Нагревание в химии кратко

Обновлено: 07.07.2024

Многие физические и химические процессы были бы просто невозможны, если бы человек несколько тысяч лет назад не понял, что можно нагревать предметы, вещества и воздух. С появлением огня расширился ареал обитания, люди стали появляться на северных территориях, а способность готовить и отапливать помещения сделали жизнь лучше и комфортнее. Сегодня процесс используется в быту, промышленности и развлечениях. Человек берет за основу те биохимические и геологические процессы, которые связаны с нагреванием, и создает инновационные технологии в электронике, промышленности и быту. Совместно c брендом IQOS сделали подборку технологий и процессов, которые невозможны без принципа нагревания и контроля температуры.

Древняя история нагревания

Человеку еще на ранних стадиях эволюции было проще жить в регионах с тропическим и экваториальным климатом. Главный фактор, облегчающий жизнь в таких климатических зонах, — температура. Там, где тепло, проще добывать себе пищу, легче выращивать сельскохозяйственные культуры, да и просто выживать, так как не требуется строительство монументальных жилищ, защищающих от низких температур и непогоды. Научившись добывать огонь, человек стал больше уделять времени и сил приготовлению пищи, а его ареал обитания существенно расширился. Человеческие поселения стали появляться все севернее, а жизнь там, несмотря на более суровый климат, становилась более приемлемой для выживания. Возможность использовать огонь позволила человеку не только готовить пищу, но и отапливать свое жилище, защищать свое тело во время зимних сезонов или даже в условиях вечной мерзлоты. Сегодня только в северных регионах проживают 21 млн россиян.

Одним из факторов, позволивших человечеству стать превалирующим видом на Земле, стало понимание, что тела, жидкости и газ вокруг нас можно нагревать, а тепло позволяет делать жизнь комфортнее, полноценнее и легче. Конечно, первобытный человек не сразу освоил технику использования огня (тем более не с точки зрения сжигания, а именно нагревания). Первые доказательства использования людьми огня для приготовления пищи и обогрева были найдены в Восточной Африке: в Чесованьи возле озера Баринго, Кооби-Фора и Ологесалирие в Кении.


Так, доказательства в Чесованьи представляют собой осколки красной глины, возраст которой составляет 1,42 млн лет. Судя по твердости, они были нагреты до 400°C. В Кении найдены свидетельства использования огня Homo erectus с возрастом примерно 1,5 млн лет, с красными отложениями, которые могут образоваться лишь при температуре 200–400 °C.

Что такое нагревание?

Нагревание — это естественный или искусственный физический процесс повышения температуры. Это может происходить за счет внутренней энергии или подведения энергии извне. Для последнего используется нагревательный элемент. Конструкции могут быть самыми разными: от костра до ядерного реактора.

Помимо различий в источниках энергии, сам процесс нагревания может происходить как снаружи, так и изнутри. К последним примерам относятся: тепло, вырабатываемое в ядре Земли, благодаря энергии, которую переносят потоки магмы; растворы во время электролиза или, к слову, современные системы нагревания табака. С нагреванием снаружи все просто — это классический огонь, отопление, СВЧ.

Нагревание происходит за счет увеличения скорости движения или колебаний молекул и атомов, из которых состоит тело. В разных телах этот процесс происходит по-разному. Если речь идет о газах, то их молекулы хаотично движутся с большими скоростями (это могут быть сотни метров в секунду) по всему объему, заполненному газом. Во время своего движения молекулы сталкиваются и отскакивают друг от друга, меняя при этом скорость и направление движения. В случае с жидкостями молекулы в них колеблются около равновесных положений, поскольку расположены очень близко друг к другу, и сравнительно редко могут перескакивать из одного положения в другое. В твердых телах частицы колеблются около положения равновесия. Нагревание во всех перечисленных случаях приводит к тому, что скорость частиц увеличивается. Поэтому хаотичное движение частиц принято в физике называть тепловым. А само нагревание тела зависит от его теплоемкости и теплопроводности.

Теплоемкость — количество теплоты, поглощаемой или выделяемой телом в процессе нагревания (остывания) на 1 К (Кельвин).

Теплопроводность — способность тел проводить теплоту от более нагретых частей тела к менее нагретым частям путем хаотического движения частиц (атомов, молекул, электронов). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Нагревание сегодня применяется в самых различных областях человеческой жизни: от бытового использования в приготовлении пищи и отопления до научных экспериментов и транспортировки. Да и сама природа использует этот процесс: тает лед, изменяется климат, растет температура воды в Мировом океане, меняется флора и фауна, образуются химические вещества и породы.

Кипячение

Кипячение — самый распространенный способ нагрева воды, применяемый исключительно человеком. Речь идет не только о приготовлении еды, для которого необходим кипяток. Кипячение также позволяет уничтожить большинство паразитов, обитающих в воде, произвести обеззараживание продуктов, а также очистить вещи, предметы от жировых загрязнений.

Процесс кипячения состоит из трех стадий: на первой в воде появляются пузырьки воздуха, которые проскакивают со дна емкости, на второй — пузырьки начинают стремительно подниматься к поверхности, происходит помутнение, напоминающее бегущую из родника воду. На третьей стадии начинается бурление воды, поверхности достигают большие пузыри, а вода может разбрызгиваться.


Процесс кипячения сопровождается выделением пара. Кроме того, при кипячении оседают коллоидные частицы грязи, а вода смягчается, так как в осадок выпадают соли, а концентрация легколетучих компонентов и свободного хлора уменьшается.

Но при длительном кипячении возрастает концентрация нелетучих веществ. Нагрев воды до состояния кипятка не может уничтожить тяжёлые металлы, пестициды, гербициды, нитраты, фенолы и нефтепродукты. Есть микробы, способные выжить в кипящей воде довольно длительное время — минуты и даже часы. Прионы не деактивируются даже при кипячении в течение 18 минут при температуре 134°C в герметичном паровом автоклаве.

Термическая обработка пищи

Тепловая обработка применяется в кулинарии разных народов и культур для большого числа продуктов. Как правило, у такой обработки три цели: размягчение, улучшение вкуса или внешнего вида, а также обеззараживание, особенно если речь идет о мясной продукции.

Кроме варки, которая может проходить не только с процессом кипячения, но и на пару, а также при пониженной температуре, к этому же виду обработки относят готовку в вакууме — су-вид, когда продукты варят в вакуумной упаковке. Помимо этого существует способ варки в автоклаве, где готовка происходит под избыточным давлением при температуре 110–130°C.

Еще один вид термической обработки — жаренье, второй по распространенности способ готовки. Продукт прилегает к посуде, поверхность которой смазана тонким слоем горячего жира. Если речь идет о мучных изделиях и особой категории блюд, то используют выпекание в варочном шкафу или духовке. А мясные и рыбные продукты часто коптят с помощью горячего и холодного дыма.

Для поддержания температуры перед раздачей или во время перевозки используется особый вид обработки — термостатирование. А для эффектной подачи используют краткосрочное воспламенение готового блюда, это называется фламбированием.

Отопление

Об этом способе нагревания воздуха знают жители многих стран — без отопления пережить продолжительный зимний сезон практически невозможно. На территории России средняя температура воздуха в этот период составляет −19,7°С. Водяное отопление — это самый популярный и дешевый способ, но сегодня есть и другие варианты, позволяющие обогревать жилище современного человека. Причем в их задачу входит не только обогрев помещения для возмещения теплопотерь, но и поддержание температуры.

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным и лучистым. Под конвективным понимается вид отопления, при котором тепло распространяется благодаря перемешиванию объемов горячего и холодного воздуха. К недостаткам конвективного отопления относится большой перепад температур в помещении (высокая температура воздуха наверху и низкая внизу) и невозможность вентиляции помещения без потерь тепловой энергии. Лучистый способ подразумевает наличие специальных приборов, которые устанавливаются под пол или над обогреваемой зоной либо монтируются прямо в стены.

По источнику тепла отопление может быть самое разнообразное: от печного и парового до жидкотопливного и инфракрасного.

Ядро Земли


От земного ядра поднимаются колоссальные восходящие тепловые потоки магмы — плюмы. У поверхности мантии они растекаются в стороны, вызывая дрейф континентов, а остыв, опускаются в глубину. Но у ядра есть свои источники нагрева: распад долгоживущих радиоактивных элементов и трение между ядром и внешними слоями Земли, вращение которых постепенно тормозят приливы. И все же ядро остывает и от этого постепенно кристаллизуется: диаметр внутреннего твердого ядра увеличивается на несколько сантиметров в столетие.

Нагревание в химии

Увеличение температуры используют в химической отрасли для ускорения массообменных и химических процессов, температурные условия протекания которых зависят от теплоносителя и способа нагрева: водяным паром, горячими жидкостями, точечными газами, электрическим током и излучением.

Самым наиболее частым методом в органическом синтезе является кипячение и нагревание. Согласно правилу Вант Гоффа, при нагревании на 10°С скорость химических реакций возрастает в 2–4 раза. Химические реакции в органической химии (в отличие от неорганической) идут довольно медленно. Поэтому нагревание существенно ускоряет работу химиков.

Но органические соединения довольно не стабильны и при сильном воздействии осмоляются. Поэтому в ряде случаев реакции проводят не при нагревании, а при охлаждении.

Водяные бани применяют только в тех случаях, когда требуется нагревание до температуры не выше 100°С. Песочные бани используются для осторожного воздействия до высокой температуры или для осторожного прокаливания. Температура песочной бани 200–300°С. Нагревание до высоких температур осуществляют в муфельных печах. Прокаливание проводят в тиглях, которые обычно закрывают крышками.

Нагрев электрическим током также используется в химической отрасли, в первую очередь, для экономии средств. Прямой нагрев воды и водных растворов переменным электрическим током при электрическом напряжении, меньшем напряжения разложения жидкостей, показывает, что при малых удельных мощностях генерируемая тепловая энергия превышает затраченную электрическую, вводимую в нагреваемую жидкость.

Индукционный нагрев

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки (скин-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Индуктор и сам сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Такой способ применяется в самых разных промышленных сферах: от сверхчистой бесконтактной плавки до ювелирного дела и обеззараживания медицинских инструментов.

Диэлектрический нагрев (СВЧ)

Для нагрева диэлектрических материалов используется переменное электрическое поле или электромагнитная волна — речь о популярных СВЧ-печах, или микроволновках. ТВЧ-нагрев (с токами высокой частоты) создается в конденсаторах, а СВЧ (сверхвысокочастотное излучение) — в волноводах и объемных резонаторах. При этом способе нагревание тел вызывается потерями на дипольную поляризацию диэлектриков.

Из недостатков такого способа — его неоднородность. При СВЧ-методе происходит лишь поверхностный нагрев, который зависит от теплопроводности материала.


При использовании электромагнитных СВЧ-волн нагрев вызывается молекулярным дипольным вращением в диэлектрике — типичной дипольной молекулой является молекула воды. Метод наиболее широко применяется для разморозки и нагрева при приготовлении пищи. Поскольку вода в пищевых продуктах содержит большое количество солей, которые диссоциируют на ионы, служащие носителями электрических зарядов и также реагирующие на переменное электромагнитное поле, нагрев продуктов обусловлен как переориентацией полярных молекул-диполей, так и смещением ионов.

Нагревание табака

Важно: это не означает снижение риска на 95%. Использование IQOS не исключает риски для здоровья.

В IQOS используется технология HeatControl™, которая устроена следующим образом: керамический элемент в форме лезвия нагревает табак изнутри до температуры, не превышающей 350°С. Такой температурный режим исключает горение, а значит, не образуется дыма и пепла, нет риска прожечь одежду, обивку в салоне автомобиля, мебель или обжечь кого-то.


Уникальность технологии заключается в том, что нагревание происходит изнутри, а не снаружи, и элемент соприкасается непосредственно с табаком, не поджигая его, а бережно нагревая. Кроме того, благодаря инновационным технологиям температура нагрева во время работы устройства IQOS контролируется и поддерживается на необходимом уровне автоматически. Дорожки из золота и платины, нанесенные на нагревательный элемент, вместе образуют термопару, которая измеряет и передает данные о температуре в блок управления, расположенном в держателе устройства.

Во всех без иключения моделях IQOS – от классической 2.4 Plus до новейшей и самой элегантной IQOS 3 DUOS – используется запатентованная технология разработанная в Швейцарии. При создании IQOS ученым и технологическим экспертам удалось исключить процесс горения, заменив его на нагревание, поэтому IQOS обладает рядом преимуществ по сравнению с продолжением курения сигарет. Сегодня уже более 11 миллионов совершеннолетних пользователей по всему миру сделали свой выбор в пользу IQOS*.

*Данные на основе внутренней финансовой отчетности ФМИ, опросов совершеннолетних пользователей IQOS и анализа рынка на [октябрь 2020 года]. Учитывались совершеннолетние пользователи IQOS, которые полностью прекратили курить сигареты, и для которых потребление табачных стиков ФМИ составило не менее 70% от всего табака нагреваемого в течение последних 7 дней на момент опроса.

Плазменная обработка

Если совместить теплофизические и электрохимические процессы на поверхности анода, связанные с локальным вскипанием жидкости, то получится явление, которое называют электролитно-плазменной обработкой. Другое название — анодный электролитный нагрев.

Впервые явление свечения и нагрева электродов заметили сразу несколько ученых в XIX веке — Артур Венельт, Александр Вальтер и Георг Симон Ом. Они доказали, что в результате теплового воздействия тока на электрод со сравнительно малой поверхностью вокруг него происходит локальное вскипание раствора с образованием парового слоя и размыканием электрической цепи. Имеющаяся в цепи индуктивность способствует появлению э.д.с. и пробою парогазового слоя со световыми явлениями.

Сегодня этот метод нагрева широко используется для скоростного упрочнения поверхностей деталей — например, цементации, азотирования, борирования, нитроцементации и/или закалки в рабочем электролите. А электролитно-плазменная обработка стали увеличивает ее поверхностную твердость, износостойкость, коррозионную устойчивость.

Лазерный нагрев

Лазерная обработка материалов используется повсеместно, в том числе и для получения нанотрубок из графена. В зависимости от интенсивности и длительности воздействия лазерного излучения можно нагревать материал без видимого разрушения, расплавлять его, испарять и даже вымывать продукты разрушения.

Расчеты показывают, что скорость нагрева при лазерном облучении материалов очень высока — до 10–10°С/с. За короткое время поверхностные слои успевают нагреться до высоких температур, расплавиться и перегреться. В перегретом металле примеси успевают раствориться.

Лазерный нагрев так же, как и газоразрядный, используется для концентрации энергии на поверхности графита. Эта энергия используется для термического распыления графита. При лазерном распылении получают практически только многослойные нанотрубки — с числом слоев от 4 до 24 и длиной до 300 нм. При этом графитовый образец — мишень, на которую фокусируется лазерное излучение, — помещают в печь для дополнительного нагрева.


А группа физиков-теоретиков одного из лондонских колледжей даже придумала новый метод, который может позволить лазерам нагревать определенные материалы до температур солнечного ядра и выше, правда, всего за 20 квадриллионных секунды.

Человек в своих технологических достижениях всегда вдохновлялся природой: начиная от применения огня для приготовления пищи и заканчивая современными атомными реакторами, в основе работы которых лежат те же самые процессы, что и в выработке тепла из ядра Земли. Умение нагревать позволило человечеству стать доминирующим видом на планете, расширить ареал своего обитания даже на самые суровые климатические зоны, ускорить химические реакции, создать суперпрочные материалы и, наконец, сделать жизнь комфортнее и технологичнее.

Химические реакции протекают либо с выделением теплоты, либо с поглощением теплоты.

Тепловой эффект химической реакции – это изменение внутренней энергии системы вследствие протекания химической реакции и превращения исходных веществ (реагентов) в продукты реакции в количествах, соответствующих уравнению химической реакции.

При протекании химических реакций наблюдаются некоторые закономерности, которые позволяют определить знак теплового эффекта химической реакции:

  • Реакции, которые протекают самопроизвольно при обыных условиях, скорее всего экзотермические. Для запуска экзотермических реакций может потребоваться инициация – нагревание и др.

Например, после поджигания горение угля протекает самопроизвольно, реакция экзотермическая:

  • Реакции образования устойчивых веществ из простых веществ экзотермические, реакции разложения чаще всего – эндотермические.

Например, разложение нитрата калия сопровождается поглощением теплоты:

  • Реакции, в ходе которых из менее устойчивых веществ образуются более устойчивые, чаще всего экзотермические. И наоборот, образование более устойчивых веществ из менее устойчивых сопровождается поглощением теплоты. Устойчивость можно примерно определить по активности и стабильности вещества при обычных условиях. Как правило, в быту нас окружают вещества сравнительно устойчивые.

Например, горение амиака (взаимодействие активных, неустойчивых веществ — аммиака и кислорода) приводит к образованию устойчивых веществ – азота и воды. Следовательно, реакция экзотермическая:

Количество теплоты обозначают буквой Q, измеряют в кДж (килоджоулях) или Дж (джоулях).

Количество теплоты, выделяющейся в результате реакции, пропорционально количеству вещества, вступившего в реакцию.

В термохимии используются термохимические уравнения . Это уравнение реакции с указанием количества теплоты, выделившейся в ней (на число моль вещества, равное коэффициентам в уравнении).

Например, рассмотрим термохимическое уравнение сгорания водорода:

Из термохимического уравнения видно, что 484 кДж теплоты выделяются при сгорании 2 моль водорода, 1 моль кислорода. Также можно сказать, что при образовании 2 моль воды выделяется 484 кДж теплоты.

Теплота образования вещества – количество теплоты, выделяющееся при образовании 1 моль данного вещества из простых веществ.

Например, при сгорании алюминия:

теплота образования оксида алюминия равна 1675 кДж/моль. Если мы запишем термохимическое уравнение без дробных коэффициентов:

теплота образования Al2O3 все равно будет равна 1675 кДж/моль, т.к. в термохъимическом уравнении приведен тепловой эффект образования 2 моль оксида алюминия.

Теплота сгорания – количество теплоты, выделяющееся при горении 1 моль данного вещества.

Например, при горении метана:

теплота сгорания метана равна 802 кДж/моль.

Разберемся, как решать задачи на термохимические уравнения (задачи на термохимию) из ЕГЭ. Для этого разберем несколько примеров термохимических задач.

1. В результате реакции, термохимическое уравнение которой:

получено 98 л (н.у.) оксида азота (II). Определите количество теплоты, которое затратили при этом (в кДж). (Запишите число с точностью до целых.).

Решение.

Из термохимического уравнения видно, что на образование 2 моль оксида азота (II) потребуется 180 кДж теплоты. 2 моль оксида азота при н.у. занимают объем 44,8 л. Составляем простую пропорцию:

на получение 44,8 л оксида азота (II) затрачено 180 кДж теплоты,

на получение 98 л оксида азота затрачено х кДж теплоты.

Отсюда х= 180*98/44,8 = 393,75 кДж. Округляем ответ до целых, как требуется в условии: Q=394 кДж.

Ответ: потребуется 394 кДж теплоты.

2. В результате реакции, термохимическое уравнение которой

выделилось 1452 кДж теплоты. Вычислите массу образовавшейся при этом воды (в граммах). (Запишите число с точностью до целых.)

Решение.

Из термохимического уравнения видно, что при образовании 2 моль воды выделится 484 кДж теплоты. Масса 2 моль воды равна 36 г. Составляем простую пропорцию:

при образовании 36 г воды выделится 484 кДж теплоты,

при образовании х г воды выделится 1452 кДж теплоты.

Отсюда х= 1452*36/484 = 108 г.

Ответ: образуется 108 г воды.

3. В результате реакции, термохимическое уравнение которой

израсходовано 80 г серы. Определите количество теплоты, которое выделится при этом (в кДж). (Запишите число с точностью до целых).

Решение.

Из термохимического уравнения видно, что при сгорании 1 моль серы выделится 296 кДж теплоты. Масса 1 моль серы равна 32 г. Составляем простую пропорцию:


Одной из важнейших операций, проводимых в химических лабораториях, является нагревание и как один из видов его — прокаливание.

Электронагревательные приборы

Из электронагревательных приборов наибольшим распространением пользуются плиты, сушильные шкафы и т. д.

Электрические плиты бывают различного размера, круглые или прямоугольные, с открытым и закрытым сопротивлением (спиралью). Пластинка, закрывающая спираль плиты, может быть металлической, асбестовой или талько-шамотной.

1. Для того, чтобы получить минимальное нагревание, гильзу с отметкой ставят на средний штеккер, а одну из остальных — на левый штеккер.

2. Для достижения среднего нагревания гильзу с отметкой ставят на правый штеккер, а одну из остальных — на левый или средний штеккер.

3. Для достижения максимального нагревания гиль­зу с отметкой ставят па правый штеккер, а две другие — на остальные штеккеры.

Муфельные печи

Электрические муфельные печи применяют при прокаливании, плавке и в других случаях, когда необходим нагрев до высокой температуры.

Печь представляет собой муфель из шамота или другого огнеупорного материала с намотанной на нем нагревательной проволокой, помещенный в металлический корпус.

Пространство между стенками корпуса и муфелем заполнено теплоизоляционным материалом. Печи имеют автоматический регулятор. При отсутствии регулятора к печи можно присоединить терморегулятор, например биметаллический.

В муфельных печах обычно можно достичь 1000—1200 °С, а в муфельных печах специального назначения — и выше. Муфельные печи имеют в задней стенке отверстие для введения термопары, что позволяет проверять температуру в любом месте муфельной печи.

Под печь нужно класть толстый лист асбеста, или асбоцементную плиту, или шамотные кирпичи. Во время работы, когда муфельная печь загружена, дверка должна быть закрыта.

Муфельные печи очень удобны для прокаливания тиглей, в особенности платиновых.

О температуре в муфельной печи можно судить (конечно, приближенно) по цвету нагретого муфеля:

начало красного каления 520 °C

темно-красное каление 700 °C

вишнево-красное каление 850 °C

ярко-красное каление 950 °C

желтое каление 1100 °C

ослепительно белое каление 1500 °C

При работе с электрическими приборами нужно помнить следующее:

1. Включать прибор можно только в ту сеть, вольтаж которой соответствует вольтажу прибора.

2. Не греть приборы без надобности.

3. Не обливать приборы кислотами или растворами солей, щелочей и т. д.

4. Ставить электронагревательные приборы не на деревянную поверхность стола, а только на теплоизоляционный слой (асбест, шамот и др.).

5. Следить за чистотой приборов; перед включением печей убедиться — нет ли внутри посторонних предметов.

6. Включать печи можно, только когда ручка реостата находится в нулевом положении.

Ручку реостата нужно передвигать не сразу после включения в сеть, а через некоторое время, когда печь немного обогреется, причем увеличивать накал нужно также постепенно.

Прокаливание

Прокаливанием называют операцию нагревания твердых веществ до высокой температуры с целью:

а) освобождения от летучих примесей;

б) достижения постоянной массы;

в) проведения реакций, протекающих при высоких температурах;

г) озоления после предварительного сжигания органических веществ.

Нагревание до высокой температуры проводят в печах. Очень часто в лабораториях приходится прокаливать такие вещества, как СаСl2×6Н2O, Na2SO4×10Н2O и др., с целью обезвоживания.

Если приходится что-либо прокаливать в фарфоровом тигле, то тигель нагревают постепенно. Во избежание потерь при прокаливании тигли обычно закрывают крышками. Если в таком тигле приходится что-либо озолять, то сначала при слабом нагревании сжигают вещество в открытом тигле и уже после этого закрывают тигель крышкой.

Если фарфоровый тигель после работы загрязнен внутри, то для очистки в него наливают концентрированную азотную кислоту или дымящую соляную кислоту и осторожно нагревают. Если ни азотная, ни соляная кислоты не удаляют загрязнение, то берут смесь их в пропорции:

  • азотная кислота — 1 объем,
  • соляная кислота — 3 объема.

Иногда загрязненные тигли обрабатывают или концентрированным раствором KHSO4 при нагревании, или плавлением этой соли в тигле с последующей промывкой его водой. Бывают, однако, случаи, когда все указанные приемы не помогают; такой не поддающийся очистке тигель рекомендуется применять для каких-нибудь неответственных работ.

Общие меры предосторожности

При работе с нагревательными приборами нужно принимать меры предосторожности во избежание несчастных случаев и пожара.

Кроме приведенных выше правил, следует обратить внимание еще на некоторые моменты.

Во избежание ожогов при нагревании и прокаливании никогда не следует брать голыми руками нагретые колбы, стаканы, чашки и пр.; необходимо или обвернуть их полотенцем, или же надеть на пальцы по куску толстостенной резиновой трубки, разрезанной по длине.

Для того, чтобы брать чашки, можно сделать из толстой проволоки прихватку, напоминающую обыкновенный сковородник.

При нагревании или при прокаливании веществ, которые могут разбрызгиваться, обязательно следует надевать предохранительные очки для защиты глаз.


Фильтрование - механическая операция отделения твердого вещества от жидкого при помощи. Читать далее.

Видеоуроки


Видеоурок, посвященный основам Масс-спектрометрии. Смотреть.


Strict Standards: Only variables should be assigned by reference in /var/www/web783/html/plugins/content/pbspoiler/pbspoiler.php on line 24

Кипячение и нагревание – пожалуй наиболее часто использующаяся техника в органическом синтезе. Согласно правилу Вант Гоффа при нагревании на 10 °С скорость химических реакций возрастает в 2-4 раза. Химические реакции в органической химии (в отличие от неорганической химии) идут довольно медленно. Поэтому нагревание существенно ускоряет работу химиков. Важной частью прибора для кипячения или нагревания является холодильник, назначение которого конденсировать пары растворителя и возвращать их в реакционную колбу (или приемник).

Однако, следует помнить, что органические соединения довольно не стабильны и при сильном нагревании осмоляются. Поэтому в ряде случаев реакции проводят не при нагревании, а при охлаждении.

Область применения

Увеличение скорости протекания химических реакций. Пример: согласно эмпирическому правилу Вант Гоффа скорость большинства реакций увеличивается в 2-4 раза при увеличении температуры на каждые 10 °С.

Оборудование

Типичный прибор для кипячения приведен на рисунке:

Круглодонная колба. Жидкость должна занимать не более 2/3 объема колбы для предотвращения выброса кипящей жидкости из прибора.

Круглодонная колба

Лапка. Важно! Металлическая лапка НЕ должна соприкасаться со стеклом, для избежания растрескивания колбы при перегонке. Для этого между колбой и лапкой помещают резиновые прокладки.

Лапка

Обратный холодильник или холодильник Либиха. Наиболее часто при кипячении используется обратный холодильник (2), так как в отличие от холодильника Либиха (1) имеет большую площадь теплообмена с парами кипящей жидкости. Холодильник подключают к водопроводу таким образом, чтобы холодная вода входила снизу. При кипячении нужно следить, чтобы парами омывались не более 2 шариков обратного холодильника.

Холодильники

Нагревающий элемент. Выбирают исходя из свойств растворителя. Колбонагреватели и пламенные горелки – для негорючих жидкостей. Важно! Водяные бани (т. кип. вещества до 100 °С) – для ЛВЖ. Масляные бани (т. кип. вещества до 200 °С) с контактным термометром – для более точной регулировки температуры в перегонной колбе. При этом температура бани на 20-30 °С больше температуры кипения жидкости.

Рекомендации

Читайте также: