Поле прямого и кругового токов кратко

Обновлено: 08.07.2024

Магнитная индукция — векторная величина: в каждой точке поля вектор магнитной индукции направлен по касательной к магнитным силовым линиям.

При исследовании магнитного поля были установлены два факта:

1. Магнитное поле действует только на движущиеся заряды;

2. Движущиеся заряды, в свою очередь создают магнитное поле.

Таким образом, мы видим, что магнитное поле существенно отличается от электростатического поля, которое действует как на движущиеся, так и на покоящиеся заряды.

Магнитное поле– силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом.

Любое магнитное поле обладает энергией, которая проявляет себя при взаимодействии с другими телами. Под влиянием магнитных сил движущиеся частички меняют направление своего потока. Магнитное поле появляется лишь вокруг тех электрических зарядов, которые находятся в движении. Всякое изменение электрического поля влечет за собой появление магнитных полей.

Обратное утверждение также верно: изменение магнитного поля - предпосылка к возникновению электрического. Такое тесное взаимодействие привело к созданию теории электромагнитных сил, с помощью которых и сегодня успешно объясняются различные физические явления.

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно, обозначается символом Н.

Магнитное поле прямого и кругового токов.

Магнитное поле прямого тока, т е тока текущего по прямому проводу бесконечной длины


- магнитное поле элемента тока ,dl – элемент длины провода

- проинтегрировав в этих пределах последнее выражение получим магнитное поле равное:

-магнитное поле прямого тока

от всех элементов тока будет образовываться конус векторов , результирующий вектор направлен вверх по осиZ. Сложим проекции векторов на осьZ, тогда каждая проекция имеет вид:

угол между и радиус векторомrравен .

Интегрируя по dl и учитывая , получим

- магнитное поле на оси кругового витка

Линии напряженности магнитного поля

Магнетизм

Характеристики магнитного поля (напряженность, индукция). Силовые линии, напряженность и магнитная индукция прямого тока, в центре кругового тока.

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ

Магнитная индукция — векторная величина: в каждой точке поля вектор магнитной индукции направлен по касательной к магнитным силовым линиям.

При исследовании магнитного поля были установлены два факта:

1. Магнитное поле действует только на движущиеся заряды;

2. Движущиеся заряды, в свою очередь создают магнитное поле.

Таким образом, мы видим, что магнитное поле существенно отличается от электростатического поля, которое действует как на движущиеся, так и на покоящиеся заряды.




Магнитное поле– силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом.

Любое магнитное поле обладает энергией, которая проявляет себя при взаимодействии с другими телами. Под влиянием магнитных сил движущиеся частички меняют направление своего потока. Магнитное поле появляется лишь вокруг тех электрических зарядов, которые находятся в движении. Всякое изменение электрического поля влечет за собой появление магнитных полей.

Обратное утверждение также верно: изменение магнитного поля - предпосылка к возникновению электрического. Такое тесное взаимодействие привело к созданию теории электромагнитных сил, с помощью которых и сегодня успешно объясняются различные физические явления.

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно, обозначается символом Н.

Магнитное поле прямого и кругового токов.

Магнитное поле прямого тока, т е тока текущего по прямому проводу бесконечной длины


- магнитное поле элемента тока ,dl – элемент длины провода

- проинтегрировав в этих пределах последнее выражение получим магнитное поле равное:

-магнитное поле прямого тока

от всех элементов тока будет образовываться конус векторов , результирующий вектор направлен вверх по осиZ. Сложим проекции векторов на осьZ, тогда каждая проекция имеет вид:

угол между и радиус векторомrравен .

Интегрируя по dl и учитывая , получим

- магнитное поле на оси кругового витка

Линии напряженности магнитного поля

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.


Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.


Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:


При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.


Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.


  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.


Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?


Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.



Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)


Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.


Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.


Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?


Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.


Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита


Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.


Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.


На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

1. Определить правило, по которому можно определить направление вектора магнитной индукции в данном случае.

2. Применить выбранное правило и определить направление вектора магнитной индукции относительно рисунка.

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить


Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить


Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

Читайте также: