Пластиды и вакуоли это в биологии кратко

Обновлено: 30.06.2024

Наличие пластид — главная особенность растительной клетки.

Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.

Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .

Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.

Строение животной клетки

Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки :

1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;

4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.

Пластиды — специализированные органоиды, встречающиеся в живых эукариотических клетках растений. Для животных и грибов не характерны.

Виды пластидов

Виды пластидов

Совокупность пластид в клетке называют пластидомом, хотя в зрелой клетке содержатся пластиды только одного вида. В зависимости от окраски выделяют следующие пластиды:

  • Хлоропласты (зеленые).
  • Хромопласты (оранжевые).
  • Лейкопласты (бесцветные).

Виды пластидов

Происхождение и трансформация пластид

Пластиды происходят одинаково – из пропластид. Эволюционными предками ученые считают бактерии, которые были поглощены другой бактерией эндоцитозом. Первая бактерия, скорее всего, могла преобразовывать энергию света.

Могут превращаться друг в друга по ситуации. В условиях слабой освещенности хлоропласты могут преобразовываться в лейкопласты. Хромопласты же могут образовываться из зеленых и бесцветных пластид в случае накопления каротиноидов.

Строение хлоропласта

Размер и число хлоропластов зависит от вида растения и клетки, где они расположены. На величину и очертания влияют условия среды и таксономичекая принадлежность растений. Например, у высших растений хлоропласты линзовидные. Крупные и богатые хлорофиллом, магнийсодержащим пигментом, органоиды у растений теневой зоны. У водорослей хлорофилл назван хроматофором и может принимать следующие формы: шаровидная, спиральная, чашевидная и другие.

Положение органоидов в клетке может меняться, так как они не закреплены, однако, чаще всего хлоропласты расположены близ клеточной стенки. Это нужно для того, чтобы улавливать свет.

Хлоропласты имеют двумембранную оболочку, которая отграничивает содержимое органоида от цитоплазмы. Мембраны не несут другие органоиды. У высших растений сильно развита внутренняя мембранная поверхность, которая образует плоские мешки – тилакоиды или более вытянутые – ламеллы. Несколько плотно собранных в стопки тилакоидов образуют граны. Важно: все тилакоиды расположены параллельно друг другу. На их стенках расположены молекулы хлорофилла. Граны связаны между собой тилакоидами стромы.

Строма – жидкая часть пластидов, где располагаются все части органоида.

Строение хлоропласта

Рис. 1. Ультраструктура хлоропласта:
1. внешняя мембрана
2. межмембранное пространство
3. внутренняя мембрана (1 + 2 + 3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламелла)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира)

Строение хромопласта

Встречаются в клетках лепестков, плодов, корнеплодах. Хромопласты разнообразны по форме и меньше хлоропластов. Система выростов внутренней мембраны не развита. Внутри пластида содержится пигменты желтого, оранжевого и красного цвета.

Строение хромопласта

Рис. 2.

Строение лейкопласта

Лейкопласты – бесцветные пластиды. Встречаются в частях растениях, спрятанных от света, например в корнях, клубнях, семенах. Эти пластиды имеют шаровидную, чашевидную форму, но она может свободно меняться. Система выростов внутренней мембраны развита слабо. Тилакоиды одиночные, располагаются без особой ориентации в пространстве. Во всем остальной лейкопласты схожи с хлоропластами.

Строение лейкопласта

Рис. 3.

Выделяется несколько видов лейкопластов по запасаемым веществам

  • Амилопласты, накапливают крахмал.
  • Протеропласты, накапливают белки.
  • Олеопласты, накапливают жирные масла.

Функции пластидов

Пластиды

Функции

Фотосинтез – образование органических веществ из неорганических с использованием энергии света

Связаны с синтезом и накоплением запасных веществ

Окрашивают различные части растений, что важно для привлечения насекомых-опылителей

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды — лейкопласты;
  • окрашенные — хлоропласты (зеленого цвета);
  • окрашенные — хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

Виды пластид: хлоропласты, хромопласты, лейкопласты

Строение и функции хлоропластов

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта

Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Сходство молекулы хлорофилла и молекулы гемоглобина

Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

Строение хромопласта

Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

Строение лейкопласта

Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Пластиды — специализированные органоиды, встречающиеся в живых эукариотических клетках растений. Для животных и грибов не характерны.

Виды пластидов

Виды пластидов

Совокупность пластид в клетке называют пластидомом, хотя в зрелой клетке содержатся пластиды только одного вида. В зависимости от окраски выделяют следующие пластиды:

  • Хлоропласты (зеленые).
  • Хромопласты (оранжевые).
  • Лейкопласты (бесцветные).

Виды пластидов

Происхождение и трансформация пластид

Пластиды происходят одинаково – из пропластид. Эволюционными предками ученые считают бактерии, которые были поглощены другой бактерией эндоцитозом. Первая бактерия, скорее всего, могла преобразовывать энергию света.

Могут превращаться друг в друга по ситуации. В условиях слабой освещенности хлоропласты могут преобразовываться в лейкопласты. Хромопласты же могут образовываться из зеленых и бесцветных пластид в случае накопления каротиноидов.

Строение хлоропласта

Размер и число хлоропластов зависит от вида растения и клетки, где они расположены. На величину и очертания влияют условия среды и таксономичекая принадлежность растений. Например, у высших растений хлоропласты линзовидные. Крупные и богатые хлорофиллом, магнийсодержащим пигментом, органоиды у растений теневой зоны. У водорослей хлорофилл назван хроматофором и может принимать следующие формы: шаровидная, спиральная, чашевидная и другие.

Положение органоидов в клетке может меняться, так как они не закреплены, однако, чаще всего хлоропласты расположены близ клеточной стенки. Это нужно для того, чтобы улавливать свет.

Хлоропласты имеют двумембранную оболочку, которая отграничивает содержимое органоида от цитоплазмы. Мембраны не несут другие органоиды. У высших растений сильно развита внутренняя мембранная поверхность, которая образует плоские мешки – тилакоиды или более вытянутые – ламеллы. Несколько плотно собранных в стопки тилакоидов образуют граны. Важно: все тилакоиды расположены параллельно друг другу. На их стенках расположены молекулы хлорофилла. Граны связаны между собой тилакоидами стромы.

Строма – жидкая часть пластидов, где располагаются все части органоида.

Строение хлоропласта

Рис. 1. Ультраструктура хлоропласта:
1. внешняя мембрана
2. межмембранное пространство
3. внутренняя мембрана (1 + 2 + 3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламелла)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира)

Строение хромопласта

Встречаются в клетках лепестков, плодов, корнеплодах. Хромопласты разнообразны по форме и меньше хлоропластов. Система выростов внутренней мембраны не развита. Внутри пластида содержится пигменты желтого, оранжевого и красного цвета.

Строение хромопласта

Рис. 2.

Строение лейкопласта

Лейкопласты – бесцветные пластиды. Встречаются в частях растениях, спрятанных от света, например в корнях, клубнях, семенах. Эти пластиды имеют шаровидную, чашевидную форму, но она может свободно меняться. Система выростов внутренней мембраны развита слабо. Тилакоиды одиночные, располагаются без особой ориентации в пространстве. Во всем остальной лейкопласты схожи с хлоропластами.

Строение лейкопласта

Рис. 3.

Выделяется несколько видов лейкопластов по запасаемым веществам

  • Амилопласты, накапливают крахмал.
  • Протеропласты, накапливают белки.
  • Олеопласты, накапливают жирные масла.

Функции пластидов

Пластиды

Функции

Фотосинтез – образование органических веществ из неорганических с использованием энергии света

Связаны с синтезом и накоплением запасных веществ

Окрашивают различные части растений, что важно для привлечения насекомых-опылителей

Читайте также: