Наследование признаков у человека кратко

Обновлено: 08.07.2024

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Другие материалы по теме:

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

( А — желтый цвет горошин, а — зеленый цвет горошин)

Р ♀ AA
желтые
× ♂ аа
зеленые
Типы гамет А а
F1
желтые
100%

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

( А — желтый цвет горошин, а — зеленый цвет горошин):

P ♀ Aa
желтые
× ♂ Aa
желтые
Типы гамет A a A a
F2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Р ♀ Аа
желтые
× ♂ aа
зеленые
Типы гамет A a a
F Аа
желтые
50%
аa
зеленые
50%

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска ( А ) и гладкая форма ( В ) семян — доминантные признаки, зеленая окраска ( а ) и морщинистая форма ( b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀ АABB
желтые, гладкие
× ♂ aаbb
зеленые, морщинистые
Типы гамет AB ab
F1 AaBb
желтые, гладкие, 100%
P ♀ АaBb
желтые, гладкие
× ♂ AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1 ) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2 ) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3 ) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1 ), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сможет ли в семье кареглазых родителей родиться голубоглазый малыш? Чтобы не гадать на кофейной гуще, достаточно подробнее изучить особенности наследственности генов. Что такое наследственность, как сочетание генов может повлиять на характер и внешность ребенка — попытаемся разобраться в основах генетики вместе.

Наследственность — это умение организма передавать потомкам собственные признаки и особенности развития или свойство быть похожим на родителей. Например, ребенок может перенять определенные черты характера, внешности, задатки, тип обмена веществ и заболевания родителей — любые признаки, характерные для данного биологического вида. Все это возможно благодаря молекулам ДНК — генетическому материалу клеточных организмов. В то же время каждый отдельный индивид всегда имеет и собственные отличительные признаки и особенности.

  • Античность — естественный интерес к проявлению наследственности
    Наследственностью занимается специальная наука — генетика. Самые первые человеческие подозрения, что какие-то особенности могут передаваться из поколения в поколение, появились еще во времена античности. Еще Аристотель, Гиппократ и другие известные древние греки пытались ответить на важные биологические вопросы. Их интересовало, что переносит наследственные задатки, каким образом это происходит и какие именно свойства передаются потомству чаще всего.
  • Середина XIX века — научные основы генетики
    Однако создание базы научных представлений отмечено серединой XIX века — именно тогда ученый Г. Мендель изучал дискретность наследственных факторов и разработал особые законы скрещивания.
  • XX век — активное развитие генетики
    Благодаря изысканиям ученого с начала XX века генетика и оформилась как наука, да еще начала переживать настоящий бум. Сначала на весь мир прогремела идея о том, что признаки передаются от одного поколения к другому благодаря генам — так появилась генная теория. В 1953 году английский биофизик Ф. Крик и американский биофизик Дж. Уотсон создали структурную модель дезоксирибонуклеиновой кислоты, которую сегодня видел каждый — это макромолекула ДНК в виде двойной спирали. С этого момента процесс наследования стали воспринимать как передачу генетической информации, которая находится в химическом строении ДНК. Потом появилась инновационная генная инженерия, которая сегодня позволяет создавать и конструировать искусственные генетические системы.

Сейчас благодаря развитию генетики мы знаем главные качества наследственности, можем разобраться в ее свойствах и закономерностях.

Генетику человека разделяют на несколько разделов:

  • Популяционная генетика.
    Изучает генофонд популяции, генетические процессы в больших группах людей, которые происходят под влиянием мутации, при определенных браках, отбора, миграции или изоляции населения. Также она изучает закономерность формирования человеческого генотипа.
  • Биохимическая генетика человека.
    Занимается изучением механизмов генетического контроля различных биохимических процессов. Для этого используются передовые методы биохимии: электрофорез, хроматография, анализы и т.д.
  • Цитогенетика.
    Главным образом изучает материальные носители наследственности — хромосомы, их поведение, функции и строение. Основываясь на полученных данных, цитогенетика исследует закономерности развития и наследования признаков организмов.
  • Иммуногенетика.
    Выделяется благодаря установлению многих иммунологических признаков. В основном это антигены лейкоцитов и эритроцитов, белковые группы сыворотки крови. Иммуногенетика занимается изучением наследственных факторов иммунитета, закономерности наследования антигенных факторов.

Ядерная или хромосомная наследственность человека

Этот вид наследственности связан с передачей наследственных признаков, расположенных в хромосомах ядра.

Критерии типов ядерной наследственности:

  • аутосомно-рецессивный тип наследования встречается не в каждом поколении. Дети избегут наследования, если признак имеется лишь у одного родителя. В иных случаях наследование возможно;
  • аутосомно-доминантный тип наследования — ребенок может унаследовать этот признак у одного из родителя. По этой причине этот тип наследования встречается в каждом поколении;
  • голандрический тип наследования передается по мужской линии, так как является исключительно мужским признаком;
  • рецессивный тип наследования с Х – хромосомой ребенок может унаследовать в редких случаях. У девочки может проявиться этот признак, если он есть у отца;
  • доминантный тип наследования с Х – хромосомой наследуется девочками в 2 раза чаще.

Цитоплазматическая или нехромосомная наследственность

Эта наследственность осуществляется с помощью молекул ДНК, находящихся вне хромосом, в пластидах и митохондриях.

Часто вместе с чертами характера и особенностями внешности детям от родителей передаются и многие заболевания. Вероятность развития болезни у ребенка увеличивается, если наследуется от обоих родителей. А избежать этого стало возможно благодаря специальным генетическим исследованиям. Все генетические заболевания разделяют на следующие группы:

  • хромосомные болезни — они проявляются, когда изменяется структура или число хромосом. Одним из ярких примеров подобных заболеваний является гемофилия. Это заболевание наследуется вместе с Х-хромосомой, страдают им мужчины;
  • заболевания, вызванные мутацией одного гена. Это некоторые виды атеросклероза, болезнь Альцгеймера, фенилкетонурия;
  • заболевания, вызванные проявлениями различных взаимодействий генов и факторов окружающей среды.

Таким образом, факторы окружающей среды могут послужить триггерами, а вовлеченные гены могут повысить шанс человека заболеть. Сюда относится большинство психических заболеваний.

Независимое наследование происходит, если гены, определяющие неаллельные признаки, расположены в разных парах хромосом. В этом случае наследование подчиняется третьему закону Менделя: происходит комбинирование генов и признаков во всех возможных сочетаниях. При анализирующем скрещивании дигетерозиготы появляются \(4\) варианта фенотипов в равных соотношениях.

В результате скрещивания дигетерозиготных растений AaBb c рецессивными дигомозиготами aabb у потомства наблюдаются четыре фенотипа в одинаковых количествах.

Сцепленное наследование наблюдается, если гены, отвечающие за разные признаки, располагаются в одной паре гомологичных хромосом. Сцепление может быть полным или неполным.

В этом случае скрещивание дигетерозиготы и рецессивной дигомозиготы приводит к появлению двух фенотипов, полностью повторяющих фенотипы родителей.

Дигетерозигота образует два вида гамет: и , а дигомозигота — один .

У потомства генотипы такие же, как у родителей: и — поэтому и фенотипы совпадают.

При скрещивании рецессивной по обоим признакам самки, имеющей тёмное тело и короткие крылья, с дигетерозиготным доминантным самцом образовалось \(50\) % серых мух с длинными крыльями и \(50\) % мух с тёмным телом и короткими крыльями.

Неполное сцепление генов наблюдается, если гены расположены в хромосоме далеко друг от друга. При скрещивании дигетерозиготы и рецессивной гомозиготы получается \(4\) класса различных фенотипов. При этом происходит образование новых генотипов, полностью отличающихся от родительских.

Дигетерозигота образует не два, а четыре вида гамет: некроссоверные — , (больше) и кроссоверные — , (меньше).

При их соединении с гаметами дигомозиготы образуются четыре генотипа и четыре фенотипа: в большем количестве — нерекомбинанты и , в меньшем количестве — рекомбинанты и .

Если скрещивают дигибридную самку с гомозиготным рецессивным самцом, то в результате образуется потомство: \(41,5\) % — серых с длинными крыльями, \(41,5\) % — серых с короткими крыльями, \(8,5\) % — тёмных с длинными крыльями, \(8,5\) % — тёмных с короткими крыльями.

12.jpg

Установлено, что чем меньше расстояние между исследуемыми генами в родительской хромосоме, тем выше вероятность их полного сцепленного наследования. Соответственно, чем дальше друг от друга они располагаются, тем чаще происходит перекрест при мейозе.

Типы наследования – это совокупность механизмов, по которым организм наследует тот или иной признак. Типы наследования бывают разными и даже по-разносу могут проявляться у разных организмов. Всего учёные выделяют 7 основных типов наследования. Впервые основы наследования признаков были описаны Грегором Менделем.

Грегор Мендель, сам того не зная, внес огромный вклад в становление будущей науки – генетики, благодаря которой сегодня у нас есть возможность предотвращать и даже лечить тяжелейшие болезни, спасая жизнь миллионам людей по всему миру.

Генетика – это наука, которая изучает гены, генные последовательности и их модификации, а также механизмы передачи и наследования генов. Эта наука является относительной молодой. Бурное развитие она получила в течение последних двадцати лет. Тем не менее, уже видны заметные результаты в этой области и учёные-генетики не намерены останавливаться.

Благодаря генетике удалось подробнее изучить некоторые врожденные заболевания, определить, почему организм реагирует на то или иное вещество, болезнь так, а не иначе. Самое главное – изучение генетики даёт нам возможность бороться с тяжелыми заболеваниями, особенно – наследственными и врожденными. Чтобы изучать наследственные болезни, необходимо для начала знать все о типах наследования.

Какие бывают типы наследования

Существует несколько основных типов наследования.

В настоящее время учёные выделяют следующие типы наследования:

  1. Аутосомно-доминантный тип наследования.
  2. Аутосомно-рецесссивный тип наследования.
  3. Наследование признаков, сцепленное с полом, которое подразделяется на рецессивное и доминантное.
  4. Голандрический тип наследования.
  5. Митохондриальное наследование.

Каждый из них обладает своими механизмами и особенностями наследования.Каждый признак может передаваться только одним способом. Типы наследования зависят от расположения аллельного гена- в аутосомной или половой хромосоме, а также от того, какой является аллель – рецессивной или доминантной.

Особенности типов наследования


Если один признак определяется большим количеством признаков, наследование является полигенным. Такие признаки считаются “неменделирующими”. Самым ярким примером является наследование групп крови по системе АВ0. Они не поддаются классическим законам наследования, описанных Грегором Менделем.

Особенностью этого типа наследия является тот факт, что потомки могут получить ту же группу крови, что и у родителей или же группа крови будет совсем другая. Также, признаки, которые не подаются законам Менделя, могут влиять друг на друга. Например, ученым удалось четко определить взаимосвязь между группами крови и физическими способностями человека, особенно, мужского пола.

Доминантный тип наследования

Доминантный тип наследования проявляется при моногенном независимом наследовании. Доминантный ген при таком типе наследования расположен в главной аллели. При доминантном типе наследования одна аллель сохраняется в нормальном состоянии, а одна – в изменённом. Измененная аллель подавляет обычную.

При доминантном типе наследования признак будет наблюдаться практически в каждом поколении. Всего на сегодняшний день выявлено около 1200 генов, которые наследуются по данному типу. К ним относятся такие признаки, как наследование карих глаз, волос не рыжего цвета, большие глаза, наличие веснушек и др.

Рецессивный тип наследования

Гены, которые передаются при данном типе наследования находятся в аутосомах, то есть, соматических хромосомах. Обнаружено более 900 признаков, которые так передаются. Большинство из являются скрытыми, так как не проявляются на протяжении жизни. Люди, у которых есть один рецессивный ген, являются носителями гена и при этом, не проявляясь признаков.

Вот некоторые примеры рецессивных генов: короткие ресницы, дальтонизм – или нарушение нормального цветового восприятия окружающего мира, светлые глаза и прямые волосы и др.

Аутосомно-доминантный тип наследования

Данный тип наследования отличается некоторыми особенностями:

  1. Если есть большое количество потомков, то признак проявится в каждом поколении, в том числе и тот признак, который отвечает за развитие болезней и патологий.
  2. Если в поколении встречается редкий доминантный признак, то с большой вероятностью он встретится у половины детей.
  3. Нет разницы между частотой наследования доминантного признака среди мужчин и женщин.
  4. Наследование зависит от обоих родителей – каждый родитель может передать своим детям доминантный признак.

Иногда доминантные признаки могут проявляться через поколение, например, у дедушек и бабушек, а потом у внуков.

Вот некоторые заболевания и аномалии, которые передаются таким путём: большее количество пальцев на руках – полидактилия, ахондроплазия и др.

Аутосомно-рецессивный тип наследования

У этого типа наследования есть ряд особенностей.

Появление признака в поколениях

В отличие от доминантного признака, даже несмотря на большое количество потомков, признак может не проявляться в поколениях и долгое время мутации будут оставаться незамеченными, а люди даже и не будут знать, что являются носителями какой-то аномалии, пусть даже и неопасной.

Проявление у детей в отсутствие признака у родителей

Такое тоже случается. Иногда, мутация может появиться спонтанно и рецессивный ген проявится, даже если у родителей ребёнка его не было. Такое встречается в 25 процентах случаев.

Наследование признака от носителей

Если у обоих родителей есть данный признак и они являются носителями, то у всех детей 100% будет данный рецессивный признак. Оба родителя являются гетерозиготами, содержат один нормальный аллель и один рецессивный. У детей высокий риск получить этот ген и в итоге все они ее получают. Поэтому раньше было такое количество наследственных и врожденных заболеваний. Если происходят браки с близкими родственниками и в этих браках рождаются дети, велика вероятность того, что у двух носителей родится больной ребёнок с гомозиготным генотипом.


Для ясности возьмём гемофилию. Если у ребенка мать является носителем мутации в гене, вызывающем гемофилию, а отец болен – у ребёнка 100% будет гемофилия. Девочке с таким диагнозом выжить не удасться, а мальчик будет тяжело страдать от данного заболевания. Такую ситуацию можно проследить и в царских семьях России в известной империи Романовых.

Если признак есть только у одного родителя, то он появится только у половины потомства, так как у другого родителя аллели не содержат мутаций.

Распространённость того или иного рецессивного признака варьирует в зависимости от национальности и этнических групп. Высока встречаемость этих признаков в семьях с кровными браками.

Если один из родителей знает, что у него в семье были случаи заболеваний, связанных с рецессивным типом наследования, необходимо пройти диагностику. Диагностика поможет определить заболевание у ребёнка на ранней стадии или поможет тщательно спланировать беременность.

Митохондриальное наследование

Часть генетической информации содержится не только в ядре клеток, но и в митохондриях. Митохондрии являются важными клеточными органеллами с собственной ДНК. Вся митохондриальная ДНК наследуется от матери. Митохондриальная ДНК есть и у сперматозоида, но после завершения процесса оплодотворения, она просто разрушается. Учёные даже обнаружили, что в сперматозоидах митохондриальная ДНК помечена специальным белком, из-за чего защитные клетки организма быстро распознают ее и уничтожают.

ДНК митохондрий не является стабильной и очень быстро изменятся и мутирует. Изучение митохондриальной ДНК является хорошим способом отслеживания эволюционных процессов разных видов. Митохондриальное наследование также изучается для того, чтобы иметь возможность идентифицировать людей. Именно в этой доле генетического материала содержится большое количество уникальных белков и молекул, который позволяют провести полную и тщательную идентификацию человека.

Но к сожалению, и тут часто возникают мутации и возникают заболевания. Учёные в настоящее время работают над тем, чтобы научиться заменять митохондриальную ДНК и тем самым, устранять митохондриальные болезни. К ним относятся: заболевания мозга, митохондриальный сахарный диабет, поражения печени. Каждый аллель может вызывать разные проявления у разных людей – у одного пострадает мозг, у другого – печень и тд. Также, мутации в митохондриях имеют свойство накапливаться и проявляться с новой силой в новых поколениях.

Ограниченный полом тип наследования

Это связано с тем, что у женщин – две Х-хромосомы и всегда есть ещё одна запасная, здоровая. А у мужчин Х-хромосома только одна и вероятность того, что там будет дефектный аллель – стремится к 100%. Девочка сможет заболеть или получить признак только в том случае, если дефектный ген есть и у отца, и у матери.

Признак перейдёт к ней от отца. Если наследование дефектного аллеля связано с Y-хромосомой, то болеть будут только мальчики. Ещё одна особенность в том, что даже если у родителей нет признаков, которые передаются сцеплено с полом, он все равно может появиться у детей. И вероятность такого явления довольно высока.

Голандрический тип наследования

Данный тип наследования связан с мужской половой хромосомой. В норме, на данной хромосоме расположены признаки, которые отвечают за развитие мужских половых органов, сперматозоидов. Если происходят мутации, они могут передаваться только от отца к сыну и все. На этой хромосоме расположено более 35 генов. Если какой-либо дефект определяет нарушение работы семенников или других желёз, мутации дальше не передаются, так как мужчина остаётся стерильным и не может иметь детей.


Посредством голандрического наследования передаются следующие признаки: чрезмерное оволосение ушных раковин и пальцев кистей, азооспермия, что приводит к бесплодию и др. Помимо этого, данным типом наследования могут передаваться и более серьёзные заболевания, например, ихтиоз. Прт этом кожа пациента выглядит как чешуя рыбы, он не может вести полноценную жизнь. Другие мутации при голандрическом типе наследования могут привести к раковым заболеваниям и различным дисфункциям.

Читайте также: