Особенности лазерного излучения кратко

Обновлено: 05.07.2024

Лазер - полезнейшее изобретение, нашедшее применение во многих сферах жизни. Чтобы понять, как оно покорило мир, проследим историю появления лазеров, рассмотрим их виды, а также попытаемся спрогнозировать, по какому из направлений эта технология будет развиваться в дальнейшем.

Лазер - полезнейшее изобретение, нашедшее применение во многих сферах жизни. Чтобы понять, как оно покорило мир, проследим историю появления лазеров, рассмотрим их виды, а также попытаемся спрогнозировать, по какому из направлений эта технология будет развиваться в дальнейшем.

Тем не менее лазеры — это уже давно не фантастика, а рабочий инструмент во многих областях современной науки. Эти устройства, будучи очень функциональными, окружают современного человека в повседневной жизни.

Как расшифровывается?

Попросту говоря, лазер производит поток света, обладающий чрезвычайной концентрацией.

Кто изобрел лазер?

Первые открытия, подарившие человечеству лазер, были сделаны еще на заре XX века.

Эйнштейн

Майман

Реализовать эту идею на практике удалось только в 60-е годы двадцатого века. Самый первый лазер создал калифорнийский физик Теодор Майман 16 мая 1960 года. В работе этого лазера использовались кристалл рубина и резонатор Фабри — Перо. Лампа-вспышка являлась источником накачки. Работа лазера была импульсной, волна имела длину 694,3 нм.

Басов, Прохоров и Таунс

В 1952 году академики из СССР Николай Басов и Александр Прохоров рассказали всему миру, что возможно создание микроволнового лазера, работающего на аммиаке. Эта же идея параллельно и независимо развивалась физиком из Америки Чарлзом Таунсом. Он создал и показал, как работает такой лазер, в 1954 году. Спустя десятилетие, в 1964 году, все трое удостоились за эти достижения Нобелевской премии по физике.

Наши дни

Сегодня мы можем наблюдать очень интенсивное развитие лазеров. Практически ежегодно изобретаются новые их виды — химические, эксимерные, полупроводниковые, лазеры на свободных электронах.

ПРинцип работы лазера

Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.


Как создается лазерный луч?

Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.


Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).


Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.


Резкость фокусировки

Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.

(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.


Физическое обоснование

Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.

Активная среда

Энергетические уровни атомов

Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.

Инверсная заселенность

Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.

Фотоны и световой пучок

Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.

Классификация лазеров

Существует несколько видов лазера, отличающихся друг от друга по принципу агрегатного состояния активной среды и по способу ее возбуждения. Перечислим основные.

Твердотельные лазеры

С этих лазеров все начиналось. Активная среда в них была твердой и состояла из кристаллов рубина и небольшого количества ионов хрома. Накачка осуществлялась при помощи импульсной лампы. Самый первый рубиновый лазер собрал американец Т. Майман в 1960 году. Твердотельные лазеры также изготавливают из стекла с примесью неодима Nd, алюмоиттриевого граната Y2Al5O12 с примесью хрома и неодима — все это также вещества для активной среды твердотельного лазера.

Газовые лазеры

В газовых лазерах активная среда формируется из газов с очень низким давлением или из их смесей. Газы заполняют стеклянную трубку, в которую впаяны электроды. Американцы А. Джаван, У. Беннетт и Д. Эрриот стали первыми создателями газового лазера в 1960 году. В качестве накачки такого лазера обычно применяют разряд электричества, производимый генератором высоких частот. Излучение газового лазера отличается своей непрерывностью. Плотность газов невысока, так что требуется довольно длинный стержень активной среды. Интенсивность излучения обеспечивается в этом случае за счет массы активного вещества.

Газодинамические, химические и эксимерные лазеры

По большому счету эти три вида можно классифицировать как газовые лазеры.

  • Газодинамический лазер по принципу работы схож с реактивным двигателем. В нем по сути происходит сгорание топлива, в которое добавлены частицы газов активной среды. В процессе сгорания молекулы газов приходят в возбуждение, а потом, будучи охлажденными сверхзвуковым течением, испускают мощнейшее когерентное излучение, тем самым отдавая энергию.
  • В химическом лазере импульс излучения появляется в результате химической реакции. В самом мощном лазере этого типа работает атомарный фтор в реакции с водородом.
  • Работу эксимерных лазеров обеспечивают особые молекулы, которые всегда находятся в возбужденном состоянии.

Жидкостные лазеры

Первые жидкостные лазеры появились почти тогда же, когда и твердотельные — в 60-х годах XX века. Для создания активной среды в них используются разнообразные растворы органических соединений. Плотность такого вещества выше, чем у газа, хотя и ниже, чем у твердых тел. Поэтому такие лазеры способны генерировать достаточно сильное излучение (до 20 Вт), при том что объем их активного вещества сравнительно невелик. Работать они могут и в импульсном, и в непрерывном режимах. В качестве накачки используются импульсные лампы и другие лазеры.

Полупроводниковые лазеры

В 1962 году появились и первые полупроводниковые лазеры — в результате параллельной работы нескольких ученых из США: Р. Холла, М.И. Нейтена, Т. Квиста и их групп. Теоретически работа этого лазера была обоснована ранее, в 1958 году, русским физиком Н.Г. Басовым.

В полупроводниковом лазере в качестве активной среды используется кристалл-полупроводник, например арсенид галлия GaAs. Поэтому на первый взгляд его можно было бы отнести к твердотельным лазерам. Однако он принципиально отличается тем, что излучательные переходы в нем происходят не между энергетическими уровнями атомов, а между энергетическими зонами или подзонами кристалла.

Накачка такого лазера производится постоянным электрическим током. Грани кристалла-полупроводника тщательно полируются, и из них получается отличный резонатор.

Лазеры в природе

В нашей Вселенной учеными были найдены лазеры с естественным происхождением. Существуют гигантские межзвездные облака, созданные конденсированными газами. В них инверсная заселенность образуется естественным образом. Свет ближних звезд или другие излучения в космосе выполняют роль накачки, а газовые облака сами по себе являются превосходной активной средой протяженностью в несколько сотен миллионов километров. Возникает естественный астрофизический лазер, который не нуждается в резонаторе, — вынужденное электромагнитное излучение образуется в них самопроизвольно, как только проходит волна света.

Свойства лазерного излучения

Свет от лазера имеет особенные и очень ценные свойства, выгодно отличающие его от света обычных, тепловых источников.

  • Излучение лазера когерентно и практически полностью монохроматично. Ранее подобные свойства были лишь у радиоволн от хорошо стабилизированных передатчиков.
  • Распространение вынужденного излучения происходит только вдоль оси резонатора. В связи с этим расширение лазерного луча очень слабое, имеет почти незаметную расходимость (несколько угловых секунд).
  • Благодаря вышеназванным свойствам лазерный луч способен фокусироваться в точку невероятно маленького размера. Энергия в точке его фокуса имеет огромную плотность.
  • По причине монохроматичности излучения и чрезвычайной плотности энергии, лазерное излучение может достигать очень высоких температур. К примеру, температура излучения импульсного лазера мощностью порядка петаватта (10 15 Вт) составляет более 100 миллионов градусов.

Применение лазеров

Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.

Технологические лазеры

Лазерная связь

Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.

Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз. Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.

Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.

Применение лазеров в медицине

Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.

Современные научные исследования

  • Поскольку энергия лазера имеет высокую плотность, а излучение — огромную температуру, становятся возможными исследования веществ в таком экстремальном состоянии, в каком они существуют в раскаленных звездных глубинах.
  • Современные ученые ставят перед собой цель создать термоядерную реакцию. Для этого лазерными лучами необходимо сжимать ампулу со смесью дейтерия с тритием (так называемый термоядерный синтез).
  • Лазер незаменим в генной инженерии и нанотехнологиях (которые работают с объектами размером порядка миллионной доли миллиметра — 10 –9 м). При помощи лучей лазера преодолеваются масштабные ограничения — разрезаются, передвигаются и соединяются между собой невидимые для глаза составляющие части генов, биологических молекул и нанотехнологические детали.
  • Лазерные локаторы — лидары, используются для исследований свойств атмосферы.

Военные лазеры

В военных целях спектр применения лазеров очень велик. Например, их используют в разведке — для поиска целей и связи. Но все же в первую очередь при помощи лазеров изобретают и изготавливают новейшие виды оружия. Лучи химических или эксимерных лазеров наземного или орбитального базирования обладают колоссальной мощностью. Они способны без особых усилий уничтожать или выводить из строя вражеские боевые спутники и самолеты во время военных действий. Уже сегодня ведутся разработки и существуют примеры лазерных пистолетов, которыми планируется вооружать экипажи военных орбитальных станций. И это не сюжет фантастического фильма, а новейшие научные разработки!

Лазеры в индустрии развлечений

Лазеры нашли широкое применение в индустрии развлечений. Многие знакомы с лазерным шоу: такие представления часто сопровождают фестивали, концерты, праздничные мероприятия. Лазерное шоу может быть создано как внутри помещения, так и на свежем воздухе. Организатор способен выбрать оборудование под свои задачи и проецировать изображение любой сложности в любом цветовом диапазоне.

Так, одним из самых ярких и масштабных событий, которое сопровождалось лазерным шоу, стал концерт знаменитого музыканта Jean-Michel Jarre на Воробьевых горах в 1995 году. Он был приглашен Юрием Лужковым по случаю празднования 850-летия Москвы.

Музыкант выступал перед зданием МГУ, во время мероприятия на фасад университета проецировались фрагменты истории города.

Но в наше время лазерным шоу никого не удивишь. В Нью-Йорке в ноябре 2012-го появилась кратковременная лазерная установка с названием Global Rainbows — 35-километровым лазерным лучом в небо. Установка представляла собой

Еще одним интересным примером применения лазера в индустрии развлечений стал лазерный костюм для вечеринок, разработанный тайваньским дизайнером по имени Wei-Chieh Shih. Одежда представляет собой лазерную установку и способна освещать все вокруг красным светом, генерируя лучи, направленные в разные стороны.

Лазеры в сфере транспорта

Лазеры могут быть полезны и в сфере транспорта. Так, например, в Нидерландах планируют внедрить установку лазерных излучателей на локомотивах поездов: это позволит убирать мусор и опавшие листья с путей прямо во время движения. Ведь все посторонние предметы, прилипшие к колесам, увеличивают тормозной путь и повышают риск катастрофы.

Еще один схожий способ применения лазера предложили создатели инновационной системы уличной безопасности Guardian. Смысл разработки — в установке специальных излучателей на столбах возле светофоров. Когда горит красный свет для пешеходов, проход закрыт лазерным лучом. Как только загорается зеленый, красный свет закрывает путь автомобилистам. Система направлена на повышение безопасности на дорогах: она работает как сдерживающий психологический фактор.

Лазерные гаджеты

Лазер встроен в некоторые современные гаджеты. Так, например, устройство Magic Cube способно проецировать виртуальную клавиатуру на рабочий стол или другую поверхность. Гаджет ориентирован на пользователей планшетов и смартфонов.

Применение лазеров в спорте

Интересное применение лазера придумала компания Nike. Разработка представляет собой мобильную установку, которая может проецировать поля для игры в футбол при помощи лазерных лучей. Площадку можно создать на любой ровной поверхности — как в городе, так и за его пределами.

Выводы

Поделитесь этим с друзьями!

Автор HiTecher с 2019 года, редактор, педагог. Имеет степень бакалавра с отличием по английской литературе, сертификат PGCE в квалификации преподавателя PCET. Живет в Саутгемптоне (Великобритания).

7.10. Лазерное излучение

Все более широкое использование в различных областях народного хозяйства, науке и медицине находят оптические квантовые генераторы (ОКГ), или лазеры. Лазером называется генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного излучения.

Область применения лазеров в промышленности расширяется с каждым годом. Это, прежде всего обработка материалов – резка, пайка, точечная сварка, сверление отверстий в металлах, сверхтвердых материалах, кристаллах. Используются лазеры при дефектоскопии материалов, в строительстве, радиоэлектронной промышленности и др.

Принцип действия лазера основан на свойстве атома (сложной квантовой системы) излучать фотоны при переходе из возбужденного состояния в основное (с меньшей энергией). При нормальных условиях число атомов, находящихся в веществе в возбужденном состоянии, меньше числа атомов, находящихся на основном уровне энергии. В лазерах с помощью специальных приемов и путем подачи на рабочее тело (жидкость, кристалл, газ) энергии накачки (свет, ВЧ-электромагнитное поле и др.) добиваются того, что число атомов, находящихся в возбужденном состоянии, становится значительно больше числа атомов, находящихся на основном уровне энергии. Лавинообразный переход атомов за очень короткое время из возбужденного состояния в основное приводит к возникновению лазерного излучения.

Основной особенностью лазерного излучения является его острая направленность (малая расходимость пучка излучения), что позволяет на сравнительно малой площади получать большие значения плотности энергии.

По характеру генерации излучения лазеры подразделяются на импульсные (длительность излучения 0,25 с) и лазеры непрерывного действия (длительность излучения 0,25 с и более).

Лазеры генерируют электромагнитное излучение с длиной волны от 0,2 до 1000 мкм. Этот диапазон с точки зрения биологического действия подразделяют на четыре области: ультрафиолетовую (от 0,2 до 0,4 мкм); видимую (свыше 0,4 до 0,75 мкм); ближнюю инфракрасную (свыше 0,75 до 1,4 мкм); дальнюю инфракрасную (свыше 1,4 мкм).

Воздействие лазерного излучения на организм человека носит сложный характер и обусловлено как непосредственным действием лазерного излучения на облучаемые ткани, так и вторичными явлениями, выражающимися в различных изменениях, возникающих в организме в результате облучения. Различают термическое и нетермическое действия лазерных излучений. Поражающее действие зависит от мощности (или плотности) энергии, длины волны излучения, длительности импульса, частоты повторения импульсов, времени воздействия, биологических и физико-химических особенностей облучаемых тканей и органов. Наиболее биологически активно ультрафиолетовое излучение, которое вызывает фотохимические реакции в биологических средах.

Термическое действие излучений лазеров непрерывного действия имеет много общего с обычным нагревом. На коже возникает ожог, а при энергии свыше 100 Дж сразу образуется кратерообразный участок некроза из-за разрушения и испарения биоткани. Характерной особенностью лазерного ожога является резкая ограниченность пораженной области.

Воздействие импульсного излучения более сложно. При длительности импульса менее 10 3 с в облучаемых тканях энергия излучения очень быстро преобразуется в теплоту, что приводит к мгновенному плазмо-и парообразованию, вызывающему механическое разрушение тканей. Нетермическое действие лазерного излучения обусловлено процессами, возникающими в результате избирательного поглощения тканями электромагнитной энергии, а также электрическими и фотоэлектрическими эффектами. Лица, длительно работающие с лазерами, иногда жалуются на повышенную общую утомляемость, головные боли, повышенную возбудимость, нарушение сна и т. п.

Особенно чувствительны к воздействию лазерного излучения глаза человека. Повреждение глаз возникает от попадания как прямого, так и отраженного луча лазера, даже если отражающая поверхность не является зеркальной. Характер поражения зависит от длины волны. В ультрафиолетовой области, прежде всего, возникают разрушение белка роговой оболочки и ожог слизистой оболочки. При больших плотностях энергии это ведет к полной необратимой слепоте. В видимой области излучение воздействует главным образом на светочувствительные клетки сетчатки, вызывая или временную слепоту, или ожог с последующей потерей зрения в данной области зрительного пространства. В ближней и средней инфракрасных областях при больших плотностях энергии также возможна необратимая слепота из-за помутнения хрусталика.

Под лазерной безопасностью понимается совокупность технических, санитарно-гигиенических и организационных мероприятий, обеспечивающих безопасные условия труда персонала при использовании лазеров.

Принятие тех или иных мер лазерной безопасности зависит, прежде всего, от класса лазера (табл. 7.5).

Лазеры – источники высококогерентного и интенсивного монохроматического излучения. Излучение генерируется за счет возбуждения активной среды (обычно газ или полупроводниковый элемент), заключенной в резонаторе. Лазерный резонатор представляет собой полое тело цилиндрической формы, изнутри покрытое отражающим слоем. Один из торцов резонатора закрыт частично отражающим зеркалом, противоположный – полностью отражающим. При накачке световые волны перемещаются внутри резонатора до тех пор, пока не станут достаточно интенсивными, чтобы пройти через частично прозрачное зеркало.

Лазерное излучение относится к вынужденному, также его называют стимулированным. Сфера применения лазеров широка и постоянно растет, на сегодняшний день лазерные источники применяются в медицине, машинном зрении, в лазерной сварке, маркировке изделий и т. д.

Основные параметры и характеристики лазерного излучения

Диаметр пучка. За диаметр пучка принимается диаметр сечения пучка лазерного излучения на выходном торце резонатора. Способов измерения диаметра пучка достаточно много, от способа зависят и единицы измерения. Если пучок принимается за Гауссов, диаметр будет измеряться по уровню интенсивности 1/e 2 : это расстояние между такими двумя точками одномерного распределения интенсивности излучения, значение интенсивности которых в 0.135 раз меньше пика интенсивности.

Отклонение пучка. Несмотря на то, что лазерные пучки принимаются за параллельные, некоторый угол расходимости все же присутствует. Эта характеристика показывает, на какую величину отклоняется пучок от оптической апертуры по ходу распространения и измеряется в угловых единицах (радианах). В лазерных диодах угол расходимости определяется сразу двумя значениями – так проявляется астигматизм. В этом случае направление угла расходимости нужно проверять и уточнять в зависимости от конкретной схемы. На рис. 1 показана общая конфигурация лазерного диода и проявление расходимости лазерного пучка по ходу удаления экрана от источника излучения.


Рисунок 1. Общая структура полупроводникового слоя диода: профиль пучков, излучаемых такими диодами, чаще всего эллиптический

Угол веерного пучка. Обычно за веерный угол принимается угол отклонения пучка в определенной плоскости от нормали направления распространения. На рис. 2 показан вид веерного пучка лазерного диода и приведен его расчет.


Рисунок 2. Веерный угол пучка излучения лазерного диода

Класс. Диапазон мощностей лазерных источников невероятно широк. По этой причине была разработана классификация источников по силе воздействия на человека. В таблице приведена классификация лазерных источников, предложенная Центром по контролю приборов и радиационной безопасности (CDRH).

Свойства лазерного излучения

Лазерное излучение является видом физической энергии, не встречающимся в природных источниках света. Оно вырабатывается специальными приборами - оптическими квантовыми генераторами (ОКГ) различной конструкции, получившими название – лазеры (от английского словосочетания Light amplification by stimulated emission of radiation - LASER). Принципы его выработки ОКГ были одновременно и независимо открыты в начале 60-х годов российскими и американскими физиками, а уже в конце того же десятилетия были предприняты первые попытки лечебного применения низкоинтенсивных (терапевтических) лазеров, в том числе и для косметологии.

Полупроводниковые и газо-жидкостные лазеры

Лазерное излучение испускается атомами рабочего вещества ОКГ, которое может быть представлено газом, жидкостью, кристаллом, полупроводником.

Лазерное излучение – это электромагнитное излучение оптического диапазона (светового), обладающее такими свойствами как когерентность, монохроматичность, поляризованность и направленность потока излучения, что позволяет создать строго определённую мощность воздействия на поверхности облучаемого объекта.

Лазер – это прибор, который испускает направленный пучок когерентного, поляризованного, монохроматичного электромагнитного излучения, т.е. света в очень узком спектральном диапазоне.

Физические свойства излучения

  • Монохроматичность (одноцветность) – все электромагнитные колебания потока имеют одинаковую частоту и длину волны.
  • Когерентность (синфазность) - совпадение фаз электромагнитных колебаний.
  • Поляризация - фиксированная ориентация векторов электромагнитного излучения в пространстве относительно направления его распространения.
  • Направленность - малая расходимость потока излучения.

Особые свойства позволяют концентрировать энергию со строго определенными физическими параметрами и высоким потенциалом биологического и лечебного действия на поверхности объекта. Именно в этом заключается принципиальное отличие от других форм лучистой энергии.

Длина волны лазера

Волна – возмущение (изменение состояния среды или поля), распространяющееся в пространстве с конечной скоростью.

Длина волны - расстояние, на которое распространяется волна за период, равный расстоянию между двумя ближайшими точками среды, колеблющимися в одной фазе. Длина волны электромагнитного излучения оптического диапазона измеряется в нанометрах (нм) или микрометрах (мкм) (1 мкм = 1 000 нм).

Частота импульсов лазера

Частота колебаний (импульсов) – физическая величина, равная числу колебаний (импульсов), совершаемых за единицу времени. Единица измерения в СИ – герц (Гц). 1 Гц – эта частота, при которой 1 колебание совершается за одну секунду.

Мощность лазера

Мощность излучения - средняя мощность, переносимая через какую-либо поверхность. Единица измерения в СИ - Ватт (Вт). Плотность мощности - отношение потока излучения к площади поверхности, перпендикулярной к направлению распространения. Единица измерения в СИ - Вт/см2.

Доза облучения - энергетическая облученность за определенный промежуток времени. Единица измерения в СИ - Дж/м2. 1Д – энергия, полученная при воздействии излучением мощностью в 1 Вт за 1 с. 1 Дж = 1 Вт/1с.

Длина волны лазерного излучения

Одной из важнейших характеристик является длина волны (измеряется в нанометрах или микрометрах). В зависимости от длины волны может принадлежать к различным участкам спектра: ультрафиолетовому, видимому (чаще красному) и инфракрасному.

Спектр лазерного излучения (цвет лазера)

Ультрафиолетовый диапазон

Видимый спектр

  • Фиолетовый 400-450 нм.
  • Синий 450-480 нм.
  • Голубой 480-510 нм.
  • Зелёный 510-575 нм.
  • Жёлтый 575-585 нм.
  • Оранжевый 585-620 нм.
  • Красный 620-760 нм.

Инфракрасный диапазон

  • Ближняя область 760 нм -15 мкм.
  • Дальняя область 15-30 мкм.

В физиотерапии наиболее часто применяют ближний инфракрасный диапазон, который обладает наибольшим проникающим действием и мягкими биологическими и лечебными эффектами.

Читайте также: