Первичные вторичные и третичные поля головного мозга кратко

Обновлено: 05.07.2024

2.2. Анатомическая и функциональная дифференциация мозга

2.2.1. Поля коры мозга

Согласно сложившимся представлениям, кора мозга имеет шесть основных слоев, каждый из которых состоит из различных по форме и размеру нервных клеток. Этот анатомический факт имеет, однако, не столь важное значение для понимания нейро-психологических феноменов, как функциональная дифференциация коры на три основных вида полей — первичные, вторичные и третичные (рис. 8, цв. вкл.). Они различаются между собой по иерархии. Наиболее элементарными являются первичные, более сложными по строению и функционированию — вторичные, и, наконец, наиболее сложными по этим признакам являются третичные поля.

Поля каждого из уровней имеют свою нумерацию, которая указывается на цитоархитектонических картах мозга. Наиболее распространенной из них является карта Бродмана (рис. 6, цв. вкл.).

Первичные поля, находящиеся в лобной доле (до центральной извилины), а именно поля 10, 11, 47, настроены на подготовку и исполнение двигательных актов, относящихся к физическому Уровню.

Первичные поля слухового анализатора располагаются преимущественно на внутренней поверхности височных долей мозга (поля 41, 42), кинестетического (чувствительного в целом) вблизи от центральной (Ролландовой) борозды, в теменной доле (поля 3, 1 и 2).

В структурно-функциональном отношении кора большого мозга может быть разделена на передний (лобная доля) и задний (затылочная, теменная и височная доли) отделы. Граница между ними проходит по центральной борозде. Задний отдел осуществляет восприятие афферентных сигналов. Расположенные здесь корковые поля неравноценны в функциональном отношении, и их можно разделить на первичные, вторичные и третичные.

Первичные поля коры представляют собой четко отграниченные участки, которые соответствуют центральным частям анализаторов. В эти поля проходит по специфическим проекционным афферентным путям основная масса сигналов от органов чувств. Первичные поля характеризуются сильным развитием внутренней зернистой пластинки. Первичные поля связаны с реле-ядрами таламуса и ядрами коленчатых тел. Они имеют экранную структуру и, как правило, жесткую соматотопическую проекцию, при которой отдельные участки периферии проецируются в соответствующие им участки коры. Повреждение первичных полей коры сопровождается нарушением непосредственного восприятия и тонкой дифференцировки раздражений.

Представительство кожной и сознательной проприоцептивной чувствительности находится первичных корковых полях (1, 2, 3), занимающих постцентральную извилину. В каждом полушарии имеется обратная проекция поверхности противоположной половины тела. В верхней части извилины находится проекция нижней конечности, ниже располагается проекция живота, груди, еще ниже проецируется нижняя конечность. Самую нижнюю часть постцентральной извилины занимают зоны, связанные с иннервацией головы и шеи, но проекция частей лица является не обратной, а прямой. Данные изучения колонковой организации коры свидетельствуют о том, что каждый сегмент тела (дерматом) проецируется на кору в виде узкой полоски, идущей спереди назад через все цитоархитектонические поля постцентральной коры; при этом к колонкам поля 1 подходят афферентные волокна от кожи, к полю 2 - от суставов и к полю 3 - от мышц.

Первичные слуховые поля (41, 42) локализуются в поперечных височных извилинах (Гешля) и заходят в верхнюю височную извилину. В этих полях представлены по порядку участки улитки, воспринимающие различные звуковые частоты. Деление на колонки выражено в слуховой коре наиболее отчетливо.

Первичные обонятельные поля находятся в археокортексе, покрывающем обонятельный треугольник, переднее продырявленное вещество, прозрачную перегородку и подмозолистое поле.

Первичное вкусовое поле располагается, по мнению большинства исследователей, в нижнем участке постцентральной извилины, в глубине латерал ьной борозды, и соответствует проекции языка.

Корковый конец вестибулярного анализатора, по данным различных авторов, имеет представительство в средней височной извилине (поле 21), верхней теменной дольке, верхней височной извилине.

Представительство в коре внутренних органов изучено недостаточно, по-видимому, оно имеет более диффузный характер. Важная роль в регуляции функций внутренностей отводится лимбической области коры, в которую входит поясная и парагиппокампальная извилины, гиппокамп, прозрачная перегородка и подмозолистое поле. Лимбическая кора вместе с подкорковыми образованиями (миндалевидное тело, ядро поводков, ядра сосцевидных тел) составляет лимбическую систему, которая представляет субстрат эмоций и реакций, связанных с основными биологическими влечениями (голод, жажда, страх и т.д.).

Вторичные поля коры примыкают к первичным полям. Их можно рассматривать как периферические части корковых анализаторов. Эти поля связаны с ассоциативными ядрами таламуса. При поражении вторичных полей сохраняются элементарные ощущения, но нарушается способность к более сложным восприятиям. Вторичные поля не имеют четких границ, в них не выражена соматотопическая проекция.

Вторичное поле общей чувствительности локализуется в верхней теменной дольке (поля 5, 7). Вторичные зрительные поля (18, 19) занимают медиальную поверхность затылочной доли и большую часть латерал ьной поверхности. Вторичное слуховое поле (22) находится в верхней и средней височных извилинах. Вторичные обонятельные и вкусовые поля локализуются в парагиппокампальной извилине и крючке (поля 28, 34).

Третичные поля коры отличаются наиболее тонкой нейрон ной структурой и преобладанием ассоциативных элементов. Они занимают всю нижнюю теменную дольку и часть верхней теменной дольки, а также затылочно-височно-теменную область. Эти поля связаны с задними ядрами таламуса. В третичных полях осуществляются наиболее сложные взаимодействия анализаторов, лежащие в основе познавательного процесса (гнозия), формируются программы целенаправленных действий (праксия).

Передний отдел полушария имеет отношение к организации действий и также подразделяется на первичные, вторичные и третичные корковые поля. Первичное двигательной поле (4) располагается в предцентральной извилине. Здесь отсутствует внутренняя зернистая пластинка (агранулярная кора) и особенно сильно развита внутренняя пирамидная пластинка с гигантскими пирамидными нейрон ами Беца. Аксоны этих нейрон ов образуют пирамидный путь. На клетки Беца непосредственно переключаются импульсы, поступающие из мозжечка через центральное медиальное ядро таламуса. В первичном двигательном поле вся мускулатура тела представлена в обратной проекции, как и кожный покров в постцентральной извилине. Кора здесь разделена на колонки, которые связаны с определенными группами двигательных нейрон ов спинного мозга и управляют движением отдельных мышц или мышечных групп.

Вторичные двигательные поля (6, 8) находятся кпереди от предцентральной извилины. Они характеризуются сильным развитием наружной и внутренней пирамидных пластинок, в которых преобладают большие пирамидные нейрон ы. Во вторичные поля передаются сигналы из мозжечка. Эфферентные волокна идут отсюда к ядрам полосатого тела. Таким образом, вторичные двигательные поля имеют отношение к экстрапирамидной системе, их функция необходима для выполнения сложных стереотипных двигательных актов. Первичные и вторичные двигательные поля имеют богатые связи с задним отделом полушария. Обратная связь между аппаратом движения и корой осуществляется через мозжечок, который воспринимает проприоцептивные раздражения и после соответствующей переработки передает их в кору большого мозга.

Третичные поля занимают большую часть лобной доли, на них приходится около 1/4 всей поверхности коры. Здесь хорошо выражена внутренняя зернистая пластинка, к нейрон ам которой идут волокна из медиальных ядер таламуса. Третичные поля лобной коры связаны с высшими формами целенаправленной деятельности и играют важную роль в социальном поведении. При их поражении не нарушается ощущение или движение, но человек становится пассивным, не может оценивать происходящие события и свое поведение, теряет способность к предвидению.

Важнейшую особенность человека составляет членораздельная речь. Академик И.П.Павлов относил речь ко второй сигнальной системе, с помощью которой происходит непрямое отражение действительности. Речевые функции имеют широкое представительство в коре большого мозга. На основании данных, полученных при электрическом раздражении и удалении у больных различных участков коры, выделены три корковых речевых поля. Заднее речевое поле располагается в затылочно-височно-теменной области, захватывая все три височные, надкраевую и угловую извилины. Это поле связано преимущественно с восприятием и пониманием речи и функционально является ведущим. При его поражении всегда наступает расстройство речи - афазия. Переднее речевое поле лежит в задней части нижней лобной извилины и соответствует моторному центру речи Брока. Верхнее, дополнительное, речевое поле локализуется у верхнего края полушария кпереди от предцентральной извилины, при его поражении не всегда наблюдаются расстройства речи. Речевые поля, как другие части коры, связаны с ядрами таламуса. Заднее поле связано с задним ядром, верхнее поле - с латерал ьным ядром, переднее поле - с медиальными ядрами. Все речевые поля связаны ассоциативными путями в единую функциональную систему.

Особенностью речевых центров коры является их асимметрия. У большинства людей они локализуются в левом полушарии, которое является доминантным в отношении речи. Принято считать, что эта доминантность связана с праворукостью, и что у левшей речью управляет правое полушарие. В последнее время вопрос о функциональной асимметрии полушарий трактуется более широко. С левым полушарием связывают речь и абстрактное мышлени е, а с правым полушарием - пространственное представление, образное мышлени е, музыкальные способности.


Источник: Физиология центральной нервной системы
Дата создания: 12.03.2008
Последнее редактирование: 12.12.2016


Рис. 33. Синапсы нейронов

Несмотря на то что нервный импульс имеет электрическую природу, связь между нейронами обеспечивается химическими процессами. Для этого в мозге имеются биохимические субстанции — нейротрансмиттеры и нейромодуляторы. В тот момент, когда электрический сигнал доходит до синапса, высвобождаются соответствующие трансмиттеры. Они, как транспортное средство, доставляют сигнал к другому нейрону. Затем эти нейротрансмиттеры распадаются. Однако на этом процесс передачи нервных импульсов не заканчивается, так как нервные клетки, находящиеся за синапсом, активизируются и возникает постсинаптический потенциал. Он рождает импульс, движущийся к другому синапсу, и описанный выше процесс повторяется тысячи и тысячи раз. Это позволяет воспринимать и обрабатывать колоссальный объем и информации.

Отделы коры головного мозга

Головной мозг включает: кору больших полушарий, подкорковый отдел и ствол мозга. Различные части мозга не одинаковы по клеточному (цитоархитектоническому), анатомическому и морфологическому строению и соответственно по иерархии.

Кора мозга делится на следующие доли (рис. 34):

• затылочная (зрительная) доля;

• теменная (тактильная) доля;

• височная (слуховая) доля;

• лобная (управляющая, регулирующая) доля.


Рис. 34. Доли коры мозга

Затылочная, теменная и височная доли имеют соответствующую анализаторную отнесенность. В нейропсихологии ее принято обозначать как модальную специфичность. Благодаря им осуществляются разные психические функции. Вкусовые и обонятельные отделы расположены на медиальной (внутренней) поверхности височной доли. Их роль в осуществлении когнитивных функций у современного человека перестала быть ведущей, то есть уступает по функциональной значимости ролям остальных долей мозга.

Лобная доля не имеет модальной специфичности, но играет главенствующую роль в осуществлении высшей нервной деятельности человека. Она занимает обширную площадь (более половины коры) и отвечает за все мозговые процессы.

Глава 2. Поля коры мозга

Понятие полей коры мозга и их функциональной иерархии

Представления о дифференциации коры головного мозга на три основных, различных по функциональной иерархии вида полей: первичные, вторичные и третичные — являются чрезвычайно важными для понимания того, как организована психика человека в целом.

Элементарными являются первичные поля, более непростыми по строению и функционированию — вторичные и, наконец, максимально сложными по этим признакам — третичные поля (рис. 35).


Рис. 35. Функциональная иерархия полей коры мозга

Первичные поля слуховых анализаторов располагаются преимущественно на внутренней поверхности височных долей мозга, кинестетического (чувствительного в целом) — вблизи от центральной (Ролландовой) борозды, в теменной доле. Первичные чувствительные поля являются проекционными в отношении определенных частей тела: верхние отделы принимают чувствительные сигналы (ощущения) от нижних конечностей (ног), средние отделы обрабатывают ощущения от верхних конечностей (рук), а нижние отделы — от лица, включая отделы речевого аппарата (язык, губы, гортань, диафрагму). Кроме того, нижние отделы теменной проекционной зоны принимают ощущения от некоторых внутренних органов.

Первичные поля, расположенные на мозговой территории до центральной извилины (переднем блоке мозга), настроены на подготовку и исполнение двигательных актов. Они также являются проекционными, но уже в отношении не чувствительных (кинестетических — сенсорных), а двигательных (моторных) функций. На уникальных рисунках, сделанных известным исследователем работы мозга У. Пенфильдом (W. G. Penfield), видно, что значимость разных частей тела не совпадает с их размерами, а определяется той ролью, которую они играют в осуществлении психических функций как при восприятии объектов внешнего мира, так и при воспроизведении различных действий (рис. 36).


Рис. 36. Функциональное представительство в коре мозга частей тела человека

Опыт, накопленный взаимодействующими между собой первичными полями, служит базой, отправным моментом для функциональной активизации вторичных полей коры вместе с третичными полями, о которых речь пойдет далее. И те и другие имеют непосредственное отношение к реализации ВПФ.

Выделяются вторичные поля слуховой, тактильной и зрительной коры, а в переднем — премоторной. Функционально все три вида полей коры соотносятся между сбой вертикально: функции первичных, над ними надстраиваются функции вторичных, а над вторичными — третичных. Однако анатомически они располагаются не друг над другом, а по горизонтали: первичные поля (I) близко к ядру зон, вторичные (II) — в ее срединных отделах, а третичные (III) — на периферии (рис. 37).


Рис. 37. Схема функциональной иерархии полей коры мозга

Первичные поля однородны по клеточному составу. Обонятельные поля содержат только обонятельные нервные клетки, слуховые — только слуховые и т. п. Несмотря на универсальность физиологических и биохимических механизмов, обеспечивающих работу мозга, его различные отделы функционируют по-разному, то есть имеют различную функциональную специализацию, представляя разные модальности.


По особенностям строения и функциональному значению отдельных корковых участков вся кора подразделяется на три основные группы полей – первичные, вторичные и третичные (рис. 7).

Первичные поля связаны с органами чувств и органами движения на периферии. Они обеспечивают возникновение ощущений. К ним относятся, например, поле болевой и мышечносуставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и моторное поле в передней центральной извилине. В первичных полях находятся высокоспециализированные клетки-определители, или детекторы, избирательно реагирующие только на определенные раздражения. Например, в зрительной коре имеются нейроны-детекторы, возбуждающиеся только при включении или при выключении света, чувствительные лишь к определенной его интенсивности, к конкретным интервалам светового воздействия, к определенной длине волны и т. д. При разрушении первичных полей коры возникают так называемые корковая слепота, корковая глухота и т. п.

Рис. 7. Первичные, вторичные и третичные поля коры больших полушарий.

А: крупные точки – первичные поля, средние – вторичные поля, мелкие – третичные поля;

Б: первичные (проекционные) поля коры больших полушарий

Вторичные поля расположены рядом с первичными. В них происходит осмысливание и узнавание звуковых, световых и других сигналов, возникают сложные формы обобщенного восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит значения.

Третичные поля развиты практически только у человека.

Это ассоциативные области коры, обеспечивающие высшие формы анализа и синтеза и формирующие целенаправленную поведенческую деятельность человека. Третичные поля находятся: в задней половине коры – между теменными, затылочными и височными областями; в передней половине – в передних частях лобных областей. Их роль особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей и раньше других деградируют при старении.

Функцией задних третичных полей (главным образом, нижнетеменных областей коры) является прием, переработка и хранение информации. Они формируют представление о схеме тела и схеме пространства, обеспечивая пространственную ориентацию движений. Передние третичные поля (переднелобные области) выполняют общую регуляцию сложных форм поведения человека, формируя намерения и планы, программы произвольных движений и контроль за их выполнением. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в третичных полях. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

3.8.3. Парная деятельность и доминирование полушарий

Обработка информации осуществляется в результате парной деятельности обоих полушарий головного мозга. Однако, как правило, одно из полушарий является ведущим – доминантным. У большинства людей с ведущей правой рукой (правшей) доминантным является левое полушарие, а соподчиненным (субдоминантным) – правое полушарие.

Левое полушарие по сравнению с правым имеет более тонкое нейронное строение, большее богатство взаимосвязей нейронов, более концентрированное представительство функций и лучшие условия кровоснабжения. В левом доминантном полушарии находится моторный центр речи (центр Брока), обеспечивающий речевую деятельность, и сенсорный центр речи, осуществляющий понимание слов. Левое полушарие специализировано на тонком сенсомоторном контроле за движениями рук.

У человека различают три формы функциональной асимметрии: моторную, сенсорную и психическую. Как правило, у человека имеются ведущая рука, нога, глаз и ухо. Однако проблема функциональной асимметрии довольно сложна. Например, у человека-правши может быть ведущим левый глаз или левое ухо, сигналы от которых являются главенствующими. При этом в каждом полушарии могут быть представлены функции не только противоположной, но и одноименной стороны тела. В результате этого обеспечивается возможность замещения одного полушария другим в случае его повреждения, а также создается структурная основа для переменного доминирования полушарий при управлении движениями.

Психическая асимметрия проявляется в виде определенной специализации полушарий. Для левого полушария характерны аналитические процессы, последовательная обработка информации, в том числе с помощью речи, абстрактное мышление, оценка временных отношений, предвосхищение будущих событий, успешное решение вербально-логических задач. В правом полушарии информация обрабатывается целостно, синтетически (без расчленения на детали), с учетом прошлого опыта и без участия речи, преобладает предметное мышление. Эти особенности позволяют связывать с правым полушарием восприятие пространственных признаков и решение зрительно-пространственных задач. Функции правого полушария связаны с прошедшим временем, а левого – с будущим.

3.8.4. Электрическая активность коры больших полушарий

Рис. 8. Картирование мозга: многоканальная регистрация электроэнцефалограммы (ЭЭГ) человека на экране монитора и отражение возбужденных (светлые зоны) и заторможенных (темные зоны) участков коры

4. Высшая нервная деятельность

Развивая идеи И.М. Сеченова о рефлекторной основе поведенческой деятельности целостного организма, И.П. Павлов пришел к мысли, что в изменяющихся условиях внешней среды недостаточно обладать стандартными рефлекторными реакциями, а требуется выработка новых рефлексов, адекватных новым условиям существования. Впервые об условных рефлексах он заговорил в известной Мадридской речи в 1903 г.

4.1. Условия образования и разновидности условных рефлексов

Условные рефлексы по многим признакам отличаются от безусловных (табл. 1).

Условные рефлексы у млекопитающих и человека осуществляются корой больших полушарий (в этом также принимают участие таламический отдел промежуточного мозга и в ряде случаев подкорковые ядра).

И.П. Павловым была разработана объективная методика изучения приобретаемых или условных рефлексов, которая основывалась на изоляции обследуемого организма от посторонних раздражений и на точной регистрации сигнала и ответа на него.

Различия условных и безусловных рефлексов

В процессе выработки приобретаемых рефлексов должны соблюдаться следующие условия:

сочетание любого индифферентного раздражителя с каким-либо значимым безусловным раздражением (например, пищевым) – методика безусловного подкрепления;

индифферентное раздражение должно предшествовать безусловному, чтобы приобрести сигнальное значение;

нервные центры, к которым адресованы раздражения, должны быть в состоянии оптимального возбуждения.

Например, после предварительного изолированного действия светового сигнала собаке подавалось подкрепление – мясосухарный порошок и регистрировалось выделение слюны. После ряда сочетаний этих сигналов уже одно только включение света вызывало выделение слюны, т. е. был выработан новый рефлекс, биологический смысл которого заключался в подготовке организма к приему пищи.

Механизм образования условного рефлекса заключался в формировании новой рефлекторной дуги, в которой к эфферентной части безусловного рефлекса присоединялась новое афферентное начало рефлекторной дуги, идущее от зрительных путей. Между центрами этих исходных рефлексов сформировалась новая связь, которую И.П. Павлов назвал временной связью, так как в случае прекращения подачи пищи после светового сигнала слюнной условный рефлекс исчезал.

В ходе выработки условного рефлекса наблюдались определенные фазы этого процесса:

1) генерализации (обобщенное восприятие сигнала, когда условная реакция наблюдалась на любой сходный сигнал), основой чего были процессы иррадиации возбуждения в коре больших полушарий;

2) концентрации возбуждения (реакция только на конкретный сигнал), что появлялось за счет вырабатываемого условного торможения на посторонние неподкрепляемые сигналы;

3) стабилизации (упрочения условного рефлекса).

В дальнейших исследованиях условные рефлексы были выработаны в разнообразных экспериментальных условиях (в том числе в условиях свободного поведения) у различных животных, птиц, рыб, черепах, даже у амеб. Изучение биопотенциалов коры больших полушарий показало, что условием образования временной связи между изучаемыми корковыми центрами является пространственная синхронизация их электрической активности.

Различают несколько разновидностей условных рефлексов:

1) натуральные – на сигналы, характеризующие безусловные раздражители (например, запах мяса для слюнного рефлекса), и искусственные – на посторонние сигналы (например, запах мяты);

2) наличные и следовые на условный сигнал, непосредственно предшествующий безусловному подкреплению, и на его следовое влияние;

3) положительные (с активным проявлением ответной реакции) и отрицательные (с ее торможением);

4) условные рефлексы на время – при ритмической подаче условных сигналов ответная реакция появляется через заданный интервал даже при отсутствии очередного сигнала;

5) условные рефлексы первого порядка – на один предшествующий условный раздражитель – и более высоких порядков, когда безусловному подкреплению предшествует сочетание двух последовательно подающихся сигналов (свет + звук) – условный рефлекс второго порядка, трех сигналов (свет + звук + касалка) – условный рефлекс третьего порядка и т. д.

У собак вырабатываются в основном рефлексы третьего порядка, у обезьян – четвертого, у грудного ребенка – 5–6 порядка, у взрослого человека – двадцатого и более порядков. Освоение речи человеком представляет собой формирование огромной цепи условно-безусловных рефлексов, не требующих специального подкрепления.

При формировании новых двигательных навыков возникают особые рефлексы, которые в отличие от сенсорных рефлексов или рефлексов I рода (в которых новой частью рефлекторной дуги была афферентная часть) имеют новую часть рефлекторной дуги в эфферентном отделе (новые исполнительные аппараты – мышцы). Это так называемые инструментальные, или оперантные, рефлексы – рефлексы II рода (Конорский Ю.М., 1970).

4.2. Внешнее и внутреннее торможение условных рефлексов

По своему происхождению торможение условных рефлексов может быть безусловным (врожденным) и условным (выработанным в течение жизни). К безусловному торможению относят охранительное, или запредельное, торможение, возникающее при чрезмерно сильном или длительном раздражении, и внешнее торможение условных рефлексов посторонними для центров условного рефлекса раздражителями (например, нарушение непрочного двигательного навыка у спортсмена в необычных условиях соревнований).

Условное торможение вырабатывается при отсутствии подкрепления условного сигнала. Различают несколько видов условного торможения: угасательное, дифференцировочное и запаздывающее.

Угасание развивается при повторении условного сигнала без подкрепления. Например, имея прочный слюнный условный рефлекс у собаки на вспышку света и затем применяя свет без подкрепления, можно получить последовательно следующие условные ответы – 10, 8, 6, 4, 5, 2, 0, 0, 0 капель слюны.

Запаздывающее торможение формируется при отставлении на определенный отрезок времени подкрепления от условного сигнала. В этом случае сразу после условного сигнала реакция отсутствует (тормозится), но перед моментом подкрепления обнаруживается.

4.3. Динамический стереотип

Например, у собаки выработан динамический стереотип на определенный порядок из 6 раздражителей, и имеются на них закрепленные условные величины слюноотделения, специфические для каждого сигнала: 1) свет – 12 капель; 2) звук – 20 капель; 3) метроном 120 уд./с – 10 капель; 4) метроном 60 уд./с (неподкрепляемый раздражитель) – 0 капель; 5) свет – 12 капель; 6) звук -20 капель. Если теперь подавать один и тот же сигнал, то ответная цепь реакций сохранится прежней: 1) свет – 12 капель; 2) свет -20 капель; 3) свет – 10 капель; 4) свет – 0 капель; 5) свет -12 капель; 6) свет – 20 капель. Однако изолированное включение светового раздражения сохраняет обычный ответ – 12 капель.

4.4. Типы высшей нервной деятельности, первая и вторая сигнальная система

Случившееся в 1924 г. в Ленинграде сильное наводнение грозило затопить клетки с подопытными собаками, которые испытали сильный стресс. На следующий день обнаружилось, что у некоторых из них пропали прочно выработанные условные рефлексы, но у других рефлексы сохранились. Это навело И.П. Павлова на мысль о различных типах нервной системы у животных. В качестве основных свойств нервной системы И.П. Павлов рассматривал силу возбуждения и торможения, их уравновешенность и подвижность. С учетом этих свойств им были выделены следующие четыре типа высшей нервной деятельности (ВНД), которые оказались сходными с четырьмя темпераментами, выделенными еще Гиппократом в V веке до н. э.

1. Тип сильный неуравновешенный (холерик). Характеризуется сильным процессом возбуждения и более слабым процессом торможения, поэтому легко возбуждается и с трудом затормаживает свои реакции.

2. Тип сильный уравновешенный и высокоподвижный (сангвиник). Отличается сильными уравновешенными и высокоподвижными процессами возбуждения и торможения. Легко переключается с одной формы деятельности на другую, быстро адаптируется к новой ситуации.

3. Тип сильный уравновешенный инертный (флегматик). Имеет сильные и уравновешенные процессы возбуждения и торможения, но малоподвижный – медленно переключающийся с возбуждения на торможение и обратно. С трудом переходит от одного вида деятельности к другому, зато вынослив при длительной работе. Медленно, но прочно адаптируется к необычным условиям внешней среды.

4. Тип слабый (меланхолик). Характеризуется слабыми процессами возбуждения и торможения, с некоторым преобладанием тормозного процесса, мало адаптивен, подвержен неврозам. Зато обладает высокой чувствительностью к слабым раздражениям и может их легко дифференцировать.

Описанные типы имеются у животных и человека. Они представляют собой лишь крайние проявления особенностей нервной системы, между которыми может быть значительное число переходных типов.

Кроме того, И.П. Павлов выделил специфически человеческие типы ВНД, связанные с наличием у человека особой второй сигнальной системы – слова видимого, слышимого, написанного, произносимого, в отличие от первой сигнальной системы, общей для человека и животных, – непосредственных раздражителей внешней или внутренней среды организма. Вторая сигнальная система чрезвычайно расширила адаптационные возможности человека. Ее свойствами являются: обобщение сигналов первой и второй сигнальной системы, появление абстракций (сложных комплексных понятий – мужество, ярость, доброта и пр.), возможность передачи накопленного опыта предшествующих поколений последующим (возникновение науки, культуры и пр.). Вторая сигнальная система таким образом составила основу письменной и устной речи, появления математи-веских и нотных символов, абстрактного мышления человека. Ее деятельность связывают с функциями третичных полей коры больших полушарий, преимущественно левого полушария у правшей, где находятся центры речи.

Читайте также: