Напряжение электрических сетей кратко

Обновлено: 05.07.2024

Напряжение электрической сети (или сетевое напряжение) является среднеквадратичным (действующим) значением напряжения в электросети переменного тока, которая доступна для конечного потребителя.

Среднее значение напряжения электрической сети

Базовые параметры для сети переменного тока, такие как частота и напряжение, будут различными для каждого региона. Так, большинству европейских стран будет доступно низкое сетевое напряжение, составляющее в трёхфазных сетях 230/400 В с частотой в 50 Гц, в промышленных сетях при этом оно составит 400/690 В.

Если напряжение электрической сети будет выше (от 1000 В до 10 кВ), можно зафиксировать уменьшение потерь при передаче электроэнергии. Это позволит задействовать более мощные электроприборы. В то же время увеличивается тяжесть последствий при поражения током неподготовленных пользователей электроэнергии от незащищенных сетей.

С целью задействования электроприборов, ориентированных на одно сетевого напряжения, в районах, где нужно использовать другое, потребуются соответствующие преобразователи в виде, например, трансформаторов. Определенные виды электроприборов (они в основном, из разряда специализированных и не относятся к бытовым) нормально функционируют не только в зависимости от напряжения, но и от частоты питающей сети.

У современного высокотехнологичного электрооборудования с импульсными преобразователями напряжения могут быть переключатели на разные значения сетевого напряжения. При этом допускается их отсутствие. Таким электрооборудованием допускается широкий диапазон входных напряжений, варьируемый от 100 до 240 В, номинальная частота при этом – 50-60 ГЦ. Это позволяет применять такие электроприборы без преобразователей буквально в любой стране мира.

Параметры напряжения электрической сети в России

Производителями электроэнергии генерируется переменный ток промышленной частоты (в России она составляет — 50 Гц). В большинстве случаев линии электропередач передают трехфазный ток. Такой ток повышается до сверхвысокого и высокого напряжения посредством работы трансформаторных подстанций, устанавливаемых вблизи электростанций.

Готовые работы на аналогичную тему

По межгосударственному стандарту ГОСТ 29322-2014, сетевое напряжение должно составлять 230 В, а частота при этом будет 50Гц. При этом продолжают применяться системы 220/380 В и 240/415 В.

К однофазной розетке подводятся такие виды проводов:

  • фазовый;
  • нулевой провод;
  • провод защитного заземления (зануления).

Формулы измерения сетевого напряжения

Частота напряжения электрической сети может быть определена без задействования внешних дополнительных средств для измерения (как например, компараторов). Однако это может отразиться на точности ее измерения, существенно снижая ее.

Методика таких измерений заключается в следующем: производится выборка за период сетевого напряжения из $N$ значений амплитуды напряжения. Далее суммируются результаты (исключается знак). После этого они усредняются. Полученный результат будет зависеть от коэффициента:

Указанный коэффициент помогает установить зависимости действительного значения синусоидального сигнала и средневыпрямленного. Такой метод измерений достаточно прост, не требует большого числа ресурсов микроконтроллера (временных и ресурсов памяти).

При изменении сигнала сетевого напряжения за основу берется синусоидальный закон (в результате использования на электростанции синхронных генераторов). Частота изменения сигнала при этом будет 50-60 ГЦ.

На практике фиксируется или значительное искажение синусоиды напряжения или замена ее прямоугольными импульсами. Причиной этому становится:

  • воздействие сторонних факторов в виде подключения к сети нелинейных нагрузок большой мощности;
  • использование инверторов с выходным квазисинусоидальным напряжением.

Действующее значение измеряемой периодической величины рассчитывается по формуле^

Напряжение в электрической сети

Напряжение в электрической сети

Электрическое поле, обладает энергией, которая производя работу, создает электрическое напряжение, действующее на заряды в проводнике. Численно напряжение равно отношению работы, которую совершает электрическое поле, перемещая заряженную частицу по проводнику, на величину заряда частицы.

Эта величина измеряется в вольтах. 1 B – это работа в 1 джоуль, которую совершило электрическое поле, передвигая заряд в 1 кулон по проводнику. Название единице измерения дано по имени итальянского ученого А. Вольта, который сконструировал гальванический элемент – первый источник тока.

Напряжение величина тождественная разности потенциалов. Например, если потенциал одной точки 35 B, а следующей точки 25 В, тогда разность потенциалов, как и напряжение будет равно 10 В.

Так как вольт - единица измерения, которую очень часто употребляют, то для измерений часто используют приставки для образования десятичных кратных единиц. Например, 1 киловольт (1 кВ = 1000 В), 1 мегавольт (1МВ = 1000 кВ), 1 милливольт (1 мВ = 1/1000 В) и т.д.

Напряжение в сети должно соответствовать, тому значению, на которое рассчитаны потребители электроэнергии. При передаче энергии по соединительным проводам часть разности потенциалов теряется на преодоления сопротивления подводящих проводников. Поэтому в конце линии передач эта энергетическая характеристика становится несколько меньше, чем в ее начале.

В сети падает напряжение. Это понижение, одного из главных параметров, обязательно скажется на работе оборудования, будь, то осветительная или силовая нагрузка. При проектировании и расчете линии электропередач надо учитывать, что отклонения в показаниях приборов, измеряющих разность потенциалов должны соответствовать установленным нормам. Цепи, рассчитанные по току нагрузки, учитывающие нагрев проводов, контролируют по величине падения напряжения.

Падением напряжения ΔU является разность потенциалов в начале линии и в ее конце.

Потеря разности потенциалов по отношению к действующему значению определяется формулой: ΔU = (P r+Qx)L/Uном,

где Q – реактивная мощность, P – активная мощность, r – активное сопротивление линии, x – реактивное сопротивление линии, Uном – напряжение номинальное.

Активное и реактивное сопротивление, подводящих проводов выбираются по справочным таблицам.

Согласно требованиям ГОСТ и правилам электроустановок напряжение в электрической сети может отклоняться от нормальных показаний не более, чем на 5% . Для осветительных сетей бытовых и промышленных помещений от +5% до – 2,5%. Допустимая потеря напряжения не более 5%.

В трехфазных линиях электропередач, напряжение которых, 6 – 10 кВ нагрузка распределяется равномернее и в них потери разности потенциалов меньше. Из-за неравномерной нагрузки в осветительных сетях низкого напряжения, используют 4-проводную систему трехфазного тока, напряжением 380/220 В (система TN-C) и пятипроводную ( TN-S) . Присоединив, в такой системе электродвигатели к линейным проводам, а осветительное оборудование между линейным и нулевым проводом выравнивают нагрузку на три фазы.

Какое напряжение в сети считается оптимальным? Рассмотрим базисное напряжение из стандартизированных, по уровню изоляции электрооборудования, ряда напряжений.

Номинальное напряжение в сети, это величина такой разности потенциалов, на которую изготовлены источники и приемники электроэнергии, при нормальных условиях работы. Устанавливается номинальное напряжение в сети и в подсоединенных потребителях с помощью ГОСТ. Действующее напряжение в устройствах, создающих электроэнергию, из-за условий компенсации потерь разности потенциалов в цепи, допустимы на 5% выше, чем номинальные напряжения в сети.

Первичные обмотки повышающих трансформаторов являются приемниками электроэнергии. Поэтому их действующие значения напряжений такие же, по величине, как и номинальные напряжения генераторов. У понижающих трансформаторов их действующее напряжение такое же, как и номинальное напряжение в сети или на 5% выше. С помощью вторичных обмоток трансформаторов, замкнутых на питаемую цепь осуществляется подача тока в сеть. Чтобы компенсировать потерю разности потенциалов в них, их номинальные напряжения устанавливают выше, чем в цепях на 5 – 10%.

Любая электрическая цепь имеет свои параметры номинального напряжения для электрооборудования, которые запитаны от нее. Оборудование работает при напряжении, отличающегося от номинального напряжения из-за падения напряжения. По ГОСТ, если режим работы цепи - нормальный, то подводимое к оборудованию напряжение не должно быть, ниже действующего больше, чем на 5%.

Номинальное напряжение в городской сети должно равняться 220B, но далеко не всегда оно действительно такое. Эта характеристика может быть повышенной, пониженной или нестабильной, если кто-то из соседей занимается сваркой или подключил мощный инструмент. Нестандартное напряжение отрицательно действует на работу бытового электрооборудования.

При скачках напряжения самая большая опасность грозит электронным приборам. Они выйдут из строя раньше, чем электродвигатель пылесоса или стиральной машины. Достаточно сотой доли секунды, т.е. одной полуволны высокого напряжения, чтобы вышел из строя импульсный блок питания. Особенно опасно длительное воздействие повышенной разности потенциалов, кратковременные скачки менее опасны.

Например, удар молнии вызывает всплеск повышения напряжения, но от таких неприятностей вся электроника надежно защищена. Защита бессильна при длительном повышении напряжения. Организации, поставляющие на рынок электроэнергию, отвечают за качество продаваемой электроэнергии.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

При передаче больших потоков электрической энергии неизбежны потери активной мощности, которые, согласно закону Джоуля — Ленца, равны:

W =(I·I)·R·t,

где I – величина силы тока, А;

R – активное сопротивление линии, Ом;

Для уменьшения потерь передача и распределение ЭЭ производятся на высоких напряжениях.

По уровню номинального напряжения электрические сети иногда делят на сети низкого (до 1 кВ), среднего (выше 1 кВ до 35 кВ включительно), высокого (110–220 кВ), сверхвысокого (330–750 кВ) и ультравысокого (выше 1000 кВ) напряжений. Напряжение приемников электроэнергии, генераторов и трансформаторов, при котором они нормально и наиболее экономично работают, называют номинальным. Это напряжение указывают в паспорте электрической машины и аппарата.

В установках трехфазного тока номинальным принято считать значение междуфазного напряжения. Поэтому если номинальное напряжение линии – 35 кВ, ее фазное напряжение будет в 3 раз меньше, т.е. 20,2 кВ.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников ЭЭ устанавливаются ГОСТом. Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц:

— до 1000 В: 12, 24, 36, 42, 127, 220, 380 В;

— выше 1000 В: 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ.

Для электрических сетей трехфазного переменного тока напряжением до 1000 В и присоединенных к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

— сети и приемники – 380/220 В; 660/380 В.

— источники – 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5 % больше номинального напряжения этой сети. Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5 % больше номинальных напряжений подключаемых к ним линий. Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

Выбор стандартного напряжения определяет построение всей системы ЭСПП. Для внутрицеховых электрических сетей наиболее распространено напряжение 380/220 В, основное преимущество которого — возможность совместного питания силовых и осветительных ЭП. Наибольшая единичная мощность трехфазных ЭП 380/220 В, как правило, не должна превышать 200–250 кВт, допускающая применение коммутирующей аппаратуры на ток до 630 А. Значительное увеличение электрических нагрузок потребителей (их число и единичная мощность) привело к введению повышенного напряжения — 660 В.

Напряжение 660 В:

— целесообразно на предприятиях, на которых (по условиям планировки цехового оборудования, технологии и окружающей среды) нельзя или трудно приблизить цеховые ТП к ЭП. Это имеет место в угольных шахтах, в карьерах, в нефтедобывающей и химической промышленности, на цементных заводах и т.п. Расстояние от ТП до ЭП при этом увеличивается, и становится необходимым для снижения потерь ЭЭ принять повышенное напряжение распределительной сети 660 В;

— целесообразно на предприятиях с высокой удельной плотностью электрических нагрузок и большим числом электродвигателей в диапазоне мощностей 200–600 кВт;

— позволяет увеличить радиус действия цеховых ТП примерно в 2 раза;

— позволяет повысить единичную мощность трансформаторов, сократить число цеховых ТП, линий и аппаратов напряжением выше 1000 В;

— позволяет снизить в 2 раза расход цветных металлов;

— позволяет увеличить пропускную способность сети 660/380 В в 3 раз.

Недостатки напряжения 660 В:

— необходимость раздельного питания силовых и осветительных ЭП;

— повышенная степень опасности поражения электрическим током.

Напряжение до 42 В (24 В или 36 В) применяется в помещениях с повышенной опасностью для стационарного местного освещения и ручных переносных ламп.

Напряжение 12 В применяется только при особо неблагоприятных условиях в отношении опасности поражения электрическим током (например, при работе в котлах или других металлических резервуарах), для питания ручных переносных светильников.

В зависимости от установленной мощности промышленные предприятия подразделяются на предприятия:

— малой мощности (1–5 МВт);

— средней мощности (5–75 МВт);

— большой мощности (более 75 МВт).

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и во внутризаводских распределительных сетях. Напряжение 10 кВ является предпочтительным. Напряжение 6 кВ целесообразно тогда, когда нагрузки и ТП предприятия получают питание от шин генераторов собственной ТЭЦ, а также при наличии значительного числа ЭП на номинальное напряжение 6 кВ.

Напряжение 35 кВ используется:

— для создания центров питания предприятий средней мощности, если распределительные сети выполняются на напряжение 6–10 кВ;

— для электроснабжения крупных предприятий с удаленными (5–20 км) ЭП на это напряжение;

— в схемах глубокого ввода.

Напряжение 110 кВ находит сейчас все большее применение в качестве питающего напряжения на предприятиях средней мощности и в качестве распределительного по схеме глубокого ввода — большой мощности.

Напряжение 220 кВ применяется для питания крупных энергоемких предприятий от ТП районных энергосистем, а также для распределения ЭЭ на первой ступени схемы электроснабжения.

2 thoughts on “ Напряжения электрических сетей ”

Так как приемники электроэнергии непосредственно под­ключены к сети определенного номинального напряжения, их номинальные напряжения одинаковы. Вместе с тем, в практике встречаются случаи несовпадения номинальных напряжений электроприемников и электрических сетей Например, лампы накаливания выпускаются на напряжение 230-240 В для рабо­

Вы противоречите в двух предложениях сами себе. Номинальное напряжение сети и номинальное напряжение электроприемника, это разные вещи и они по определению не могут быть равны. Возможно Вы путаете номинальное напряжение и мгновенное значение напряжения.

Напряжение электрической сети

Электрическое напряжение – это основная характеристика энергетического поля. Она определяется как соотношение перемещения заряженных частиц к величине заряда частицы. Измеряется электрическое напряжение в Вольтах. О нем иногда говорят как о некой разности потенциалов между двумя точками. Для измерения напряжения существуют специальные приборы – вольтметры.

Напряжение электрической сети

Не секрет, что основой функционирования нашей энергосистемы является трехфазная сеть. В ней различают два вида электрического напряжения – линейное и фазное. Линейное передает напряжение между двумя проводами в сети, а трехфазное – это напряжение между линейным проводом и нейтральным (с нулевым потенциалом).

При нагрузке в сетях по

Зачем следить за колебаниями напряжения электрической сети?

Напряжение электрической сети подвержено колебаниям. В сетях может происходить или его увеличение (перенапряжение) от номинальных значений или наоборот уменьшение. Колебание напряжения имеет внешние и внутренние причины. Внешние факторы выражаются в воздействии природных причин, таких как молния или атмосферное электричество. А внутренние факторы колебания напряжения возникают от скачкообразного изменения нагрузки из-за активности потребителей. Могут быть и технические причины колебаний напряжения, обусловленные излишним сопротивлением катушки при начальном значении токов.

Как повышение напряжение, так и его понижение от нормы несет в себе очень много негативных моментов для электросетей и конечных потребителей. Вот почему за ним нужно неуклонно следить как специальным службам, так и рядовым потребителям. Так, при перенапряжении снижается срок службы технологического оборудования, повышается вероятность аварий. Для бытовых потребителей скачки напряжения грозят выводом из строя бытовой техники, перегоранием и снижением срока службы ламп накаливания, различных нагревательных электропитающих приборов.

Ответственность за правильное напряжение электропитания возлагается на энергоснабжающую организацию, которая, чтобы минимизировать скачки напряжения, применяет различные методы технического характера. Это может быть установка разрядников и ограничителей напряжения, а также молниеотводов. В бытовой сети для перестраховки от колебаний напряжения применяют сетевые фильтры, стабилизаторы, защитные реле.

Читайте также: