Перспективы использования реактивного двигателя кратко

Обновлено: 08.07.2024

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела ; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. — преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941—45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского , И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри , немецкого учёного Г. Оберта . Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Тяга — сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., — определяется по формуле P = mWc+ Fc ( pc — pn ),

Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939—45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах.

Предварительный просмотр:

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела;в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. — преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р. д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы — продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса — воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД — тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели — пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели — ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930—31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929—33. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941—45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

Р. д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р. д. используются на летательных аппаратах различных типов. Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939—45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Основные характеристики Р. д.: реактивная тяга, удельный импульс — отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика — удельный расход топлива (количество топлива, расходуемого за 1 сек на 1 н развиваемой Р. д. тяги), удельная масса двигателя (масса Р. д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов Р. д. важными характеристиками являются габариты и ресурс.

Тяга — сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., — определяется по формуле

P = mWc+ Fc(pc — pn),

где m — массовый расход (расход массы) рабочего тела за 1 сек; Wc — скорость рабочего тела в сечении сопла; Fc — площадь выходного сечения сопла; pc — давление газов в сечении сопла; pn — давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга Р. д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащенного Р. д., над уровнем моря, если речь идёт о полёте в атмосфере Земли. Удельный импульс Р. д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Тяга существующих Р. д. колеблется в очень широких пределах — от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974). Эти Р. д., использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р. д. и лит. см. в статьях об этих двигателях.


Deep space exploration requires significant energy expenditures in the exceptional duration of the flight. This paper proposes the optimal design of a hybrid propulsion system using nuclear energy, and electric, to form ions under an electric rocket engine with electrostatic acceleration of the working fluid (ERE).

Keywords: ion engine, rocket engine, nuclear reactor, power plant

В основе работы ядерного реактивного двигателя (ЯРД) лежит высвобождающаяся в ходе ядерной реакции энергия. Ядерные реакции протекают по двум механизмам: самопроизвольно (спонтанно) или вызываются искусственно [1]. В отличии от идеальной модели атома, где число протонов равно числу нейтронов, в реальных частицах количество нуклонов отличается. Основным преимуществом ядерных превращений перед химическими является энергетический эффект. Нуклоны внутри атома сдерживают, так называемые, ядерные силы (природа которых до сих пор не выяснена до конца). При разрушении нуклонов высвобождается огромное количество энергии: гораздо большее, чем при разрушении связей между молекулами в ходе химических реакций.

Явление испускания различных частиц используется в ядерном реакторе на борту летательного аппарата (ЛА). Продукты ядерной реакции тормозятся, и их кинетическая энергия переходит в тепловую, которая в свою очередь расходуется на необходимые нужды: будь то создание тяги, или выработка электрического тока.

Очевидно, что при использовании в ракетном двигателе (РД) даже малой доли располагаемой ядерной энергии, можно получить удельный импульс существенной больший, чем при полном использовании химической энергии любого топлива.

В структуре ЯРД можно предусмотреть реактор, в котором происходила бы управляемая цепная реакция деления (в перспективе синтеза и, может быть, аннигиляции), а выделяющееся при этом тепло нагревало рабочее тело, которое впоследствии выбрасывается через реактивное сопло, создавая силу тяги. На сегодняшний день в ракетном двигателестроении такая схема ЯРД не используется.

Начиная с 2009 года указом президентской комиссии по модернизации было принято решение о запуске проекта транспортно-энергетического модуля на основе ядерно-электрической ракетной двигательной установки (ЯЭРДУ) (рис. 1).

Mac HD:Users:ruslanyambaev:Desktop:1.jpg

Рис. 1. Транспортно-энергетический модуль

В настоящий момент ионные двигатели применяются в основном в коммерческих космических аппаратах, например, в спутниках связи или глобальной системе спутникового позиционирования [4].

Наличие в ДУ рабочих элементов, связанных с электропитанием ЭРД, определяет низкую тяговооруженность космических аппаратов с этими двигателями. Поэтому ЭРД имеет смысл применять только в космических аппаратах (КА) после достижения первой космической скорости с помощью ракетного двигателя (РД), работающего на химическом ракетном топливе.

В предлагаемой статье рассматривается конструкция космического ЯЭРДУ, тяга у которой создается в результате взаимодействия электростатического поля с ионизированным рабочим телом. Основное достоинство этого проекта — большой период эксплуатации (порядка 10 лет).

Такие характеристики проекта открывают новые горизонты в детальном изучении дальних планет солнечной системы.

Первичная цель — пилотируемый полет человека на Марс. Пилотируемый космический корабль для полета к планетам является, безусловно, уникальным по своей сложности объектом. Конструкция двигательной установки такого корабля будет мощной энергосиловой установкой высокого технического уровня. Такой двигатель состоит из двух основных частей: бортовой энергетической установки и, собственно, двигателя, который принято называть движителем (преимущественно малой тяги).

Для преобразования тепловой энергии в электрическую на борту устанавливается термоэлектрический преобразователь (ТЭП), действие которого основано на термоэлектрическом эффекте Зеебека-Пельтье-Томсона. Это явление возникновения термоэдс в цепи, состоящей из разнородных металлических или полупроводниковых материалов, спаи (места контакта) которых имеют разные температуры. При этом создается внутреннее электрическое поле, напряженность которого и характеризуется термоэдс.

В условиях открытого космоса важной проблемой является отвод тепла как от корпуса ЛА и его двигателя, так и от приборов и агрегатов. Единственный механизм осуществления теплопередачи — это тепловое излучение (радиация). Лучистый теплообмен между телами отличается сложным механизмом переноса, сильной чувствительностью к конфигурации тел и их расположению в пространстве, многообразием конкретных практических задач. Универсальных методик его расчета нет. Методы расчета приспосабливаются под группы типовых задач. Тепловое излучение имеет квантово-волновую природу. Для решения проблемы охлаждения можно использовать специальное устройство — капельный холодильник излучатель (КХИ) (рис. 2). Теплоноситель (жидкость) нагретый внутри системы летательного аппарата направляется в генератор капель (ГК). Генератор капель представляет собой устройство, в котором происходит распыливание охлаждающей жидкости на мелкие капли [5].

Mac HD:Users:ruslanyambaev:Desktop:nauka_05_032_pic3.jpg

Рис. 2. Капельный холодильник излучатель

В результате интенсивного лучистого теплообмена с окружающей средой капельный теплоноситель охлаждается. Далее распыленный охладитель попадает в сборочный коллектор, откуда перекачивается в охлаждающую систему космического летательного аппарата (КЛА).

Работающий в составе двигателя ядерный реактор является источником гамма-излучения. Наличие такого источника на борту аппарата может нанести вред как самому летательному аппарату и его системам, так и людям, находящимся на борту. В частности может произойти перегрев рабочего тела и конструкционных элементов, охрупчивание металлов и пластмасс, старение резиновых изделий. Такие изменения значительно повлияют на работу аппарата и с высокой вероятностью могут привести к выходу его из строя.

Методы магнитной защиты не работают против гамма-излучения, поскольку поток состоит из частиц, которые не имеют электрического заряда. Реактор должен снабжаться защитой достаточно легкой, не влияющей на массу полезной нагрузки и обладающей достаточно радиационно-защитными свойствами. Такие двигательные установки снабжаются системой теневой защиты. Это означает, что радиационный экран устанавливается только с одной стороны двигателя и защищает от излучения космонавтов или оборудование. Оставшееся излучение свободно рассеивается в космическом пространстве по всем направлениям. Проблема радиационной безопасности и защиты требует качественно новых решений как с точки зрения конструкции, так и используемых материалов. Решение их имеет важное значение для реализации данного типа двигателя.

Основные термины (генерируются автоматически): ядерный реактор, ERE, генератор капель, двигатель, двигательная установка, ионизированный газ, капельный холодильник, летательный аппарат, рабочее тело, ракетный двигатель, тепловое излучение, транспортно-энергетический модуль, электрическая энергия, электрон, ядерная реакция, ядерно-электрическая ракетная двигательная установка.

Космические двигатели сегодня и завтра: настоящие реактивные монстры и перспективные технологии будущего.

Освоение космоса – возможно, самая сложная из технологических задач, когда-либо стоявших перед человечеством. Проблем с ней не перечесть, но первая из них, конечно, проблема запуска космических аппаратов с Земли и их передвижения в космосе. И хотя современные реактивные двигатели являются настоящими шедеврами технологий, соединяющими самые последние достижения в области химии, физики, материаловедения и множества других областей, их эффективность, тяга и расход топлива, увы, не позволяют всерьез говорить об освоении даже Солнечной системы, не говоря уж об огромных пространствах Вселенной. Будущее требует принципиально новых решений.

Реактивно!

Принцип работы реактивного двигателя настолько прост, что в элементарном виде его собирают даже школьники в кружках юных техников. Однако настоящий, мощный ракетный реактивный двигатель – продукт колоссальной сложности, в полной мере производство которого до сих пор освоили лишь три страны мира – СССР (Россия), США и Китай.


В традиционном реактивном двигателе, первые из которых были разработаны еще до Второй мировой войны, поток частиц представляет собой раскаленный газ, продукт реакции топлива и окислителя. Эта плазма, вырывающаяся из сопел реактивного двигателя, может образовываться из твердого или жидкого топлива – соответственно, химические двигатели различают твердотопливные и жидкостные.

Вначале было твердое топливо


В современных твердотопливных двигателях, разумеется, смеси используются намного более эффективные – например, такая: перхлорат аммония (окислитель, около 70% по весу), алюминий (основное топливо, 16%), оксид железа (катализатор, 0,4%), полимеры и эпоксиды (обеспечивают контакт топлива и окислителя и равномерность горения, около 14%). Используется и сложная конфигурация расположения твердых компонентов, в форме многоконечной звезды, при которой достигается большая площадь поверхности контакта топлива с окислителем и, следовательно, высокая скорость сгорания.

Жидкое топливо: старт космической эры

Первые жидкостные реактивные двигатели (ЖРД) стали появляться в 1920-х годах, благодаря работам знаменитого физика Роберта Годдарда, в честь которого сегодня назван один из крупнейших исследовательских центров NASA. Годдарду удалось решить целый ряд проблем, связанных с конструированием и использованием таких двигателей, включая накачку топлива и охлаждение, а главное – создать принципиальную схему такого двигателя.


Схема проста до гениальности: жидкое топливо (Годдард использовал бензин) и жидкий окислитель (кислород) помещаются в раздельные баки, откуда с помощью специальных насосов по раздельным каналам подаются в камеру сгорания. Здесь происходит реакция, раскаленные продукты которой на большой скорости вылетают из сопла, создавая тягу.

Конечно, в реальности современный ЖРД – система куда более сложная, нежели эта принципиальная схема Годдарда. Достаточно сказать, что в качестве топлива и окислителя в них используются сжиженные газы, которые необходимо держать при низкой температуре и моментально нагревать перед подачей в камеру сгорания. Для этого найдены весьма изощренные технические решения – например, в соплах некоторых двигателей высверливаются каналы, по которым топливо течет, нагреваясь от раскаленного сопла. Такая технология настолько сложна, что ни американские, ни китайские двигателестроители ее до сих пор не освоили.


Математика шаттлов

Разумеется, химики непрерывно бьются над созданием все более эффективно сгорающего топлива и все более агрессивных окислителей, но процесс это сложный и уже практически достиг потолка своих возможностей. Увеличивать же массу еще сложнее: для разгона дополнительного топлива требуется еще больше топлива – количество его растет логарифмически. Для свободного космического полета требуются новые решения.

Ядерные-термоядерные

Для полноценного освоения пределов Солнечной системы химические двигатели недостаточно мощны и эффективны. Однако нагревать и разгонять газ для реактивного движения можно не только за счет окисления. Эту же роль может играть и куда более экономная реакция – ядерная. Необходимое для такого двигателя топливо будет измеряться уже не сотнями тонн, а сотнями килограммов. Энергия, выделяемая при радиоактивном распаде тяжелых ядер, будет нагревать рабочее тело – а дальше работает уже знакомая нам схема реактивного движения. Более того, рабочим телом может служить чистый водород, самый низкомолекулярный газ, способный обеспечить максимальную удельную тягу.


Работы по созданию космических двигателей с ядерной силовой установкой продолжаются сегодня и в России, и в США. Простейшие расчеты показывают, что лишь они сделают по-настоящему доступными ближайшие планеты и тела Солнечной системы. А когда человечество, наконец, обуздает термоядерную энергию, реакторы станут еще в несколько раз более эффективны.

ИОНЫ: ТОПЛИВО ПО ГРАММАМ

Однако и этим спектр возможных решений не исчерпывается. Создавать реактивную тягу можно с помощью, фактически, любого источника энергии – РИТЭГа, солнечной батареи или просто аккумулятора. Создаваемое им электростатическое поле ионизирует газ, разгоняя полученные ионы до очень высоких скоростей, недоступных для классических реактивных двигателей. Магнитное поле формирует из них направленный поток, толкающий аппарат все дальше вперед. Истекающая из сопла ионного двигателя холодная плазма совсем непохожа на адские печи химических реакций, однако эффективность его работы просто поразительна.


Рабочим телом такого электрического двигателя может служить водород или легкий инертный газ, обычно ксенон или аргон, – с подобными решениями экспериментировал еще Роберт Годдард. И хотя для создания серьезной тяги мощности их недостаточно, они могут работать буквально годами, расходуя топливо считанными граммами, и за большие промежутки времени разгоняют не слишком большие аппараты до очень приличных скоростей.

Скажем, ионный двигатель используется в качестве основного на дальнем зонде Dawn, который ведет исследования Главного пояса астероидов, и на японском аппарате Hayabusa, который доставил на Землю образцы вещества с астероида Итокава. Впрочем, как правило, их используют в качестве двигателей коррекции и ориентации для поддержания орбиты спутников – а вскоре ионный двигатель VASIMR может заработать и на МКС.

Суперсила антивещества


Перспективы это сулит огромные – ра­счеты показывают, что перелет к Марсу благодаря подобным двигателям может занять уже не год, а всего месяц – так что ученые достаточно серьезно рассматривают возможности их использования в будущем, когда они позволят нам передвигаться не только в пределах Солнечной системы, но и добраться до соседних звезд.


Межзвездный прямоточный двигатель Бассарда – концепция ракетного двигателя для межзвездных полетов, предложенная в 1960 году физиком Робертом Бассардом. Основой концепции является захват вещества межзвездной среды (водорода и пыли) идущим на высокой скорости космическим кораблем и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля.

Казалось бы, можно заняться разработкой? К сожалению, прежде придется решить целый ряд технологических задач, которые пока выглядят совершенно неподъемными. Первая из них – крошечные количества антивещества, доступные нам. Пока его получают лишь считанными античастицами и при огромных затратах. Антиматерия является самой дорогой субстанцией в мире – в ценах 1999 года производство одного грамма антиводорода обойдется более чем в 60 трлн долларов. А для межзвездных путешествий получать его понадобится тоннами.


По счастью, перспективы в этой области достаточно радужные: по оценке некоторых специалистов, от создания настоящего двигателя на антивеществе нас отделяют буквально десятилетия. В 2000 году в NАSA объявили о проекте по разработке пока небольшого двигателя, для работы которого требуется совсем крошечное количество античастиц – для перелета к тому же Марсу достаточно будет 10 граммов антипротонов.

Проектируемый двигатель на антивеществе будет включать три ключевых компонента. Электромагнитная тороидальная камера позволит хранить топливо. Система подачи будет сталкивать частицы с античастицами. Электромагнитное сопло обеспечит выброс энергии в нужном направлении, создавая тягу для космического корабля.

Сминая пространство-время



Физик из NASA Гарольд Уайт (Harold White) занят будущим: он работает над футуристическим проектом космического корабля с варп-двигателем, способным сминать пространство-время. А пока будущее не наступило, Уайт и художник-моделлер Майк Окуда (Mike Okuda) создали модели того, как будут выглядеть эти фантастические крейсеры.

Что же касается EmDrive, то данной теме посвящена целая статья в свежем номере журнала Naked Science. Выход номера уже через неделю.


Реактивный двигатель — двигатель, создающий необходимую д ля движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Рабочее тело с большой скоростью истекает из двигателя, и, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направле
нии. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой термотемпературы (т. н. тепловые реактивные двигатели), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле.

Реактивный двигатель создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. Чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Реактивный двигатель был изобретен Гансом фон Охайном , выдающимся немецким инженером-конструктором и Фрэнком Уиттлом . Первый патент на работающий газотурбинный двигатель был получен в 1930 году Ф рэнком Уиттлом. Однако первую рабочую модель собрал именно Охайн. 2 августа 1939 года в Германии в небо поднялся первый реактивный самолет — Хейнкель He 178, оснащённый двигателем HeS 3, разработанный Охайном.



Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолёты оснащены воздушно-реактивными двигателям


В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твёрдой жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолётов и ракет, не выходящих за пределы атмосферы, связано стем, что именно реактивные двигатели могут обеспечить максимальную скорость полёта.

Просто по принципу действия: забортный воздух (в ракетных двигателях — жидкий кислород) засасывается в турбину , там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и дви­гает машину.

В начале турбины стоит вентилятор , который засасывает воздух из внешней среды в турбины. Основных задач две — первичный забор воздуха и охлаждение всего дв игателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

За вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания смешивает топливо с воздухом. После образования топливо-воздушной смеси, она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически, реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя - одна из самых горячих его частей. Ей необходимо постоянное интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.


После камеры сгорания, горящая топливо-воздушная смесь направляется непосредственно в турбину. Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором находятся вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

Далее поток направляется в сопло . Сопло реактивного двигателя формирует непосредственно реактивную струю.

Воздушно-реактивные двигатели — реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. Такие двигатели используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

Ракетные двигатели — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.

- Классический реактивный двигатель — используется в основном на истребителях в различных модификациях.



Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, к оторый подает воздух не только в турбину, но и создает достаточно мощный поток вне её . Таким образом достигается повышенная экономичность, за счет улучшения КПД.



Основным техническим параметром, характеризующим реактивный двигатель, является тяга — усилие, которое развивает двигатель в направлении движения аппарата.

Ракетные двигатели помимо тяги характеризуются удельным импульсом , являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя.

Читайте также: