации
  • фермента и его активации, увеличивается скорость образования цАМФ из АТФ;
  • конформационные изменения в комплексе [α-ГТФ][АЦ] стимулируют повышение ГТФ-фосфатазной активности α-субъединицы. Протекает реакция дефосфорилирования ГТФ, и один из продуктов реакции - неорганический фосфат (Pi) отделяется от α-субъединицы, а комплекс [α-ГДФ] сохраняется; скорость гидролиза определяет время проведения сигнала;
  • образование в активном центре α-субъединицы молекулы ГДФ снижает его сродство к аденилатциклазе, но увеличивает сродство к βγ-субъединицам. Gs-белок возвращается к неактивной форме;
  • если рецептор связан с активатором, например гормоном, цикл функционирования Gs белка повторяется.

Активация протеинкиназы А (ПКА)

  • Молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами ПКА.
  • Присоединение цАМФ к регуляторным субъединицам (R) вызывает диссоциацию комплекса С2R2 на комплекс цАМФ4 R2 и С + С.
  • Активная протеинкиназа А фосфорилирует специфические белки по серину и треонину, в результате изменяются конформация и активность фосфорилированных белков, а это приводит к изменению скорости и направления регулируемых ими процессов в клетке.
  • Концентрация цАМФ.в клетке может регулироваться, она зависит от соотношения активностей ферментов аденилатциклазы и фосфодиэстеразы.

Большую роль в регуляции внутриклеточной сигнальной системы играет белок AKAPs. "Заякоренный" белок AKAPs участвует в сборке ферментных комплексов, включающих не только ротеинкиназу А, но и фосфодиэстеразу и фосфопротеинфосфатазу.

Каскадный механизм усиления и подавления сигнала.Передача сигнала от мембранного рецептора через G-белок на фермент аденилатциклазу служит примером каскадной системы усиления этого сигнала. Одна молекула, активирующая рецептор, может "включать" несколько G-белков, и затем каждый активирует несколько молекул аденилатциклазы с образованием тысяч молекул цАМФ. На этом этапе сигнал усиливается в 10 2 -10 3 раз. Образующийся цАМФ "включают" другой фермент – протеинкиназу А, усиливая сигнал ещё в 1000 раз. Фосфорилирование ферментов протеинкиназой А ещё больше усиливает сигнал, в результате суммарное усиление равно 10 6 -10 7 раз. Таким образом, по механизму каскадного усиления одна молекула регулятора способна изменить активность миллионов других молекул.Но для любой из систем трансмембранной передачи сигнала клетка имеет другую еистему, подавляющую этот сигнал. Каждый из этапов в ферментном каскаде находится под контролем специальных подавляющих этот сигнал механизмов. Например, длительное действие гормона приводит к десенсибилизации мембранных рецепторов: они либо инактивируются, либо вместе с гормоном погружаются в клетку посредством эндоцитоза. В результате десенсибилизации рецепторов степень активации аденилатциклазной системы снижается. Если в клетке длительное время повышена концентрация цАМФ (повышена активность протеинкиназы А), может происходить фосфорилирование кальциевых каналов, что приводит к повышению концентрации Са 2+ в клетке. Кальций активирует Са 2+ -зависимую фосфодиэстеразу, катализирующую превращение цАМФ в АМФ. В результате инактивации протеинкиназы А (R2C2) снижается скорость фосфорилирования специфических ферментов. Завершает "выключение" системы фосфопротеинфосфатаза, дефосфорилирующая фосфопротеины.

Инозитолфосфатная система

Функционирование инозитолфосфатной системы трансмембранной передачи сигнала обеспечивают: R (рецептор), фосфолипаза С, Gplc - белок, активирующий фосфолипазу С, белки и ферменты мембран и цитозоля.

Последовательность событий, приводящих к активации фосфолипазы С:

Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора.


  • взаимодействие рецептора с сигнальной молекулой (первичным посредником);

  • активация мембранного фермента, ответственного за образование вторичного посредника;

  • образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАГ или Са 2+ ;

  • активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказывают влияние на активность внутриклеточных процессов.

Сигнальные молекулы - гормоны, медиаторы, факторы роста, NO

Сигнальными молекулами могут быть неполярные и полярные вещества. Неполярные вещества, например стероидные гормоны, проникают в клетку, проходя через липидный бислой. Полярные сигнальные молекулы в клетку не проникают, но связываются специфическими рецепторами клеточных мембран. Такое взаимодействие вызывает цепь последовательных событий в самой мембране и внутри клетки. К полярным сигнальным молекулам относят белковые гормоны (глюкагон, инсулин), нейромедиаторы (ацетилхолин, глицин, γ-аминомасляная кислота), факторы роста.

По локализации различают мембранные, цитоплазматические и ядерные рецепторы. По другой классификации все рецепторы можно разделить на быстроотвечающие (в пределах миллисекунд) и медленноотвечающие, в пределах нескольких минут или даже часов, что характерно для гормонов, передающих сигнал на внутриклеточные рецепторы. Рецепторы первого типа - интегральные олигомерные белки, содержащие субъединицу, имеющую центр для связывания сигнальной молекулы и центральный ионный канал.


Участие рецепторов в трансмембранной передаче сигнала.

Рецепторы: 1 - связанные с ионными каналами, например рецептор ГАМК; 2 - с каталитической активностью (рецептор инсулина); 3 - передающие сигнал на фосфолипазу С, например α1-адренорецептор; 4 - с каталитической активностью (гуанилатциклаза, рецептор ПНФ- предсердного натрийуретического фактора ); 5 - передающие сигнал на аденилатциклазу, например β-адренорецепторы; 6 - связывающие гормон в цитозоле или ядре, например рецептор кортизола.

Рецепторы второго типа, локализованные в мембранах и не связанные с каналами, подразделяют на 2 большие группы: каталитические рецепторы, обладающие собственной тирозинкиназной или гуанилатциклазной активностью, и рецепторы, взаимодействующие через G-белок с мембранным ферментом. Связывание лиганда (например, гормона) с рецептором на наружной стороне клеточной мембраны приводит к изменению активности цитоплазматического фермента, который, в свою очередь, инициирует клеточный ответ, т.е. через мембрану переносится информация, а не заряды или растворённые молекулы.

В случае цитоплазматических рецепторов через мембрану проходит гормон, а информация о присутствии гормона в клетке с помощью рецептора передаётся в ядро.

Различные клетки организма в зависимости от выполняемых ими функций имеют определённый набор рецепторов. В мембране одной клетки может быть более десятка разных типов рецепторов. Взаимодействуя с рецептором, внеклеточные химические посредники оказывают влияние на метаболизм и функциональное состояние (пролиферация, секреция и т.д.) клеток-мишеней.

Взаимодействие гормонов с рецепторами, сопряженными с G-белками, приводит к активации аденилатциклазной или инозитолфосфатной регуляторных систем.

Аденилатциклазная система

При участии аденилатциклазной системы реализуются эффекты сотни различных по своей природе сигнальных молекул – гормонов и нейромедиаторов.

Функционирование системы трансмембранной передачи сигналов обеспечивают 5 белков.


  • Взаимодействие активатора аденилатциклазной системы, например гормона с рецептором (Rs), приводит к изменению конформации рецептора

  • Увеличивается сродство рецептора к Gs-белку. Образуется комплекс гормон-рецептор.

  • Присоединение комплекса гормон-рецептор к Gs-ГДФ снижает сродство α-субъединицы Gs-белка к ГДФ и увеличивает сродство к ГТФ. В активном центре αs-субъединицы ГДФ замещается на ГТФ;

  • Это вызывает изменение конформации αs-субъединицы и снижение сродства к βγ-субъединицам

  • Отделившаяся αs-ГТФ субъединица латерально перемещается в липидном слое мембраны к центру связывания фермента аденилатциклазы

  • Взаимодействие αs- ГТФ субъединицы с аденилатциклазой приводит к изменению конформации фермента, его активации и увеличению скорости образования цАМФ из АТФ;

  • В клетке повышается концентрация цАМФ – вторичного посредника гормонального сигнала

  • Молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами протеинкиназы А, которая состоит из 2 регуляторных и 2 каталитических субъединиц

  • Присоединение цАМФ к регуляторным субъединицам вызывает диссоциацию комплекса, каталитические субъединицы отделяются и становятся активными

  • Активная протеинкиназа А с помощью АТФ фосфорилирует специфические

фосфорилированных белков, а это приводит к изменению скорости и направления

регулируемых ими процессов в клетке.

Каскадный механизм усиления и подавления сигнала. Передача сигнала от мембранного рецептора через G-белок на фермент аденилатциклазу служит примером каскадной системы усиления этого сигнала. Одна молекула, активирующая рецептор, может "включать" несколько G-белков, и затем каждый активирует несколько молекул аденилатциклазы с образованием тысяч молекул цАМФ. На этом этапе сигнал усиливается в 10 2 -10 3 раз. Образующийся цАМФ "включают" другой фермент - протеинкиназу А, усиливая сигнал ещё в 1000 раз. Фосфорилирование ферментов протеинкиназой А ещё больше усиливает сигнал, в результате суммарное усиление равно 10 6 -10 7 раз. Таким образом, по механизму каскадного усиления одна молекула регулятора способна изменить активность миллионов других молекул.

Инозитолфосфатная система


  • R- рецептор активатора инозитолфосфатной системы – интегральный белок

  • Фосфолипаза С - поверхностный белок

  • Gplc – ГТФ-связывающий белок активирует фосфолипазу С – заякоренный белок



  • связывание сигнальной молекулы, например гормона с рецептором (R), вызывает изменение конформации и увеличение сродства к Gр1с-белку.

  • образование комплекса гормон-рецептор Gрlс-ГДФ приводит к снижению сродства αрlс-протомера Gрlс-белка к ГДФ и увеличению сродства к ГТФ. В активном центре αрlс-субъединицы ГДФ заменяется на ГТФ.

  • это вызывает изменение конформации αрlс-субъединицы и она отделяется от βγ-

  • отделившаяся α- ГТФ субъединица латерально перемещается по мембране к центру связывания фермента фосфолипазы С.

  • взаимодействие α- ГТФ субъединицы с фосфолиггазой С изменят конформацию и активность фермента, увеличивается скорость гидролиза фосфолипида клеточной мембраны фосфатидилинозитол-4,5-бисфосфата (ФИФ2).

  • в ходе гидролиза образуется и выходит в цитозоль гидрофильное вещество инозитол-1,4,5-трифосфат (ИФ3). Другой продукт реакции диацилглицерол (ДАГ) остаётся в мембране и участвует в активации фермента протеинкиназы С (ПКС).

  • инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са 2+ -канала мембраны ЭР, это приводит к изменению конформации белка и открытию Са 2+ -канала. Са 2+ по градиенту концентрации поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.

  • Повышение концентрации Са 2+ в цитозоле клетки увеличивает скорость взаимодействия Са 2+ с неактивным цитозольным ферментом протеинкиназой С (ПКС) и белком кальмодулином.

  • Связывание протеинкиназы С с ионами кальция позволяет ферменту вступать в кальций-опосредованное взаимодействие с молекулами "кислого" фосфолипида мембраны, фосфатидилсерина (ФС). Диацилглицерол, занимая специфические центры в протеинкиназе С, ещё более увеличивает её сродство к ионам кальция.

  • На внутренней стороне мембраны образуется ферментативный комплекс – (ПКС ▪ Са 2+ ▪ ДАГ ▪ ФС) - активная протеинкиназа С, фосфорилирующая специфические ферменты по серину и треонину.

В клетках многих тканей присутствует белок кальмодулин, который функционирует как внутриклеточный рецептор Са 2+ , он имеет 4 центра для связывания Са 2+ . При повышении концентрации кальция он присоединяется к кальмодулину, образуя комплекс (4Са 2+ -кальмодулин) и этот комплекс взаимодействует с различными белками и ферментами приводит к их активации, повышая скорость фосфорилирования по серину и треонину.

Как и большинство систем трансмембранной передачи сигналов, инозитолфосфатная система имеет не только механизм усиления, но и механизм подавления сигнала. Присутствующие в цитозоле инозитол-1,4,5-трифосфат (ИФ3) и диацилглицерол (ДАТ) в мембране могут в результате серии реакций опять превращаться в фосфатидилинозитол-4,5-бисфосфат (ФИФ2). Ферменты, катализирующие восстановление фосфолипида, активируются фосфорилированием протеинкиназой С.

Концентрация Са 2+ в клетке снижается до исходного уровня при действии Са 2+ -АТФ-аз цитоплазматической мембраны и ЭР, а также Na + /Ca 2+ -и Н + /Са 2+ -транслоказ (активный антипорт) клеточной и митохондриальной мембран.


  • комплексом (4Са 2+ -кальмодулин);

  • протеинкиназой А (фосфорилированием);

  • протеинкиназой С (фосфорилированием). Понижение концентрации Са 2+ в клетке и диацилглицерола в мембране приводит к изменению конформации протеинкиназы С, снижению её сродства к фосфатидилсерину, фермент диссоциирует в цитозоль (неактивная форма). Фосфорилированные протеинкиназой С ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму.

Рецепторы с гуанилатциклазной активностью

Гуанилатциклаза катализирует образование цГМФ из ГТФ, одного из важных посредников внутриклеточной передачи сигнала.

рис. 5-33. регуляция активности мембранной (1) и цитозольной (2) гуанилатциклазы.

Регуляция активности мембранной (1) и цитозольной (2) гуанилатциклазы.

Гуанилатциклаза находится в клетке, как в мембранно-связанном состоянии, так и в цитозольном. Соотношения этих двух форм фермента в различных тканях разное. Например, в клетках тонкого кишечника 90% гуанилатциклазы находится в мембранах, а в лёгких и печени - лишь 20%. Цитозольная и мембранно-связанная гуанилатциклазы различаются не только по локализации, но и по молекулярной массе, активности, способу регуляции.

Цитозольная форма гуанилатциклазы состоит из двух субъединиц (α и β) и содержит в своём составе простетическую группу - гем. В области гема связывается активатор этой формы гуанилатциклазы - оксид азота (NO), образующийся из аргинина под действием фермента синтазы оксида азота.

Мембранно-связанная гуанилатциклаза - трансмембранный гликопротеин. Внутриклеточный домен гуанилатциклазы проявляет каталитическую активность, внеклеточный домен служит рецептором. Присоединение активатора к рецептору вызывает изменение конформации в мембранном и цитозольном доменах и, как следствие, активацию гуанилатциклазы. В тканях человека присутствуют 3 типа мембранно-связанных гуанилатциклаз, в активации которых принимают участие специфические регуляторы - предсердный натрийуретический фактор (ПНФ), натрийуретический пептид из мозга и кишечный пептид гуанилин.

В клетках тканей выявлены 3 основных типа внутриклеточных рецепторных белков, с которыми взаимодействует цГМФ: цГМФ-зависимая протеинкиназа (протеинкиназа G), цГМФ-регулируемые ионные каналы и цГМФ-регулируемая фосфодиэстераза, специфичная к цАМФ (катализирует превращение цАМФ в АМФ).

цГМФ играет важную роль в регуляции Са 2+ -гомеостаза в различных типах клеток. Повышение концентрации цГМФ приводит к понижению концентрации Са 2+ как в результате активации Са 2+ -АТФ-аз, так и за счёт подавления рецепторзависимого поступления этого иона в цитоплазму клетки. Эти эффекты опосредованы действием протеинкиназы G на мембранные белки, участвующие в обмене Са 2+ .

Передача сигнала с помощью внутриклеточных рецепторов

Передача сигнала липидорастворимых стероидных гормонов и тироксина возможна только при прохождении этих гормонов через плазматическую мембрану клеток-мишеней.


Передача сигнала на внутриклеточные рецепторы.

Рецепторы гормонов могут находиться в цитозоле или в ядре. Цитозольные рецепторы связаны с белком-шапероном, который предотвращает преждевременную активацию рецептора. Ядерные и цитозольные рецепторы стероидных и тиреоидных гормонов содержат ДНК-связывающий домен, который обеспечивает в ядре взаимодействие комплекса гормон-рецептор с регуляторными сайтами ДНК.


  • гормон проходит через двойной липидный слой клеточной мембраны и взаимодействует с рецептором.

  • комплекс гормон-рецептор проходит в ядро, взаимодействует с регуляторной нуклеотидной последовательностью в ДНК - энхансером или сайленсером.

  • увеличивается (при взаимодействии с энхансером) или уменьшается (при взаимодействии с сайленсером) доступность промотора для РНК-полимеразы.

  • соответственно увеличивается или уменьшается скорость транскрипции структурных генов.

  • зрелые мРНК выходят из ядра

  • увеличивается или уменьшается скорость трансляции.

  • изменяется количество белков, которые могут влиять на метаболизм и функциональное состояние клетки.

Специфичность сигнализации

Для исследователей, имеющих представление о количестве сигнальных молекул, о соответствующем количестве рецепторов, о трансмембранных системах передачи сигналов, вторичных посредниках, остаётся загадкой, как протеинкиназы выбирают соответствующий фермент метаболического пути для фосфорилирования. Исследователи для объяснения этого явления предлагают "гипотезу мишени". По этой гипотезе специфичность протеинкиназ и фосфопротеинфосфатаз достигается путём образования компартментов на мембране, в состав которых входят не только сами протеинкиназы и фосфопротеинфосфатазы, но и специфические белки-субстраты. Наличие остатка миристиновой или пальмитиновой кислоты в структуре белков-субстратов - условие их "заякоривания" в соответствующем мембранном компартменте.

Однако в большинстве случаев процесс активации какого-либо метаболического процесса находится под контролем не одной, а нескольких систем внутриклеточной сигнализации, поэтому важным фактором ответа клеток служит взаимосвязь этих систем.

Функционирование инозитолфосфатной системы трансмембранной передачи сигнала (рис. 5-42) обеспечивают: R (рецептор), фосфолипаза С, Gрlс — белок, активирующий фосфолипазу С, белки и ферменты мембран и цитозоля.

Рис. 5-42. Инозитолфосфатная система

  • связывание сигнальной молекулы, например гормона с рецептором (R), вызывает изменение конформации и увеличение сродства к Срlс-белку.
  • образование комплекса [Г][Н][Срlс-ГДФ] приводит к снижению сродства α-протомера Срlс-белка к ГДФ и увеличению сродства к ГТФ. ГДФ заменяется на ГТФ.
  • это вызывает диссоциацию комплекса; отделившаяся a-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С.
  • α-ГТФ взаимодействует с фосфолипазой С и активирует её. Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозигол-4,5-бисфосфата(ФИФ2).
  • в ходе гидролиза образуется и выходит в цитозоль гидрофильное вещество инозитол-1,4,5-трифосфат (ИФ3). Другой продукт реакции диацилглицерол (ДАГ) остаётся в мембране и участвует в активации фермента протеинкиназы С (ПКС).
  • инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са 2+ -канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са 2+ поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.

Участие белка кальмодулина в инозитолфосфатной передаче сигнала

В клетках многих тканей присутствует белок кальмодулин, который функционирует как внутриклеточный рецептор Са 2+ , он имеет 4 центра для связывания Са 2+ . Комплекс [кальмодулин] -[4 Са 2+ ] не обладает ферментативной активностью, но взаимодействие комплекса с различными белками и ферментами приводит к их активации.

Саморегуляция системы

Как и большинство систем трансмембранной передачи сигналов, инозитолфосфатная система имеет не только механизм усиления, но и механизм подавления сигнала. Присутствующие в цитозоле инозитол-1,4,5-трифосфат (ИФ3) и диацилглицерол (ДАГ) в мембране могут в результате серии реакций опять превращаться в фосфатидилинозитол-4,5-бисфосфат (ФИФ2). Ферменты, катализирующие восстановление фосфолипида, активируются фосфорилировани-ем протеинкиназой С.

Концентрация Са 2+ в клетке снижается до исходного уровня при действии Са 2+ -АТФ-аз цитоплазматической мембраны и ЭР, а также Na + /Ca 2+ -и Н + /Са 2+ -транслоказ (активный антипорт) клеточной и митохондриальной мембран.

  • комплексом [кальмодулин] [4 Са 2+ ];
  • протеинкиназой А (фосфорилированием);
  • протеинкиназой С (фосфорилированием).

Понижение концентрации Са 2+ в клетке и диацил глицерола в мембране приводит к изменению конформации протеинкиназы С, снижению её сродства к фосфатидилсерину, фермент диссоциирует в цитозоль (неактивная форма).

Фосфорилированные протеинкиназой С ферменты и белки под действием фосфопротеин-фосфатазы переходят в дефосфорилированную форму.

Снятие гормонального сигнала достигается уменьшением концентрации вторичного посредника. Реакции превращения цАМФ или цГМФ в неактивные метаболиты АМФ или ГМФ катализируют ферменты фосфодиэстеразы.

Оксид азота.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са 2+ -зависимой ферментной системы, названной NO-синтазой, которая присутствует в нервной ткани, эндотелии сосудов, тромбоцитах и других тканях. В клетках-мишенях NO взаимодействует с входящим в активный центр гуанилатциклазы ионом железа и способствует быстрому образованию цГМФ. Образовавшийся цГМФ вызывает расслабление гладклй мускулатуры сосудов. Однако действие NO кратковременно, несколько секунд. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

Са 2+ -мессенджерная система.

Ионам Са 2+ принадлежит центральная роль в регуляции многих клеточных функций: регуляция метаболизма, сократительная и секреторная активность, адгезия и клеточный рост. Содержание ионов Са 2+ в клетке в 5000 – 10 000 раз ниже, чем во внеклеточной жидкости, и этот Са 2+ связан с митохондриями или эндоплазматическим ретикулумом. Гормональный сигнал приводит к резкому повышению концентрации Са 2+ , поступающего через мембраны из внеклеточной жидкости или из внутриклеточных источников (митохондрии и ЭПР). Са 2+ связывается с внутриклеточным регуляторным белком кальмодулином, имеющим 4 центра для связывания Са 2+ . Комплекс Са 2+ -кальмодулин, активирует специфическую Са 2+ -кальмодулинзависимую протеинкиназу, которая фосфорилирует ферменты и регулирует их активность. Отмена эффектов, опосредованных ионами Са 2+ , осуществляется с помощью кальцийсвязывающих белков типа кальциневрина.

Инозитолтрифосфатная система.

Функционирование инозитолтрифосфатной системы передачи гормонального сигнала обеспечивают: рецептор, фосфолипаза С, белки и ферменты мембран и цитозоля:

1. связывание гормона с рецептором приводит к активации фосфолипазы С;

2. фосфолипаза С катализирует расщепление мембранного фосфатидилинозитол-4,5-бифосфата на два вторичных посредника – диацилглицерол и инозитолтрифосфат (ИФ3);

3. ИФ3 усиливает поступление Са 2+ в цитозоль и обеспечивает его регуляторные эффекты (см. раздел 4);

4. диацилглицерол активирует протеинкиназу С;

5. конечный эффект обоих посредников – фосфорилирование внутриклеточных белков и ферментов и изменение их активности.

Механизм передачи гормонального сигнала через внутриклеточные рецепторы

Передача сигнала гормонов с липофильными свойствами (стероидные гормоны) и тироксина возможна при прохождении их через плазматическую мембрану клеток-мишеней. Рецепторы гормонов находятся в цитозоле или ядре. Ядерные и цитозольные рецепторы содержат ДНК – связывающий домен.

Последовательность событий, приводящих к активации транскрипции:

1. проникновение гормона через билипидный слой мембраны в клетку;

2. образуется комплекс гормон-рецептор, который перемещается в ядро клетки и взаимодействует с регуляторным участком: ДНК-энхансером или сайленсером;

3. при взаимодействии с энхансером увеличивается (при взаимодействии с сайленсером - уменьшается) доступность промотора для РНК-полимеразы;

4. соответственно увеличивается (уменьшается) скорость транскрипции структурных генов и скорость трансляции;

5. изменяется количество белков (в том числе ферментов), которые влияют на метаболизм и функциональное состояние клетки.

Эффекты гормонов, которые передают сигнал посредством внутриклеточных рецепторов, реализуются через определенный промежуток времени, так как на протекание матричных процессов (транскрипция и трансляция) требуется несколько часов.

Передача сигналов через рецепторы, сопряженные с ионными каналами

Рецепторы, сопряженные с ионными каналами, являются интегральными мембранными белками, состоящими из нескольких субъединиц. Они действуют одновременно как ионные каналы и как рецепторы, которые способны специфически связывать с внешней стороны эффектор, изменяющий их ионную проводимость. Эффекторами такого типа могут быть гормоны (например, инсулин) и нейромедиаторы (ацетилхолин и др.).

Глава 13. Особенности действия гормонов

Гормоны гипоталамуса

ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов поступают в переднюю долю гипофиза, где стимулируют (либерины) или ингибируют (статины) синтез тропных гормонов гипофиза. Другие (окситоцин, вазопрессин) поступают через аксоны нервных клеток в заднюю долю гипофиза, где они хранятся и секретируются в кровь в ответ на соответствующие сигналы. В настоящее время известно 7 либеринов и 3 статина.

Читайте также: