Низкотемпературная теория кратко биология

Обновлено: 05.07.2024

Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов).
Все живые существа - растения, животные и одноклеточные организмы - состоят из клеток и их производных. Клетка не только единица строения, но и единица развития всех живых организмов. Для всех клеток характерно сходство в химическом составе и обмене веществ. Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеточных единиц. Все живые клетки возникают из живых клеток.

Хромосомная теория наследственности (Т. Морган).
Хромосомы с локализованными в них генами - основные материальные носители наследственности.

  • Гены находятся в хромосомах и в пределах одной хромосомы образуют одну группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.
  • В хромосоме гены расположены линейно.
  • В мейозе между гомологичными хромосомами может произойти кроссинговер, частота которого пропорциональна расстоянию между генами.

Теория возникновения жизни на Земле (А. И. Опарин, Дж. Холдейн, С. Фоке, С. Миллер, Г. Меллер).
Жизнь на Земле возникла абиогенным путем.

  1. Органические вещества сформировались из неорганических под действием физических факторов среды.
  2. Они взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся ферментные системы - свободные гены.
  3. Свободные гены приобрели разнообразие и стали соединяться.
  4. Вокруг них образовались белково-липидные мембраны.
  5. Из гетеротрофных организмов развились автотрофные.

Теория эволюции (Ч. Дарвин).
Все существующие ныне многочисленные формы растений и животных произошли от существовавших ранее более простых организмов путем постепенных изменений, накапливавшихся в последовательных поколениях.

Теория естественного отбора (Ч. Дарвин).
В борьбе за существование в естественных условиях выживают наиболее приспособленные. Естественным отбором сохраняются любые жизненно важные признаки, действующие на пользу организма и вида в целом, в результате чего образуются новые формы и виды.

Фазовая теория (Б. Мур, М. Фишер, В. Лепешкин, Д.Н.Насонов, А.С.Трошин, Г. Линг)
Проистекает из теории саркоды Дюжардена. Является альтернативой общепринятой мембранной теории. Представляет мембрану как границу из поляризованной ориентированной воды и на основании этого объясняет свойства клетки, рассматривая саму клетку как протоплазму - коллоидную систему, фазы которой образованы упорядоченной совокупностью молекул белка, воды и ионов, объединяемых в единое целое возможностью взаимопереходов.

Законы

  • Биогенетический закон (Ф. Мюллер, Э. Геккель, А. Н. Северцов). Онтогенез организма есть краткое повторение зародышевых стадий предков. В онтогенезе закладываются новые пути их исторического развития - филогенеза.
  • Закон зародышевого сходства (К. Бэр). На ранних стадиях зародыши всех позвоночных сходны между собой, и более развитые формы проходят этапы развития более примитивных форм.
  • Закон необратимости эволюции (Л. Долло). Организм (популяция, вид) не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков.
  • Закон эволюционного развития (Ч. Дарвин). Естественный отбор на основе наследственной изменчивости является основной движущей силой эволюции органического мира.
  • Законы наследования (Г. Мендель, 1865 г.):
    1. Закон единообразия гибридов первого поколения (первый закон Менделя) — при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки - оно фенотипически единообразно.
    2. Закон расщепления (второй закон Менделя) — при самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1, при этом образуются две фенотипические группы - доминантная и рецессивная.
    3. Закон независимого наследования (третий закон Менделя) — при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ними разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

Гипотеза частоты гамет (Г. Мендель, 1865 г.): находящиеся в каждом организме пары альтернативных признаков не смешиваются при образовании гамет и по одному от каждой пары переходят в них в чистом виде.

Протобиополимеры это молекулы, у которых впервые в примитивной форме проявились признаки живых организмов, а вернее один – способность к самоудваиванию. Они являются исходными вариантами современных полимеров.

К биополимерам относятся:

По последним данным ученых микробиохимиков первой такой молекулой была РНК, а не белок или ДНК, как было принято ранее.

  • Термическая;
  • Теория адсорбции;
  • Низкотемпературная теория;
  • Коацерватная теория.

Сущность теорий образования протобиополимеров

Вторая теория основана на избирательном соединении некоторых молекул. Существуют межмолекулярные силы взаимодействий (например, электрохимическое притяжение, лежащее в основе образования пептидной связи в молекуле белка), которые притягивают определенные концы молекул между собой и отталкивают другие, что могло привести к образованию полимеров.

Сторонники третьей теории, в противовес первой, утверждают, что источником энергии была холодная плазма. Ее источником были грозовые раскаты (их частота в период формирования планеты была значительно выше) и полярное сияние, у этой теории есть лабораторные подтверждения.

Последняя теория основана на том, что биополимерные молекулы, собирая вокруг себя воду, образуют полупроницаемые капсулы, которые избирательно накапливают отдельные вещества и не пропускают другие, но эта теория не объясняет появление самих биополимеров, а только их дальнейшее преобразование в клетку.

Справочный материал содержит главные основные теории, законы и закономерности биологии, их краткая характеристика и ученые-биологи.

Основные теории биологии таблица

Основные теории биологии

Теория возникновения жизни на Земле

(ОпаринА.И., Дж.Холдейн, С.Фокс, С.Миллер, Г.Меллер).

Жизнь на Земле возникла абиогенным путем.

1. Органические вещества сформировались из неорганических под действием физических факторов среды.

2. Они взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся ферментные системы — свободные гены.

3.Свободные гены приобрели разнообразие и стали соединяться.

4. Вокруг них образовались белково-липидные мембраны.

5. Из гетеротрофных организмов развились автотрофные.

Клеточная теория

(Теодор Шванн, Маттиас Шлейден, Рудольф Вирхов).

Все живые существа — растения, животные и одноклеточные организмы — состоят из клеток и их производных. Клетка не только единица строения, но и единица развития всех живых организмов. Для всех клеток характерно сходство в химическом составе и обмене веществ. Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеточных единиц. Все живые клетки возникают из живых клеток.

Теория эволюции и естественного отбора

Возникнув естественным путем, виды медленно и постепенно преобразовываются и совершенствуются в соответствии с окружающими условиями в результате взаимосвязанного действия наследственной изменчивости, борьбы за существование и естественного отбора. Виды изменяются в направлении все большей приспособленности к условиям среды обитания; при этом сама приспособленность организмов не абсолютна, а носит относительный характер.

Хромосомная теория наследственности

Основным материальным носителем наследственности являются хромосомы с локализованными в них генами. Гены наследственно дискретны, относительно стабильны, но при этом могут мутировать. Гены в хромосомах расположены линейно, каждый ген имеет определенное место (локус) в хромосоме. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно; при этом число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов. Сцепление генов может нарушаться в результате кроссинговера; частота кроссинговера прямо пропорциональна расстоянию между генами.

Синтетическая теория эволюции

(ЧетвериковC.С., Н.В.Тимофеев-Ресовский, Дж.Хаксли).

Наименьшей, элементарной эволюционной единицей является популяция. Элементарным эволюционным событием является изменение генетического состава популяции. Основным материалом для эволюции служат мелкие мутации. Факторами эволюции (поставляющими материал) являются мутационный процесс, комбинативная изменчивость и волны численности (популяционные волны). Фактором, усиливающим генетические различия, является изоляция. Единственный направляющий фактор эволюции — естественный отбор, возникающий на основе борьбы за существование. Его действие основывается на сохранении и накоплении случайных мелких мутаций.

Основные законы биологии таблица

Основные законы биологии

Биогенетический закон

(Ф. Мюллер, Э. Геккель, СеверцовА.Н.).

Онтогенез организма есть краткое повторение зародышевых стадий предков. В онтогенезе закладываются новые пути их исторического развития — филогенеза.

Закон зародышевого сходства

(Карл Максимович Бэр).

На ранних стадиях зародыши всех позвоночных сходны между собой, и более развитые формы проходят этапы развития более примитивных форм.

Закон необратимости эволюции

Организм (популяция, вид) не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков.

Законы наследования

Закон единообразия: при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки — оно фенотипически единообразно. Закон расщепления: при самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1, при этом образуются две фенотипические группы — доминантная и рецессивная. Закон независимого наследования: при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ними разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1. Гипотеза частоты гамет: находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному переходят в них в чистом виде.

Закон гомологических рядов наследственной изменчивости

(Вавилов Николай Иванович ).

Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости.

Закон генетического равновесия в популяциях

(Годфри Харди, Вильгельм Вайнберг).

В неограниченно большой популяции при отсутствии факторов, изменяющих концентрацию генов, при свободном скрещивании особей, отсутствии отбора и мутирования данных генов и отсутствии миграции численные соотношения генотипов АА, аа, Аа из поколения в поколение остаются постоянными. Частоты членов пары аллельных генов в популяциях распределяются в соответствии с разложением бинома Ньютона (рА + qa) 2 .

Закон минимума (Юстус Либих).

Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, т. е. фактором минимума. Правило взаимодействия факторов: организм способен заменить дефицитное вещество или другой действующий фактор иным функционально близким веществом или фактором.

Закон биогенной миграции атомов

(Вернадский Владимир Иванович ).

Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же протекает в среде, геохимические особенности которой обусловлены живым веществом, как тем, которое в настоящее время составляет биосферу, так и тем, которое существовало на Земле в течение всей геологической истории.

Основные закономерности биологии таблица

Основные закономерности биологии

Правило происхождения от неспециализированных предков

Новые крупные таксоны происходят не от высших представителей предковых групп, а от сравнительно неспециализированных форм.

Правило чередования главных направлений эволюции

(Алексей Николаевич Северцов).

Для всех групп животных и растений свойственно чередование ароморфозов, сопровождающихся выходом группы в новую среду, и идиоадаптаций, сопровождающихся освоением новых условий среды и формированием в данной группе новых таксонов.

Правило прогрессирующей специализации

Группа, вступившая на путь специализации, как правило, в последующем филогенетическом развитии углубляет специализацию и совершенствует приспособляемость к определенным условиям жизни.

Симметрия

Симметрия — закономерное, правильное расположение частей тела относительно центра — радиальная симметрия (некоторые беспозвоночные животные, осевые органы растений, правильные цветки) либо относительно прямой линии (оси) или плоскости — двусторонняя симметрия (часть беспозвоночных и все позвоночные животные, у растений — листья и неправильные цветки).

Полярность

Полярность — противоположность концов тела: у животных — передний (головной) и задний (хвостовой), у растений — верхний (гелиотропический) и нижний (геотропический).

Метамерность

Метамерность — повторение однотипных участков тела или органа; у животных — членистое тело червей, личинок моллюсков и членистоногих, грудная клетка позвоночных; у растений — узлы и междоузлия стебля.

Цикличность

Цикличность — повторение определенных периодов жизни; сезонная цикличность, суточная цикличность, жизненная цикличность (период от рождения до смерти). Цикличность в чередовании ядерных фаз — диплоидной и гаплоидной.

Детерминированность

Детерминированность — предопределенность, обусловленная генотипом; закономерность, в результате которой из каждой клетки образуется определенная ткань, определенный орган, что происходит под влиянием генотипа и факторов внешней среды, в том числе и соседних клеток (индукция при формировании зародыша).

Изменчивость

Изменчивость — способность организмов изменять свои признаки и свойства; генотипическая изменчивость наследуется, фенотипическая — не наследуется.

Наследственность

Наследственность — способность организмов передавать следующему поколению свои признаки и свойства, т. е. воспроизводить себе подобных.

Приспособленность

Приспособленность — относительная целесообразность строения и функций организма, явившаяся результатом естественного отбора, устраняющего неприспособленных к данным условиям существования.

Закономерность географического распределения центров происхождения культурных растений

(Вавилов Николай Иванович )

Закономерность географического распределения центров происхождения культурных растений — сосредоточение очагов формообразования культурных растений отмечается в тех районах земного шара, где наблюдается наибольшее их генетическое разнообразие.

Закономерность экологической пирамиды

Закономерность экологической пирамиды — соотношение между продуцентами, консументами и редуцентами, выраженное в их массе и изображенное в виде графической модели, где каждый последующий пищевой уровень составляет 10% от предыдущего.

Зональность

Зональность — закономерное расположение на земном шаре природных зон, отличающихся климатом, растительностью, почвами и животным миром. Зоны бывают широтные (географические) и вертикальные (в горах).

Единство живого вещества

Единство живого вещества — неразрывная молекулярно-биохимическая совокупность живого вещества (биомассы), системное целое с характерными для каждой геологической эпохи чертами. Уничтожение видов нарушает природное равновесие, что приводит к резкому изменению молекулярно-биохимических свойств живого вещества и невозможности существования многих ныне процветающих видов, в том числе и человека.

_______________

Источник информации: Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.


Законы термодинамики являются важными объединяющими принципами науки биологии. Эти принципы регулируют химические процессы (обмен веществ) во всех биологических организмах.

Первый закон термодинамики, также известный как закон сохранения энергии, утверждает, что энергия не может появиться ниоткуда и исчезнуть. Она способна переходить от одной формы к другой, но энергия в замкнутой системе остается постоянной.

Второй закон термодинамики гласит, что при передаче энергии в конце процесса переноса будет меньше энергии, чем в начале. Из-за энтропии, которая является мерой беспорядка в замкнутой системе, вся доступная энергия не будет полезна для организма. Энтропия увеличивается по мере передачи энергии.

В дополнение к законам термодинамики теория клеток, теория генов, теория эволюция и гомеостаз составляют главные принципы, лежащие в основе изучения жизни.

Первый закон термодинамики в биологических системах

Все биологические организмы нуждаются в энергии для выживания. В замкнутой системе, такой как Вселенная, эта энергия не потребляется, а трансформируется из одной формы в другую. К примеру, клетки организма выполняют ряд важных процессов. Эти процессы требуют энергии. При фотосинтезе энергия подается солнцем. Световая энергия поглощается клетками листьев растений и превращается в химическую энергию.

Химическая энергия хранится в виде глюкозы, которая используется для образования сложных углеводов, необходимых для создания растительной массы. Энергия, хранящаяся в глюкозе, также может выделяться через клеточное дыхание. Этот процесс позволяет растительным и животным организмам получать доступ к энергии, хранящейся в углеводах, липидах и других макромолекулах, путем производства АТФ.

Эта энергия необходима для выполнения клеточных функций, таких как репликация ДНК, митоз, мейоз, движение клеток, эндоцитоз, экзоцитоз и апоптоз.

Второй закон термодинамики в биологических системах

Как и в случае с другими биологическими процессами, передача энергии на 100% не эффективна. При фотосинтезе, например, не вся энергия света поглощается растением. Некоторая ее часть отражается, а другая часть трансформируется в тепло. Потеря энергии в окружающую среду приводит к увеличению беспорядка или энтропии.

В отличие от растений и других фотосинтезирующих организмов животные не могут генерировать энергию непосредственно из солнечного света. Они должны потреблять растения или других животных организмы для получения энергии. Чем выше организм находится в пищевой цепи, тем меньше доступной энергии он получает от своих источников пищи.

Большая часть этой энергии теряется во время метаболических процессов. Поэтому для организмов в высших трофических уровнях доступно гораздо меньше энергии. Чем меньше энергии, тем меньше число организмов может быть поддержано. Именно поэтому в экосистеме больше производителей, чем потребителей. Живые системы непрерывно нуждаются в энергии для поддержания своего высокоупорядоченного состояния.

Клетки, например, сильно упорядочены и имеют низкую энтропию. В процессе поддержания этого порядка некоторая энергия теряется в окружающей среде или трансформируется. Таким образом, в то время как клетки упорядочены, процессы, выполняемые для поддержания этого порядка, приводят к увеличению энтропии в окружении клетки/организме. Передача энергии приводит к увеличению энтропии во Вселенной.

Читайте также: