Охарактеризуйте кратко протон и нейтрон

Обновлено: 05.07.2024

Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (NA = 6,02·10 23 моль -1 ). Масса атомов изменяется в пределах 10 -27 ~ 10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А) и порядковым номером (Z):

5. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная


(53)

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.


Удельной энергией связи ядра wсвназывается энергия связи, приходящаяся на один нуклон: wсв= . Величина wсвсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А= const).

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил.

3. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.


3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А>200 и зарядами ядер Z>82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват.


b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино ( ) с нулевым зарядом и массой.


При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):



b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ( ).


.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):


5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.


По протонно-нейтронной модели ядро атома любого химического элемента состоит из протонов и нейтронов. Число протонов в ядре равно числу электронов, движущихся вокруг ядра. В ядре различных изотопов атома водорода может находиться не только протон, но и разное число нейтронов.

2. Как осуществляется сильное обменное взаимодействие протона и нейтрона в ядре?

Сильное обменное взаимодействие между нейтроном и протоном осуществляется через их постоянный обмен друг с другом виртуальной частицей π + - мезоном.

3. Почему парное расположение нуклонов на энергетическом уровне в ядре энергетически выгодно?

Энергетически выгодно парное расположение нуклонов с антипа-раллельнымии спинами в одном энергетическом состоянии, потому что в этом случае энергия взаимодействия нуклонов оказывается меньше, чем с параллельными.

4. Какие ядра относят к магическим и дважды магическим?

К магическим относят ядра, у которых число протонов Z или нейтронов N равно 2, 8, 20, 28, 50, 82, 126. Максимальной устойчивостью обладают дважды магические ядра (у которых магическим является и число нейтронов, и число протонов)

5. Объясните зависимость радиуса ядра от массового числа.


Получаем радиус ядра


(А - массовое число).


Большая часть массы всех элементов на Земле сосредоточена в элементарных частицах, называемых протонами и нейтронами (общее название – нуклоны). Поговорим кратко о протонах и нейтронах в составе атомных ядер.

Протоны и нейтроны

В самом начале XXв в опытах Э. Резерфорда было установлено, что практически вся масса и положительный заряд атома сосредоточен в компактном ядре. Вокруг ядра по весьма далеким (по отношению к размеру ядра) орбитам вращаются электроны. Атом в целом нейтрален, потому, что заряд электронов и ядра одинаков.

Планетарная модель атома

Рис. 1. Планетарная модель атома.

Дальнейшие опыты Э. Резерфорда привели в 1919 г к открытию протона, и к пониманию, что весь положительный заряд ядра обеспечивается наличием в его составе протонов. Протон – это достаточно тяжелая частица, тяжелее электрона в 1830 раз, что примерно равно одной атомной единице массы. Его положительный заряд по модулю равен заряду электрона. Ядро самого легкого элемента – водорода – имеет единичный заряд, и состоит из одного протона, вокруг которого обращается один электрон.

В 1930 году Д. Чедвиком был открыт нейтрон. Это еще одна элементарная частица, почти с такой же массой, как у протона, но не имеющая заряда, и входящая в состав ядер.

Ядерные Силы

Возникает вопрос – если протоны обеспечивают положительный заряд ядра, то почему существуют ядра элементов с зарядом больше единицы ? Ведь протоны, заряженные одинаково, должны отталкиваться друг от друга!

Нуклоны удерживает вместе особое Сильное (или ядерное) взаимодействие. Особенность ядерного взаимодействия в том, что его переносчики (глюоны и составленные из них пионы) – не только переносят сильное взаимодействие, но и сами в нем участвуют. Поэтому они не могут далеко удаляться друг от друга, и радиус действия ядерных сил не превышает размеры ядер. Эти силы значительно больше кулоновских сил отталкивания, и поэтому ядра, содержащие много положительных протонов стабильны.

Ядерные силы

Рис. 2. Ядерные силы.

Эти же силы определяют стабильность нейтрона в составе ядер. Свободный нейтрон – это нестабильная частица с периодом полураспада около 600 сек. Ядерные взаимодействия делают распад нейтрона в ядрах с малым их числом $N$ энергетически невыгодным.

Протонно-нейтронная модель ядра

Таким образом, в состав атомного ядра входят протоны и нейтроны, которые удерживаются вместе короткодействующим Сильным взаимодействием. Число протонов в ядре $Z$ соответствует номеру элемента в Периодической Системе Менделеева. Общее число нуклонов в ядре $A$ соответствует массовому числу элемента:

Протонно-нейтронная модель ядра

Рис. 3. Протонно-нейтронная модель ядра.

Чем больше протонов в ядре – тем больше силы кулоновского отталкивания, и тем менее стабильно ядро. Наличие $N$ нейтронов в ядре стабилизирует его.

Для тяжелых элементов, содержащих в ядре много протонов, число нейтронов должно быть еще больше. Так, например, ядро наиболее распространенного в природе свинца-208 содержит 82 протона и 126 нейтронов. Однако, если число нейтронов становится слишком большим, становится энергетически выгоден распад нейтрона, а с распадом нейтрона уменьшаются ядерные силы, и ядро распадается. Именно поэтому наиболее стабильными являются ядра со средним числом нейтронов и протонов.

Что мы узнали?

Ядро атома состоит из элементарных частиц – протонов и нейтронов, которые удерживаются вместе особыми ядерными силами. Число протонов в ядре соответствует номеру элемента в Периодической системе. Общее число нуклонов – соответствует массовому числу.

В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

  • 0,93827 ГэВ/с 2 у протона,
  • 0,93957 ГэВ/с 2 у нейтрона.

Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.

Протоны идентифицировали и описали примерно в 1920 году (хотя открыты они были раньше; ядро атома водорода – это просто отдельный протон), а нейтроны нашли где-то в 1933-м. То, что протоны и нейтроны так похожи друг на друга, поняли почти сразу. Но то, что у них есть измеримый размер, сравнимый с размером ядра (примерно в 100 000 раз меньше атома по радиусу), не знали до 1954-го. То, что они состоит из кварков, антикварков и глюонов, постепенно понимали с середины 1960-х до середины 1970-х. К концу 70-х и началу 80-х наше понимание протонов, нейтронов, и того, из чего они состоят, по большей части устаканилось, и с тех пор остаётся неизменным.

Нуклоны описать гораздо труднее, чем атомы или ядра. Не сказать, что атомы в принципе простые, но по крайней мере, можно сказать, не раздумывая, что атом гелия состоит из двух электронов, находящихся на орбите вокруг крохотного ядра гелия; а ядро гелия – достаточно простая группа из двух нейтронов и двух протонов. А вот с нуклонами всё уже не так просто. Я уже писал в статье "Что такое протон, и что у него внутри?", что атом похож на элегантный менуэт, а нуклон – на дикую вечеринку.

  • У простых уравнений могут оказаться очень сложные решения,
  • Иногда невозможно описать сложные решения простым способом.

Из-за внутренней сложности нуклонов вам, читатель, придётся сделать выбор: как много вы хотите узнать по поводу описанной сложности? Неважно, как далеко вы зайдёте, удовлетворения это вам, скорее всего, не принесёт: чем больше вы будете узнавать, тем понятнее вам будет становиться тема, но итоговый ответ останется тем же – протон и нейтрон очень сложны. Я могу предложить вам три уровня понимания, с увеличением детализации; вы же можете остановиться после любого уровня и перейти на другие темы, или можете погружаться до последнего. По поводу каждого уровня возникают вопросы, ответы на которые я могу частично дать в следующем, но новые ответы вызывают новые вопросы. В итоге – как я делаю в профессиональных обсуждениях с коллегами и продвинутыми студентами – я могу лишь отослать вас к данным полученным в реальных экспериментах, к различным влиятельным теоретическим аргументам, и компьютерным симуляциям.

Первый уровень понимания

Из чего состоят протоны и нейтроны?



Рис. 1: чрезмерно упрощённая версия протонов, состоящих только из двух верхних кварков и одного нижнего, и нейтронов, состоящих только из двух нижних кварков и одного верхнего

Чтобы упростить дело, во многих книгах, статьях и на сайтах указано, что протоны состоят из трёх кварков (двух верхних и одно нижнего) и рисуют нечто вроде рис. 1. Нейтрон такой же, только состоящий из одного верхнего и двух нижних кварков. Это простое изображение иллюстрирует то, во что верили некоторые учёные, в основном в 1960-х. Но вскоре стало понятно, что эта точка зрения чрезмерно упрощена до такой степени, что уже не является корректной.

Из более искушённых источников информации вы узнаете, что протоны состоит из трёх кварков (двух верхних и одного нижнего), удерживаемых вместе глюонами – и там может появиться картинка, похожая на рис. 2, где глюоны нарисованы в виде пружинок или ниток, удерживающих кварки. Нейтроны такие же, только с одним верхним кварком и двумя нижними.



Рис. 2: улучшение рис. 1 за счёт акцента на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне

Не такой уж плохой способ описания нуклонов, поскольку он делает акцент на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне за счёт глюонов (точно так же, как с электромагнитным взаимодействием связан фотон, частица, из которых состоит свет). Но это тоже сбивает с толку, поскольку на самом деле не объясняет, что такое глюоны и что они делают.

Есть причины двигаться дальше и описывать вещи так, как я делал в других статьях: протон состоит из трёх кварков (двух верхних и одного нижнего), кучи глюонов и горы пар кварк-антикварк (в основном это верхние и нижние кварки, но есть и несколько странных). Все они летают туда и сюда с очень большой скоростью (приближаясь к скорости света); весь этот набор удерживается при помощи сильного ядерного взаимодействия. Я продемонстрировал это на рис. 3. Нейтроны опять такие же, но с одним верхним и двумя нижними кварками; изменивший принадлежность кварк указан стрелкой.



Рис. 3: более реалистичное, хотя всё равно неидеальное изображение протонов и нейтронов

Эти кварки, антикварки и глюоны не только бешено носятся туда-сюда, но и сталкиваются друг с другом, и превращаются друг в друга через такие процессы, как аннигиляция частиц (в которой кварк и антикварк одного типа превращаются в два глюона, или наоборот) или поглощение и испускание глюона (в котором могут столкнуться кварк и глюон и породить кварк и два глюона, или наоборот).

Что у этих трёх описаний общего:

  • у верхних кварков электрический заряд равен 2/3 e (где e – заряд протона, -e – заряд электрона),
  • у нижних кварков заряд равен -1/3e,
  • у глюонов заряд 0,
  • у любого кварка и соответствующего ему антикварка общий заряд равен 0 (к примеру, у антинижнего кварка заряд +1/3e, так что у нижнего кварка и нижнего антикварка заряд будет –1/3 e +1/3 e = 0),
  • общий электрический заряд протона 2/3 e + 2/3 e – 1/3 e = e,
  • общий электрический заряд нейтрона 2/3 e – 1/3 e – 1/3 e = 0.

Рис. 1 говорит о том, что кварки, по сути, представляют собой треть нуклона – примерно так, как протон или нейтрон представляют четверть ядра гелия или 1/12 ядра углерода. Если бы этот рисунок был правдив, кварки в нуклоне двигались бы относительно медленно (со скоростями гораздо меньшими световой) с относительно слабыми взаимодействиями, действующими между ними (хотя и при наличии некоей мощной силы, удерживающей их на месте). Масса кварка, верхнего и нижнего, составляла бы тогда порядка 0,3 ГэВ/с 2 , примерно треть массы протона. Но это простое изображение и навязываемые им идеи просто неверны.

Рис. 3. даёт совершенно другое представление о протоне, как о котле частиц, снующих в нём со скоростями, близкими к световой. Эти частицы сталкиваются друг с другом, и в этих столкновениях некоторые из них аннигилируют, а другие создаются на их месте. Глюоны не имеют массы, массы верхних кварков составляют порядка 0,004 ГэВ/с 2 , а нижних – порядка 0,008 ГэВ/с 2 — в сотни раз меньше протона. Откуда берётся энергия массы протона, вопрос сложный: часть её идёт от энергии массы кварков и антикварков, часть – от энергии движения кварков, антикварков и глюонов, а часть (возможно, положительная, возможно, отрицательная) из энергии, хранящейся в сильном ядерном взаимодействии, удерживающем кварки, антикварки и глюоны вместе.

В некотором смысле рис. 2 пытается устранить разницу между рис. 1 и рис. 3. Он упрощает рис. 3, удаляя множество пар кварк-антикварк, которые, в принципе, можно назвать эфемерными, поскольку они постоянно возникают и исчезают, и не являются необходимыми. Но она производит впечатление того, что глюоны в нуклонах являются непосредственной частью сильного ядерного взаимодействия, удерживающего протоны. И она не объясняет, откуда берётся масса протона.

У рис. 1 есть другой недостаток, кроме узких рамок протона и нейтрона. Она не объясняет некоторые свойства других адронов, к примеру, пиона и ро-мезона. Те же проблемы есть и у рис. 2.

Эти ограничения и привели к тому, что своим студентам и на моём сайте, я даю картинку с рис. 3. Но хочу предупредить, что и у неё есть множество ограничений, которые я рассмотрю позже.

Масса протона и масса нейтрона

Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

Полезно классифицировать взносы в энергию массы протона по трём группам:

А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

Подводя итоги, укажем, что:

  • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
  • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
  • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.

Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2 ). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.

в ядре есть протоны и нейроны.
электроны вращаются вокруг этого ядра. они могут отделиться и уйти.
а нейроны и протоны не могут.
узнать количество протонов и нейронов можно с помощью таблицы менделеева. посмотреть на порядковый номер. количество нейронов=кол. протонов.

ЭЛЕКТРОНЫ, ПРОТОНЫ, НЕЙТРОНЫ

Приведем важнейшие характеристики электронов, протонов и нейтронов. Они собраны в Таблице 1.
Величина заряда дана в кулонах, масса - в килограммах (единицах СИ) ; слова "спин" и "статистика" будут пояснены ниже.

Обратим внимание на различие в массе частиц: протоны и нейтроны почти в 2000 раз тяжелее электронов. Следовательно, масса любого тела почти целиком определяется массой протонов и нейтронов.

Нейтрон, как это следует из его названия, нейтрален - его заряд равен нулю. А протон и электрон имеют одинаковые по величине, но противоположные по знаку заряды. Электрон заряжен отрицательно, а протон - положительно.

Среди характеристик частиц нет, казалось бы, важной характеристики - их размера. Описывая строение атомов и молекул, электроны, протоны и нейтроны можно считать материальными точками. О размерах протона и нейтрона придется вспомнить только при описании атомных ядер. Даже по сравнению с размерами атомов протоны и нейтроны чудовищно малы (порядка 10-16 метра) .

По сути дела, этот короткий раздел сводится к представлению электронов, протонов и нейтронов как строительного материала всех тел в природе. Можно было бы просто ограничиться таблицей 1, однако нам предстоит понять, каким образом из электронов, протонов и нейтроновосуществляется постройка, что заставляет частицы объединяться в более сложные конструкции и каковы эти конструкции.

Читайте также: