Получение цветных металлов кратко

Обновлено: 05.07.2024

Разделение металлов на черные и цветные является условным. Обычно к черным металлам относят железо, марганец и хром, а остальные металлы — к цветным. Термин “цветные металлы” не следует понимать буквально. Фактически существуют лишь два цветных металла: розовая медь и желтое золото, в отношении же остальных металлов можно говорить не об их цвете, а об их различных оттенках, чаще всего серебристо-серого или красноватого тонов.

Также условно цветные металлы можно разделить на четыре группы:

  1. тяжелые металлы — медь, никель, свинец, цинк, олово;
  2. легкие металлы — алюминий, магний, кальций, калий, натрий, барий, бериллий, литий;
  3. благородные металлы — золото, серебро, платина и ее природные спутники (родий, иридий, палладий, осмий);
  4. редкие металлы; к этой группе относятся:
    1. тугоплавкие металлы — молибден, вольфрам, ванадий, титан, ниобий, тантал и цирконий;
    2. легкие — стронций, скандий, рубидий и цезий;
    3. радиоактивные — уран, радий, торий, актиний и протактиний;
    4. рассеянные и редкоземельные — германий, галлий, гафний, индий, лантан, таллий, церий и рений.

    Промышленное значение цветных металлов очень велико и особенно возросло с развитием новой техники, в том числе связанной с реактивной и атомной энергетикой, освоением космического пространства и расцветом радиоэлектроники. Наиболее массовыми металлами являются медь, цинк, свинец, олово, никель, алюминий, магний и титан.

    В последние годы все более важное значение начинают приобретать металлы, отнесенные к группе редких. Развитие современной авиации с широким использованием реактивных двигателей потребовало все большего применения не только никеля и хрома, но и молибдена и вольфрама. Расширяется область применения радиоактивных металлов, открывающих огромные энергетические ресурсы атомного распада и позволяющих получать новые элементы.

    Сильно возросла роль многих металлов и металлоидов, в том числе полупроводниковых материалов (бора, германия, селена, теллура, кремния), в развитии приборостроения, радиоэлектроники, радиолокации и вычислительной техники.

    В связи с развитием квантовой техники и других отраслей промышленности большое значение начинают приобретать металлы, переходящие при температуре 0,5—8 К в сверхпроводящее состояние. К ним относятся алюминий, галлий, ванадий, титан, олово и др.

    Выпуск цветных металлов, в том числе высокой чистоты, возрастает из года в год. Совершенствуются прежние и создаются новые способы их производства.

    Методы производства цветных металлов очень разнообразны. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, часто в качестве источника тепла и химического реагента используют серу, содержащуюся в рудах. Ряд металлов с успехом получают так называемым гидрометаллургическим способом с переводом их в растворимые соединения и последующим выщелачиванием.

    Часто оказывается наиболее приемлемым электролитический процесс водных растворов или расплавленных сред.

    Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду. Можно указать еще на такие способы, как химико-термический, цианирование и хлорид-возгонка.

    Основы хлоридных методов производства металлов

    Хлор обладает большим химическим сродством к металлам и при определенных условиях может вытеснить кислород из оксидов с образованием хлоридов. Процесс значительно облегчается в присутствии углерода, так как в этом случае кислород соединяется с углеродом. Например, применительно к двухвалентному металлу возможны следующие процессы:

    При этом Q2 1 (по абсолютному значению), и даже в некоторых случаях процесс, протекающий по второй реакции, экзотермичен. Следует подчеркнуть, что и реакции первого типа протекают при более низких температурах, чем анало­гичные реакции восстановления оксидов углеродом. Важным обстоятельством является то, что хлориды обычно образуют­ся в газообразном состоянии, легко уводятся из процесса, а процесс производства карбидообразующих металлов хлоридным методом в отличие от восстановления углеродом обеспечивает получение малоуглеродистого продукта. В некоторых случаях хлориды находятся в недрах земли или в соленых водоемах. Из хлоридов металлы получают восстановлением или же электролизом из расплавов.

    Цветная металлургия – это не только комплекс мероприятий по получению цветных металлов (добыча, обогащение, металлургический передел, получение отливок чистых металов и сплавов на их основе), но и переработка лома цветных металлов.

    Научно-технический прогресс не стоит на месте, и цветные металлы на сегодняшний день широко используются для разработки инновационных конструкционных материалов. Только отечественная металлургическая промышленность выпускает порядка 70 видов сплавов, используя разнообразное сырье.

    В связи с низким содержанием необходимого компонента в руде и примесей других элементов, цветная металлургия является энергозатратным производством и имеет сложную структуру. Так, меди в руде содержится не более 5%, а цинка и свинца не более 5,5%. Колчеданы, добываемые на Урале, многокомпонентные, и в их составе находится порядка 30 химических элементов.

    Цветная металлургия

    Цветные металлы подразделяются на шесть категорий, согласно своим физическим свойствам и предназначению:

    1. Тяжелые. Имеют высокую плотность, соответственно, и вес. К ним относятся Cu, Ni, Pb, Zn, Sn.
    2. Легкие. Имеют малый вес из-за незначительной удельной плотности. К ним относятся: Al, Mg, Ti, Na, Ka, Li.
    3. Малые: Hg, Co, Bi, Cd, As, Sb.
    4. Легирующие. В основном используются для получения сталей и сплавов с необходимыми качествами. Это W, Mo, Ta, Nb, V.
    5. Благородные. Широко известны и используются для изготовления ювелирных украшений. Среди них Au, Ag, Pt.
    6. Редкоземельные, рассеянные: Se, Zr, Ga, In, Tl, Ge.

    Специфика отрасли

    Руды цветных металлов, как было выше сказано, содержат малое количество добываемого элемента. Поэтому на тонну той же меди необходимо до 100 т руды. Из-за большой потребности в сырье цветная металлургия, по большей части, располагается вблизи своей сырьевой базы.

    Цветные руды для своей переработки требуют большого количества топлива или электроэнергии. Энергетические затраты достигают половины общих затрат, связанных с выплавкой 1 т металла. В связи с этим металлургические предприятия располагаются в непосредственной близости от производителей электроэнергии.

    Производство редких металлов в основном основано на восстановлении из соединений. Сырье поступает с промежуточных этапов обогащения руд. Из-за небольших объемов и трудности производства получением редких металлов занимаются лаборатории.

    Состав отрасли

    Виды цветной металлургии включают в себя отрасли, связанные с получением определенных видов металлов. Так, укрупнено можно выделить следующие отрасли:

    • производство меди;
    • производство алюминия;
    • производство никеля и кобальта;
    • производство олова;
    • производство свинца и цинка;
    • добыча золота.

    Получение никеля тесно связано с местом добычи никелевых руд, которые расположены на Кольском полуострове и в Норильском районе Сибири. Многие отрасли цветной металлургии отличаются многоступенчатым металлургическим переделом промежуточных продуктов.

    Цветные металлы

    На этом основании эффективен комплексный подход. Это сырье для получения других сопутствующих металлов. Утилизация отходов сопровождается получением материалов, использующихся не только в других отраслях тяжелого машиностроения, но и в химической и строительной отраслях.

    Металлургия тяжелых металлов

    Получение меди

    Основными этапами получения чистой меди являются выплавка черновой меди и ее дальнейшее рафинирование. Черновая медь добывается из руд, а низкая концентрация меди в уральских медных колчеданах и большие ее объемы не позволяют перенести производственные мощности с Урала. В качестве резерва выступают: медистые песчаники, медь-молибденовые, медь-никелевые руды.

    Рафинирование меди и переплавка вторичного сырья производится на предприятиях, которые удалены от источников добычи и первичной плавки. Благоприятствует им низкая стоимость электричества, так как для получения тонны меди расходуется до 5 кВт энергии в час.

    Металлургический завод

    Утилизация сернистых газов с последующей переработкой послужила стартом для получения серной кислоты в химической промышленности. Из остатков апатитов производит фосфатные минеральные удобрения.

    Получение свинца и цинка

    Металлургия цветных металлов, таких как свинец и цинк, имеет сложную территориальную разобщенность. Добычу руды ведут на Северном Кавказе, в Забайкалье, Кузбассе и на Дальнем Востоке. А обогащение и металлургический передел проводится не только возле мест выемки руды, но и на других территориях с развитой металлургией.

    Свинцовые и цинковые концентраты богаты на химическую элементную базу. Однако сырье имеет разное процентное содержание элементов, из-за чего не всегда цинк и свинец можно получить в чистом виде. Поэтому технологические процессы в районах различны:

    1. В Забайкалье получают только концентраты.
    2. На Дальнем Востоке получают свинец и цинковый концентрат.
    3. На Кузбассе получают цинк и свинцовый концентрат.
    4. На Северном Кавказе ведут передел.
    5. На Урале производят цинк.

    Металлургия легких металлов

    Наиболее распространенным легким металлом является алюминий. Сплавы на его основе обладают свойствами, присущими конструкционным и специальным сталям.

    Для получения алюминия сырьем являются бокситы, алуниты, нефелины. Производство разделено на две стадии:

    1. На первой стадии получают глинозем и необходим большой объем сырья.
    2. На второй стадии электролитическим методом производят алюминий, на что требуется недорогая энергия. Поэтому этапы производства находятся на разных территориях.

    Получение алюминия и сплавов сосредоточено в промышленных центрах. Сюда же поставляется лом на вторичную переработку, что в итоге снижает себестоимость готовой продукции.


    Называется этот процесс восстанов­лением металлов из руд. Для того чтобы он мог идти, пускают в ход высокие темпе­ратуры, расплавляя руду.

    Посмотрим, как этим способом получают медь на современных заводах.

    Снова пускается в ход огонь. Следующая стадия очистки меди так и называется — ог­невое рафинирование. Опять вы­жигаются остатки серы и некоторых других элементов. И опять при этом часть меди окис­ляется. Чтобы вернуть меди свободу от кис­лорода, в ванну с расплавом погружают дере­вянные жерди, словно дразнят медь. Это так и называется — дразнение. Дерево отби­рает у меди кислород. Теперь примесей уже только десятые доли процента.


    Когда-то с этим приходилось мириться. Те­перь можно идти дальше. Медь отправляется на электролиз. Брусок очищаемой меди поме­щается в электролитическую ванну в качестве анода. Электрический ток переносит к катоду только атомы меди. Золото, платина, серебро опускаются на дно ванны. Они тоже не про­падут.

    Маленькое отступление. Все большее зна­чение приобретает сейчас хлорирова­ние металлов. Руду цветного металла, например олова, обрабатывают хлором. Затем задача уже не в восстановлении металла, не в освобождении его от кислорода, а в раз­рушении соединения металла с хлором. Это проще и не требует таких высоких температур. Поэтому и распространяется этот метод, не­смотря на один недостаток хлора — едкость.

    Но вернемся к электролизу. Он помогает металлургам и в получении алюминия из рас­плавленного соединения металла с кислородом.

    Очень сложную задачу поставил в свое время перед металлургами этот важнейший из цветных металлов. Его рудный концентрат — глинозем (окись алюминия) — плавится при очень высокой температуре — две с лишним тысячи градусов. Почти на 1000° выше точки плавления меди. Чтобы понизить температуру плавления, пришлось искусственно понижать концентрацию алюминия в электролитической ванне — растворять глинозем в расплавленном минерале криолите. Точка плавления раствора чуть ниже тысячи градусов. А это уже устраи-

    вает металлургов. Правда, природного крио­лита на Земле так мало, что минерал этот приходится изготовлять искусственно. Но и это все равно дешевле, чем каждый раз нагре­вать чистый глинозем.

    Титан и магний, кальций и бериллий и мно­гие другие металлы часто тоже получают с по­мощью электролиза, разлагая их расплавлен­ные соли. Но для того чтобы сделать эти соли жидкими, опять требуются высокие темпера­туры.

    Однако металлурги в ряде случаев умеют обходиться без такого сильного нагрева. Кроме пирометаллургии, существует гидрометаллургия. Тут металл тоже переводится в жидкость, но не огнем, а с помощью химиче­ского растворителя. Им могут оказаться и просто вода, и растворы кислот, щелочей, со­лей, и сложные органические жидкости.

    Извлечь чистый металл из раствора его со­единения сравнительно легко. В одних случаях пускают в ход электролиз. В других прибега­ют к обменным химическим реакциям. Вы, наверное, знаете, что, если опустить в жидкий медный купорос кусок железа, хотя бы старое бритвенное лезвие, на нем начнет осаждаться медь. В обмен в раствор уходят ионы железа.

    Тот же по существу процесс идет в заводских масштабах на многих предприятиях, получаю­щих медь.

    Особенно широко применяется гидрометал­лургия при переработке комплексных руд. В нашей стране есть комбинаты, которые из одного месторождения добывают восемь, один­надцать, четырнадцать химических элементов. А химики Германской Демократической Рес­публики на уникальном месторождении — Мандсфельдских нефтяных сланцах получают даже сразу двадцать пять элементов. Когда в каждом кубическом сантиметре руды есть, скажем, и марганец, и кобальт, и молиб­ден, и еще добрый десяток ценнейших элемен­тов, куда легче отделить металлы в целом от пустой породы, чем друг от друга. И вот руд­ный концентрат поочередно обрабатывается сильными реактивами. Стремятся к тому, чтобы в каждой жидкости растворились соединения только одного металла.

    Добыча и получение цветных металлов име­ют огромное народнохозяйственное значение. Ведь в ряде случаев цветные металлы просто незаменимы. Хотите убедиться в этом? Тогда прочитайте следующую статью.


    Называется этот процесс восстанов­лением металлов из руд. Для того чтобы он мог идти, пускают в ход высокие темпе­ратуры, расплавляя руду.

    Посмотрим, как этим способом получают медь на современных заводах.

    Снова пускается в ход огонь. Следующая стадия очистки меди так и называется — ог­невое рафинирование. Опять вы­жигаются остатки серы и некоторых других элементов. И опять при этом часть меди окис­ляется. Чтобы вернуть меди свободу от кис­лорода, в ванну с расплавом погружают дере­вянные жерди, словно дразнят медь. Это так и называется — дразнение. Дерево отби­рает у меди кислород. Теперь примесей уже только десятые доли процента.


    Когда-то с этим приходилось мириться. Те­перь можно идти дальше. Медь отправляется на электролиз. Брусок очищаемой меди поме­щается в электролитическую ванну в качестве анода. Электрический ток переносит к катоду только атомы меди. Золото, платина, серебро опускаются на дно ванны. Они тоже не про­падут.

    Маленькое отступление. Все большее зна­чение приобретает сейчас хлорирова­ние металлов. Руду цветного металла, например олова, обрабатывают хлором. Затем задача уже не в восстановлении металла, не в освобождении его от кислорода, а в раз­рушении соединения металла с хлором. Это проще и не требует таких высоких температур. Поэтому и распространяется этот метод, не­смотря на один недостаток хлора — едкость.

    Но вернемся к электролизу. Он помогает металлургам и в получении алюминия из рас­плавленного соединения металла с кислородом.

    Очень сложную задачу поставил в свое время перед металлургами этот важнейший из цветных металлов. Его рудный концентрат — глинозем (окись алюминия) — плавится при очень высокой температуре — две с лишним тысячи градусов. Почти на 1000° выше точки плавления меди. Чтобы понизить температуру плавления, пришлось искусственно понижать концентрацию алюминия в электролитической ванне — растворять глинозем в расплавленном минерале криолите. Точка плавления раствора чуть ниже тысячи градусов. А это уже устраи-

    вает металлургов. Правда, природного крио­лита на Земле так мало, что минерал этот приходится изготовлять искусственно. Но и это все равно дешевле, чем каждый раз нагре­вать чистый глинозем.

    Титан и магний, кальций и бериллий и мно­гие другие металлы часто тоже получают с по­мощью электролиза, разлагая их расплавлен­ные соли. Но для того чтобы сделать эти соли жидкими, опять требуются высокие темпера­туры.

    Однако металлурги в ряде случаев умеют обходиться без такого сильного нагрева. Кроме пирометаллургии, существует гидрометаллургия. Тут металл тоже переводится в жидкость, но не огнем, а с помощью химиче­ского растворителя. Им могут оказаться и просто вода, и растворы кислот, щелочей, со­лей, и сложные органические жидкости.

    Извлечь чистый металл из раствора его со­единения сравнительно легко. В одних случаях пускают в ход электролиз. В других прибега­ют к обменным химическим реакциям. Вы, наверное, знаете, что, если опустить в жидкий медный купорос кусок железа, хотя бы старое бритвенное лезвие, на нем начнет осаждаться медь. В обмен в раствор уходят ионы железа.

    Тот же по существу процесс идет в заводских масштабах на многих предприятиях, получаю­щих медь.

    Особенно широко применяется гидрометал­лургия при переработке комплексных руд. В нашей стране есть комбинаты, которые из одного месторождения добывают восемь, один­надцать, четырнадцать химических элементов. А химики Германской Демократической Рес­публики на уникальном месторождении — Мандсфельдских нефтяных сланцах получают даже сразу двадцать пять элементов. Когда в каждом кубическом сантиметре руды есть, скажем, и марганец, и кобальт, и молиб­ден, и еще добрый десяток ценнейших элемен­тов, куда легче отделить металлы в целом от пустой породы, чем друг от друга. И вот руд­ный концентрат поочередно обрабатывается сильными реактивами. Стремятся к тому, чтобы в каждой жидкости растворились соединения только одного металла.

    Добыча и получение цветных металлов име­ют огромное народнохозяйственное значение. Ведь в ряде случаев цветные металлы просто незаменимы. Хотите убедиться в этом? Тогда прочитайте следующую статью.

    Читайте также: