Особенности термической обработки легированных сталей кратко

Обновлено: 08.07.2024


Особенности термической обработки легированной стали


Особенности термической обработки легированной стали

Для легированной стали применяют те же виды термической обработки, что и для углеродистой стали. Отличие термической обработки легированной стали от углеродистой состоит в выборе температур и скорости нагрева, длительности выдержки при этих температурах и способе охлаждения.

Нагрев легированных сталей при термической обработке должен быть более медленным, чем для углеродистых сталей, в связи с пониженной теплопроводностью легированных сталей и возможностью растрескивания при быстром нагреве. Особенно осторожно надо нагревать детали из стали, содержащей такие элементы, как вольфрам, который обладает низкой теплопроводностью.

Выбор температур термической обработки, как уже известно, производится в зависимости от критических точек стали. Все легирующие элементы можно разбить на две группы: элементы, повышающие критические точки ACl и АСз, а следовательно, и температуры нагрева при термической обработке, отжиге, нормализации и закалке, и легирующие элементы, понижающие критические точки.

К первой группе относятся хром (Сг), ванадий (V), вольфрам (W), кремний (Si) и др. В связи с этим отжиг, нормализация и закалка сталей, содержащих перечисленные элементы, производятся при более высоких температурах, чем углеродистых сталей.

Ко второй группе элементов относятся марганец (Мп), никель (Ni) и др.

Помимо критических точек, при выборе температуры термической обработки обращают внимание на склонность аустенитного зерна к росту. Если сталь склонна к росту аустенитного зерна, то во избежание получения крупнозернистой структуры температура термической обработки выбирается как можно ближе к критической точке стали. Однако это затрудняет более полное растворение легированных карбидов в аустените и получение после закалки легированного мартенсита, обладающего лучшими свойствами.

Все легирующие элементы, за исключением Мп, препятствуют росту аустенитного зерна при нагреве. Особенно сильное влияние на уменьшение роста аустенитного зерна оказывают элементы, образующие в сталях карбиды (химические соединения с углеродом — Cr, W, V). Карбиды располагаются по границам зерна и затрудняют его рост при нагреве. Таким образом, легированные стали (за исключением марганцовистых сталей) при термической обработке не склонны к перегреву и нагрев их может производиться до более высоких температур, чем для углеродистых сталей.

Время выдержки при термической обработке легированных сталей устанавливается несколько больше, чем для углеродистых сталей, так как легированная сталь обладает худшей теплопроводностью, чем углеродистая, и для полного прогрева детали требуется больше времени. Кроме этого, для получения лучших механических свойств необходима выдержка для более полного растворения легированных карбидов в аустените.

Скорость охлаждения при термической обработке устанавливается, как уже известно, в соответствии с величиной критической скорости закалки.

Все легирующие элементы, кроме кобальта (Со), уменьшают критическую скорость закалки.

Практически это приводит к тому, что большая часть легированных сталей закаливается на мартенсит в масле, т. е. при меньшей скорости охлаждения, чем углеродистая сталь. Некоторые высоколегированные стали способны закаливаться даже на воздухе.

Легированная сталь обладает большей прокаливаемостью, чем углеродистая. Среди легированных сталей имеются такие, которые прокаливаются насквозь даже в крупных сечениях.

Все легирующие элементы, ироме А1 и Со, увеличивают количество остаточного аус тенита в стали после закалки. При содержании в большом количестве таких элементов, как Ni, Мп,, аустенит в стали при комнатной температуре может сохраняться сколько угодно.

Присутствие легирующих элементов в стали вносит некоторые изменения и в практику проведения отпуска.

Карбидообразующие элементы (вольфрам, ванадий, хром) способствуют образованию устойчивого против распада, т. е. красностойкого мартенсита. Благодаря этому высокая твердость стали сохраняется до температур 450—550°, в то время как в углеродистой стали мартенсит начинает распадаться с температуры 200—250°, что вызывает снижение твердости стали. Высокая красностойкость является весьма ценным свойством для инструментальной стали. Инструмент в процессе резания нагревается, и если сталь не красностойка, то она теряет свою твердость и режущие свойства. Поэтому вольфрам, ванадий, хром широко используют в инструментальных сталях. Распад мартенсита в таких сталях при 450—550° сопровождается выделением легированных карбидов, вызывающих замедление падения твердости, а иногда и увеличение ее. Лишь при температурах 650— 700°, когда легированные карбиды сильно увеличиваются в размерах, происходит снижение твердости и прочности. Увеличение

твердости в пределах температур 450—550° за счет выделения карбидов называется вторичной твердостью.

Легированный остаточный аустенит обладает большой устойчивостью, и превращение его в мартенсит происходит при значительно более высоких температурах отпуска, чем в углеродистой стали. Так, в быстрорежущей стали, легированной хромом, вольфрамом, ванадием, превращение остаточного аусте-нита происходит лишь при температуре отпуска 550— 575°. Это превращение состоит в частичном выделении легирующих элементов в виде карбидов во время выдержки при отпуске и в превращении обедненного остаточного аустенита в мартенсит при охлаждении на воздухе. Такое превращение вызывает повышение твердости и называется вторичной закалкой стали.

Кроме перечисленных явлений, происходящих при отпуске легированных сталей, наблюдается иной, по сравнению с углеродистой сталью, характер изменения ударной вязкости в зависимости от температуры отпуска. В углеродистых сталях ударная вязкость с повышением температуры отпуска непрерывно возрастает, вплоть до температуры 600—650°. В некоторых легированных сталях после отпуска в интервале температур 270—400° и 500— 600° наблюдается резкое снижение ударной вязкости. До настоящего времени нет способа устранения хрупкости в интервале 270—400° и поэтому этот вид хрупкости называют неустранимой отпускной хрупкостью, или отпускной хрупкостью первого рода.

Хрупкость в интервале 500—550° называется отпускной хрупкостью второго рода, она может быть устранена быстрым охлаждением после отпуска.


Рис. 1. Изменение ударной вязкости хромоникелевой стали в зависимости от температуры отпуска

Стали, склонные к отпускной хрупкости, не подвергаются отпуску в интервале температур 270—400° и охлаждаются после отпуска в интервале 500—550° ускоренно.

Термическая обработка инструмента из быстрорежущей стали. Инструмент из быстрорежущей стали подвергается термической обработке с целью получения красностойкой и износоустойчивой структуры.

Термическая обработка быстрорежущей стали состоит из закалки и многократного отпуска; иногда с промежуточной обработкой холодом.


Рис. 2. Схема термической обработки быстрорежущей стали

Быстрорежущая сталь содержит большое количество карбидов (до 30—35%). Для более полного растворения этих карбидов в аустените и получения красностойкого мартенсита закалку быстрорежущей стали производят при температурах, близких к температуре плавления. В связи с тем что такой высокий нагрев стали будет вызывать большое окисление и обезуглероживание, нагрев стали производят обычно в соляных ваннах. Лучше нагревать сталь с предварительным подогревом при температуре 900—950° во избежание растрескивания.

Подогрев инструмента из быстрорежущей стали может производиться в камерных или шахтных печах. Окончательный нагрев производят в электродных печах-ваннах.

При окончательном нагреве под закалку резцы из быстрорежущей стали нагревают до температуры 1280—1310°.

Выдержка при температуре закалки зависит от сечения инструмента и составляет доли минуты. Высокая температура закалки и нагрев в жидкой среде обеспечивают полный прогрев изделия и возможно более полное растворение карбидов. Однако полного растворения карбидов не происходит.

Охлаждение инструмента из быстрорежущей стали ведется в масле. Инструмент малого сечения из быстрорежущих сталей закаливается прямо на воздухе.

После закалки в быстрорежущей стали сохраняется большое количество остаточного аустенита (до 40%). Это снижает твердость стали. Для разложения остаточного аустенита применяют либо обработку холодом с последующим отпуском, либо многократный отпуск. Обработку холодом производят путем охлаждения закаленных деталей до —80°.

Отпуск быстрорежущей стали осуществляют при сравнительно высоких температурах (550—540°), что объясняется высокой красностойкостью мартенсита и большой устойчивостью аустенита. Во время выдержки при отпуске из остаточного аустенита выделяются карбиды легирующих элементов. При последующем охлаждении стали на воздухе обедненный легирующими элементами аустенит превращается в мартенсит отпуска, что повышает твердость стали (вторичная закалка). Многократный отпуск дается с целью более полного превращения остаточного аустенита в мартенсит.

Примеры термической обработки некоторых деталей

1. Сверла—длинные и тонкие, деформация которых при закалке должна быть незначительной, изготовляются из стали 9ХС. После механической обработки сверло подвергают закалке и низкому отпуску, чтобы повысить твердость и износостойкость.


Рис. 3. Эскиз сверла

Нагрев под закалку ведется в электрической печи-ванне. Жидкая среда ванны обеспечивает минимальное окисление поверхности, что не потребует последующей глубокой шлифовки. Температура закалки 840—860°. Выдержка 3 мин. Охлаждение в масле.

Отпуск проводят в масляной шахтной муфельной печи при температуре 180—190° в течение 1 часа.

При закалке и отпуске сверло погружается вертикально во избежание деформации. При погружении в масло при закалке хвостовик остается снаружи и не закаливается. В результате этого хвостовик будет иметь более низкую твердость, чем режущая часть сверла, но более высокие пластические свойства, что предохранит его от поломок.

2. Протяжка, наибольший диаметр которой 20 мм, а длина 500 мм, изготовляется из стали Р-18. После предварительной механической обработки протяжку подвергают термической обработке, которая состоит в закалке с последующим трехкратным отпуском.

Нагрев под закалку производится с предварительным подогревом во избежание растрескивания до температур 800—850°. Для подогрева можно использовать камерные печи. Окончательный нагрев ведут в электродных печах-ваннах до температур 1260—1280°. Выдержка 1,5 мин. Охлаждение при закалке производится в масле. После закалки протяжке дается трехкратный отпуск при 550—560° по одному часу. Отпуск можно проводить в шахтной печи с воздушной средой.

Особенности термической обработки легированных сталей
Особенности термической обработки легированных сталей
Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.jpg

Особенности термической обработки легированных сталей

  • Особенности термической обработки легированной стали Легирование существенно влияет на режим термообработки. Легированная сталь должна нагреваться очень медленно из-за возможности растрескивания и деформации при уменьшении теплопроводности. Обычно легирующие элементы повышают температуру и АЭ, ускоряя процесс диффузии.

Время выдержки увеличивают таким образом, чтобы температура была равномерной по всему объему изделия. Легированные стали также охлаждаются медленно из-за трудности разложения аустенита. Ni, Cr, Mn, Mo и др.

Легирование снижает критическую скорость охлаждения, что приводит к охлаждению в масляной среде. Хром-никель-молибденовой стали мини-отверждаемые. Влияние легирующих элементов на прокаливаемость.

Легирующие элементы, отличные от Co, повышают стабильность и улучшают обжиг аустенита. Однако легирующие элементы, образующие стабильные карбиды типов VC, TiC и др. способствуют охлаждению аустенита до перлита и ухудшают его прокаливаемость.

  • Наиболее активными элементами, влияющими на прокаливаемость, являются Cr, затем Si, Mn, Ni (рис.11.19). Мо, который более эффективен, чем другие элементы, улучшает прокаливаемость. Введение 0,005% B дает максимальную прокаливаемость (эквивалентную 2% Mo), но увеличение его содержания ухудшает прокаливаемость.

Рисунок 11 19.Влияние легирующих элементов на пластичность стали Около 0,2 ОТК 0,6. 11.20 влияние отпуска на вязкость легированной стали превращения стали, в отпуске необходимо длительное время подвергать ее воздействию высоких температур для эффективного завершения диффузии (рис.11.20).

Химико-термическая обработка обеспечивает высокие механические свойства поверхности легированной стали. Поэтому Ti способствует цементации и позволяет формировать температурный режим. СГ, Мо и Ма эффективного азотирования. Cr также повышает эффективность восстановления Бора.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Реестр кадастровых инженеров на карте

Для легированной стали применяют те же виды термической обработки, что и для углеродистой стали. Отличие термической обработки легированной стали от углеродистой состоит в выборе температур и скорости нагрева, длительности выдержки при этих температурах и способе охлаждения.

Нагрев легированных сталей при термической обработке должен быть более медленным, чем для углеродистых сталей, в связи с пониженной теплопроводностью легированных сталей и возможностью растрескивания при быстром нагреве.

Особенно осторожно надо нагревать детали из стали, содержащей такие элементы, как вольфрам, который обладает низкой теплопроводностью.

Выбор температур термической обработки, как уже известно, производится в зависимости от критических точек стали.

Все легирующие элементы можно разбить на две группы:

Группа-1: элементы, повышающие критические точки АС1 и АС3, а следовательно, и температуры нагрева при термической обработке, отжиге, нормализации и закалке, и легирующие элементы, понижающие критические точки.

К первой группе относятся хром (Cr), ванадий (V), вольфрам (W), кремний (Si) и др. В связи с этим отжиг, нормализация и закалка сталей, содержащих перечисленные элементы, производятся при более высоких температурах, чем углеродистых сталей.

Группа-2: ко второй группе элементов относятся марганец (Mn), никель (Ni) и др.

Помимо критических точек, при выборе температуры термической обработки обращают внимание на склонность аустенитного зерна к росту.

Если сталь склонна к росту аустенитного зерна, то во избежание получения крупнозернистой структуры температура термической обработки выбирается как можно ближе к критической точке стали.

Однако это затрудняет более полное растворение легированных карбидов в аустените и получение после закалки легированного мартенсита, обладающею лучшими свойствами.

Все легирующие элементы, за исключением Mn, препятствуют росту аустенитного зерна при нагреве.

Особенно сильное влияние на уменьшение роста аустенитного зерна оказывают элементы, образующие в сталях карбиды (химические соединения с углеродом — Cr, W, V).

Карбиды располагаются по границам зерна и затрудняют его рост при нагреве.

Таким образом, легированные стали (за исключением марганцовистых сталей) при термической обработке не склонны к перегреву и нагрев их может производиться до более высоких температур, чем для углеродистых сталей.

Помощь студентам

Легирующие элементы, не образующие карбидов, увеличивают устойчивость переохлажденного аустенита. Линии начала и конца превращений сдвинуты вправо (рисунок 48, а) по сравнению с углеродными сталями (при одинаковом содержании углерода).

Легирующие элементы (кроме алюминия и кобальта) понижают температуру начала мартенситного превращения Мн.


Легирующие элементы (кроме кобальта) уменьшают критическую скорость закалки. Поэтому некоторые легированные стали в результате охлаждения на воздухе приобретают структуру мартенсита. Увеличиваются закаливаемость и прокаливаемость сталей. Особенно сильно увеличивает прокаливаемость молибден.

Карбидообразующие элементы увеличивают прокаливаемость только в том случае, если они при нагреве растворяются в аустените, иначе прокаливаемость будет даже ухудшаться.

Температура нагрева легированных сталей под закалку по сравнению с углеродистыми сталями выше. Это объясняется:

  1. повышением критических точек А 1 и А 3 ;
  2. диффузионные процессы в легированных сталях протекают медлен- нее, так как легирующие элементы образуют твердые растворы замещения, а не внедрения, как углерод. Температуру закалки берут на 50…60 0С выше Ас 3 и дольше выдерживают при этой температуре. Легированные стали обладают пониженной теплопроводностью, поэтому для уменьшения перепада температуры по сечению их следует нагревать медленно.

Отпуск

Малая диффузионная подвижность атомов легирующих элементов влияет на процессы, протекающие в закаленных сталях при отпуске. За счет образования легированных карбидов стали имеют более высокую твердость и прочность, чем углеродистые стали.

Отжиг

Увеличивается продолжительность нагрева, выдержки, охлаждения. Высоколегированные стали охлаждают с малой скоростью вследствие большой устойчивости легированного аустенита. Прочность и твердость выше, чем у углеродистых. Это ухудшает обрабатываемость режущим инструментом.


Читайте также: