Многообразие органических веществ кратко

Обновлено: 04.07.2024

Органическая химия – химия углеводородов и их производных, т. е. продуктов, образующихся при замене водорода в молекулах этих веществ другими атомами или группами атомов.

Признаки органических веществ:

  1. Содержат углерод в валентности 4
  2. Горят или разлагаются с образованием углеродсодержащих продуктов
  3. Связь в молекуле, как правило, ковалентные

Причины выделения в самостоятельную дисциплину органическую химию:

  1. Многообразие органических соединений
  2. Многочисленность органических соединений
  3. Специфическое строение и свойства органических соединений
  4. Большое практическое значение соединений углерода: нефть и способы её переработки

Причины многообразия органических соединений:

  1. Соединение атомов углерода в цепи различной длины
  2. Разный характер углеродных цепей: прямые, разветвленные циклические
  3. Способность атома углерода образовывать простые и кратные связи друг с другом и другими атомами
  4. Множество элементов, входящих в состав органических соединений

изомеры

Изомеры – вещества одинакового качественного и количественного состава (т.е. имеющие одинаковую суммарную формулу), но разного строения, следовательно, различными физическими и химическими свойствами.

Фенантрен (справа) и антрацен (слева) – структурные изомеры.

Краткий очерк развития органической химии

Теория химического строения органических соединений А. М. Бутлерова

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова:

  1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: диметиловый эфир (СН3-О-СН3) и этиловый спирт (С2Н5ОН) – смотрите Изомерия.
  2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга – как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт – жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
    Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.
  3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).
  5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.


Предмет органической химии

Ключевые слова конспекта: Органические вещества. Витализм. Органическая химия. Углеводороды. Общая формула углеводородов. Природные, искусственные и синтетические органические вещества.

Органические вещества

С глубокой древности человек использовал в своих целях вещества живой и неживой природы. Из осколков камней наши предки изготавливали наконечники стрел, из руд выплавляли металлы, глину и известняк использовали для строительства жилищ, из мрамора высекали скульптуры. Вещества природного происхождения служили источником пищи, применялись для изготовления одежды, приготовления лекарств, ядов, красителей.

В начале XIX в. число веществ, которые были выделены из объектов живой природы, стало стремительно расти. По предложению выдающегося шведского химика Йёнса Якоба Берцелиуса вещества живой природы стали называть органическими в противоположность минеральным, т. е. неорганическим, веществам.

Были замечены и другие общие особенности органических соединений. При горении все они в основном образуют углекислый газ, сажу, воду и некоторые другие соединения, а следовательно, обязательно содержат в своём составе углерод.

Однако ряд открытий, сделанных в середине XIX в., показал, что сторонники витализма глубоко заблуждались.

В 1828 г. немецкий химик Фридрих Вёлер впервые получил органическое вещество — мочевину из неорганической соли (цианата аммония). В 1854 г. французский учёный Марселей Бертло синтезировал аналоги природных жиров, затем в 1861 г. русский химик Александр Михайлович Бутлеров — аналог природного сахара. В конечном счёте под давлением экспериментальных фактов витализм потерпел крах.

Предмет органической химии

Постепенно изучение состава и свойств органических веществ выделилось в самостоятельный раздел химической науки — органическую химию.

Было обнаружено, что большое число органических веществ построено из атомов всего двух химических элементов — углерода и водорода. Такие соединения называют углеводородами. Состав углеводородов выражают общей формулой CхHу, где между индексами х и у существует строгое математическое соотношение.

Углеводороды занимают особое место в органической химии, поскольку соединения всех остальных классов органических веществ можно рассматривать как их производные. Например, если в молекуле метана СН4 один атом водорода заместить карбоксильной группой —СООН, то получится молекула известной вам уксусной кислоты СН3СООН. Замена одного атома водорода в этане C2H6 на гидроксильную группу – ОН даст в результате молекулу этилового спирта С2Н5ОН. Таким образом, и карбоновые кислоты, и спирты (важнейшие классы органических соединений) можно считать производными углеводородов.

Немецкий химик-органик Карл Шорлеммер более ста лет назад сформулировал классическое определение органической химии, не потерявшее своей актуальности до сих пор.

Природные, искусственные и синтетические органические вещества

Поняв, как построены органические соединения, учёные научились не только получать их в лаборатории, но и химически модифицировать, т. е. изменять их строение. Мало того, химики смогли синтезировать соединения углерода, никогда не существовавшие в природе. Таким образом, по происхождению органические вещества можно разделить на три группы: природные, искусственные и синтетические.

Природные органические вещества — это продукты жизнедеятельности любых живых организмов. Название веществ этой группы говорит о том, что в окружающей среде такие соединения существуют независимо от человека, их можно выделить из природных объектов, будь то полезные ископаемые (нефть, газ, каменный уголь, горючие сланцы), растения или животные.

Искусственные органические вещества — это продукты химической модификации природных органических соединений, в результате которой происходит изменение состава и строения исходного вещества с целью придания ему требуемых свойств. Например, в результате химической обработки целлюлозы (основной составной части древесины) получают не существующие в природе волокна (ацетатное, медно-аммиачное, вискозное) и пластмассу (целлулоид).

Многообразие органических веществ

Органических веществ гораздо больше, чем неорганических: на сегодняшний день органических веществ насчитывают более 100 млн, а число неорганических не превышает 500 тысяч. Это во многом определяется особенностями строения органических соединений.

Выдающуюся роль в решении вопроса о строении органических соединений сыграл русский химик А. М. Бутлеров. Об этом пойдёт речь в следующем конспекте.

Основные выводы по теме конспекта:

  1. Раздел химии, изучающий строение, свойства, превращения, способы получения и области применения органических веществ, называют органической химией.
  2. Органическая химия представляет собой химию углеводородов и их производных, т. е. продуктов замещения атомов водорода в молекулах углеводородов на другие атомы или группы атомов.
  3. Различают органические вещества природного, искусственного и синтетического происхождения.

Многообразие органических соединений, их классификация

Органические вещества живой природы. Уровни организации органических веществ. Природный и сопутствующие нефтяные газы, нефть, каменный уголь.

Многообразие органических соединений определяется уникальной способностью атомовуглерода соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодической системы (формирование как функциональных групп, так и различного рода соединений иного порядка), а также явлением изомерии и гомологии — существованием разных по свойствам веществ, обладающих одним и тем же составом и молекулярной массой.

Органические вещества можно разделить на две основные группы – циклические и ациклические.

Ациклические также называют алифатическими. Ациклические разделяют на прямые и разветвлённые. Циклические на карбоциклические и ароматические. Особое значение имеет при этом наличие и характер функциональной группы.

Разнообразие органических соединений, усложнение их строения и функций – от метана да ДНК, связано преимущественно с неограниченными возможностями комбинирования структур, взаиморасположения атомов и фрагментов молекул при условии одного и того же состава.

Трудно вообразить себе число возможных органических соединений по этому поводу. Можно, конечно, попробовать, рассчитать (как звёзды на небе ) число возможных типов соединений, комбинаций и перекомбинаций. Это непосредственно будет связано с такой областью знаний как математика, а именно комбинаторика. (это Ваша вероятность выигрыша в азартной игре, лотерее и т.д.)

Формулы для вычисления:

Имеется n последовательно расположенных неодинаковых элементов. Требуется найти количество способов, которыми их можно переставить (построение изомеров, например, из атомов углерода и атомов функциональных групп – теоретический расчёт построения и возможности существования аминокислот, например – при этом, в результате невозможно будет осуществить синтез некоторых аминокислот ввиду термодинамических и стереохимических проблем и т.д.):


(восклицательным знаком обозначается факториал), где n – количество неодинаковых элементов.

Это относительно расположения элементов


имеется n различных элементов. Нужно выбрать из них m элементов, причем порядок расположения элементов важен! (к примеру, синтез белка, или синтез нуклеиновой кислоты осуществляется с выбором определённой аминокислоты или нуклеотида соответственно)


Стоит также отметить, что органические вещества способны к взаимопревращениям, что является основой искусственных синтезов веществ. При этом можно синтезировать вещества с заранее заданными свойствами. При этом стоит отметить, что строение, в особенности пространственное будет определять специфические функции белков, в особенности полимеров, действие лекарственных веществ.

Молекулярный уровень является продолжением атомарного и в то же время предшественником полимерного уровня.

Для многих органических веществ, составляющих организмы, присущ не только молекулярный, но и полимерный уровень организации.

Молекулярный уровень организации имеет ряд особенностей:

— ковалентная связь между атомами в молекулах

— постоянный состав молекул

— постоянная молекулярная масса

Стоит отметить два понятия

Конфигурация – особенности стойкого взаиморасположения атомов либо групп атомов в пространстве молекулы, (другие определения — равновесная конфигурация — расположение атомных ядер молекулы (иона, радикала) в пространстве, соответствующее минимуму её потенц. энергии. Конфигурация двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания равновесной конфигурации многоатомных молекул используют длины связей, валентные углы, двугранные углы между направлениями хим. связей. Конфигурация может меняться при возбуждении молекулы. 2) Стерсохим. конфигурация характеризует пространств, расположение атомов в молекуле относительно стерич. центров (двойной связи, цикла или элемента хиральности). Напр., говорят о цис- или транс -конфигурации алкенов, D- или L- конфигурации аминокислот и углеводов. При одной и той же конфигурации, молекула может иметь множество конформаций)

Изменение конфигурации жиров при жарке приводит к такому изменению конфигурации ненасыщенных карбоновых кислот, что образуются транс-жиры, которые содержат остатки элаидиновой кислоты, вредной при встраивании её в состав плазматической оболочки клеток. (деструктуризация, нарушение обменных процессов, запуск свободнорадикальных процессов) Изменение пространственной конфигурации приводит к тому, что белки утрачивают свою активность, изменяется состав клеточных мембран, нарушаются их функции.

Конформация — (от лат. conformatio — форма, построение, расположение) молекул, геометрические формы, которые могут принимать молекулы органических соединений при вращении атомов или групп атомов (заместителей) вокруг простых связей при сохранении неизменными порядка химической связи атомов (химического строения), длины связей и валентных углов. Внутримолекулярное движение обуславливает изменение конформаций.

Крахмал. Полимер. Степени полимеризации. Характер Связей. ( водородные, гидрофильные и т.д.)

Природный газ. Нефть. Каменный уголь.

Нефть — маслянистая жидкость темного (от бурого до черного) цвета с характерным запахом, нерастворимая в воде. Ее плотность меньше, чем у воды, поэтому, попадая в нее, нефть растекается по поверхности, препятствуя растворению кислорода и других газов воздуха в воде. Очевидно, что, попадая в природные водоемы, нефть вызывает гибель микроорганизмов и животных, приводя к экологическим бедствиям и даже катастрофам. Существуют бактерии, способные использовать компоненты нефти в качестве пищи, преобразуя ее в безвредные продукты своей жизнедеятельности.

Природный газ — смесь газообразных предельных углеводородов с небольшой молекулярной массой. Основным компонентом природного газа является метан, доля которого в зависимости от месторождения составляет от 75 до 99% по объему. Кроме метана в состав природного газа входят этан, пропан, бутан и изобутан, а также азот и углекислый газ.

Как и попутный нефтяной, природный газ используется и как топливо, и в качестве сырья для получения разнообразных органических и неорганических веществ. В качестве топлива природный газ используют на электростанциях, в котельных системах водяного отопления жилых домов и промышленных зданий, в доменном и мартеновском производствах.

0н образует мощные пласты в земных недрах, его разведанные запасы значительно превышают запасы нефти. Как и нефть, каменный уголь содержит большое количество различных органических веществ. Кроме органических, в его состав входят и неорганические вещества, такие, например, как вода, аммиак, сероводород и конечно же сам углерод — уголь. Одним из основных способов переработки каменного угля является коксование — прокаливание без доступа воздуха.

Число: известное органическое соединение

Число известных органических соединений ( около 3 миллионов) значительно превышает число соединений всех остальных элементов периодической системы Менделеева.

В настоящее время известно несколько более ста пятидесяти тысяч неорганических соединений, примерно такое же число новых органических соединений получают сейчас в один год. Это происходит не только потому, что химики особенно интенсивно занимаются получением и исследованием органических веществ, но и вследствие особой способности элемента углерода давать соединения, содержащие практически неограниченное число атомов углерода, связанных в цепи и циклы.

Число известных органических соединений ( около 6 млн) значительно превышает число соединений всех остальных элементов периодической системы Менделеева.

Число известных органических соединений ( более 3 миллионов) значительно превышает число соединений всех остальных элементов периодической системы Менделеева.

В настоящее время число известных органических соединений уже перевалило за 4 миллиона, и буквально день за днем химики синтезируют или выделяют все новые и новые вещества.

В основе классификации органических соединений лежит их структура. За основу наиболее рационального описания структуры до сих, пор берется структурная формула или формула строения, В пей все ковалеитиые связи чисто формально изображаются валентной чертой с учетом того, что каждому элементу присуща определенная валентность.

Органические вещества почти всегда наряду с углеродом содержат атомы водорода, за исключением таких, например, соединений, как четыреххлористый углерод и тетранитрометан. Углеводороды составляют первый основной класс органических соединений.

Если в настоящее время известно несколько более пятидесяти тысяч неорганических соединений, то число известных органических соединений превышает миллион. Это произошло не только потому, что химики особенно интенсивно занимались получением и исследованием органических веществ, но и вследствие особой способности элемента углерода давать соединения, содержащие практически неограниченное число атомов углерода в молекуле.

Органические соединения значительно более многочисленны, чем неорганические вещества. Число известных органических соединений уже превышает два миллиона.

Количество соединений углерода столь велико, что для их описания потребовалось выделить самостоятельное направление в химии — органическую химию. Число известных органических соединений углерода превышает 10 миллионов, тогда как число соединений всех остальных элементов составляет примерно 120 тысяч.

Велер писал, что органическая химия представляется ему огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть…

Что же сказать сегодня, когда число известных органических соединений приближается к пяти миллионам. Прежде всего то, что, несмотря на свой огромный объем, органическая химия уже не кажется огромной чащей без выхода, без конца: она представляется, скорее, величественным зданием со строгой, ясной планировкой.

Органическая химия изучает соединения, которые содержат углерод и водород и могут также содержать другие элементы, такие, как кислород, азот, галогены, сера, фосфор и некоторые металлы. Замечательная особенность органической химии состоит в том, что число известных органических соединений огромно и неограниченно число таких, которые могут существовать.

В настоящее время известно свыше одного миллиона различных органических соединений.

Многообразие органических веществ

Ежегодно тысячи новых соединений либо открываются в природе, либо синтезируются в лаборатории. Показателем развития данной области может служить количество соединений, которые были известны на различных этапах времени.

Свинец в большинстве его органических соединений проявляет валентность, равную четырем. Однако в некоторых свинецорганических соединениях он остается двухвалентным. Число известных органических соединений с двухвалентным свинцом невелико [158], и оно включает главным образом диарпльные производные этого металла.

Органических соединений насчитывается ныне около 5 млн., и каждое из них имеет свое название.

Непрерывно синтезируются или открываются в природе новые вещества. Считают, что ежегодно число известных органических соединений увеличивается примерно на 200 тыс.; следовательно, каждый год появляется такое же число новых названий. Химики давно уже поняли, что научное название должно быть построено по определенным правилам.

Женевская — из 62 правил на 10 страницах. Большой объем правил ШРАС частично связан с ростом разнообразия и числа известных органических соединений, однако прежде всего он вызван упоминавшимся уже желанием составителей кодифицировать существующую практику во всем ее многообразии.

Теоретические основы органической химии

  • Органическая химия – это раздел химической науки, в котором изучаются соединения углeрода – их строение, свойства, способы получения и практического использования.
  • Соединения, в состав которых входит углерод, называются органическими.

Кроме углерода, они почти всегда содержат водород, довольно часто – кислород, азот и галогены, реже – фосфор, серу и другие элементы.

Однако сам углерод и некоторые простейшие его соединения, такие как оксид углерода(II), оксид углерода (IV), угольная кислота, карбонаты, карбиды и т.п., по характеру свойств относятся к неорганическим соединениям.

Поэтому часто используется другое определение:

  • Органические соединения – это углеводородыУглеводороды — соединения, содержащие только углерод и водород.
  • Производные углеводородов — продукты замещения в молекулах углеводородов одного или более атомов водорода на другие атомы или группы атомов и их производные.



Динамика роста числа новых соединений

Сырьевые источники органических веществ: нефть, природный газ, попутные нефтяные газы, каменный и бурый угли, горючие сланцы, сланцевый газ, торф, древесина и сельскохозяйственные растения.Видео (из фонда советских научно-популярных фильмов)

К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.

Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических — около 100 тысяч.

Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины.

Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и).

В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера.

Кроме того, могут входить практически любые элементы.

Углеводороды — вещества, состоящие из двух элементов: углерода и водорода.

Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках). Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода.

Молекулярная формула CH4. Структурная формула показывает порядок связи атомов в молекуле:
H
l
H – C – H
l
H

Чтобы правильно составлять структурные формулы органических веществ, нужно помнить, что атомы углерода образуют по 4 связи, изображаемые черточками (т.е. валентность углерода по числу связей равна четырем. В органической химии преимущественно используется именно валентность по числу связей).

В 10–11 классах изучается, что молекула метана имеет форму треугольной пирамиды — тетраэдра, подобно знаменитым египетским пирамидам.

Этилен C2H4 состоит из двух атомов углерода, соединенных двойной связью:


Угол между связями составляет 120º (электронные пары,образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга).

Ацетилен C2H2 содержит тройную связь:
H – C ≡ C – H

В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH3OH (систематическое название метанол),

этиловый спирт C2H5OH (этанол),

уксусную кислоту CH3COOH

(кислотный остаток уксусной кислоты CH3COO− обычно находится в нижней строчке таблицы растворимости, поэтому если забудете формулу, возьмите таблицу растворимости — она должна быть на экзамене — и добавьте к кислотному остатку водород)

К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.

Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических — около 100 тысяч. Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины. Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и).

В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.

Углеводороды — вещества, состоящие из двух элементов: углерода и водорода.

Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках). Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода. Молекулярная формула CH4. Структурная формула показывает порядок связи атомов в молекуле:
H
l
H – C – H
l
H

Чтобы правильно составлять структурные формулы органических веществ, нужно помнить, что атомы углерода образуют по 4 связи , изображаемые черточками (т. е. валентность углерода по числу связей равна четырем. В органической химии преимущественно используется именно валентность по числу связей).

В 10–11 классах изучается, что молекула метана имеет форму треугольной пирамиды — тетраэдра, подобно знаменитым египетским пирамидам.

Этилен C2H4 состоит из двух атомов углерода, соединенных двойной связью:

Угол между связями составляет 120º (электронные пары,образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга).

Ацетилен C2H2 содержит тройную связь:
H – C ≡ C – H

В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH3OH (систематическое название метанол),

уксусную кислоту CH3COOH

(кислотный остаток уксусной кислоты CH3COO − обычно находится в нижней строчке таблицы растворимости, поэтому если забудете формулу, возьмите таблицу растворимости — она должна быть на экзамене — и добавьте к кислотному остатку водород)

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Центр дистанционного образования детей-инвалидов при ОГАОУ «Белгородский и.

Описание презентации по отдельным слайдам:

Центр дистанционного образования детей-инвалидов при ОГАОУ «Белгородский и.

1) Сформировать представление о составе и строении органических соединений, и.

1) Сформировать представление о составе и строении органических соединений, их отличительных признаках.
2) Выявить причины многообразия органических веществ.
3) Сформировать представление об изомерии и изомерах.
Цели и задачи:

Из всего многообразия химических соединений большая часть содержит углерод. П.

Из всего многообразия химических соединений большая часть содержит углерод. Почти все они относятся к органическим веществам. Органические соединения встречаются в природе, например углеводы, белки, витамины, они играют важную роль в жизнедеятельности животных и растений. Многие органическиё вещества и их смеси (пластмассы, каучук, нефть, природный газ и другие) имеют большое значение для развития народного хозяйства страны.
Химия соединений углерода называется органической химией.

Главным элементом органических соединений является углерод,который может соед.

Главным элементом органических соединений является углерод,который может соединяться друг с другом с образованием прямых, разветвленных цепей, замкнутых циклов.
Строение атома углерода

Атом углерода, получив квант энергии, перейдя в возбужденное состояние, м.

Атом углерода, получив квант энергии, перейдя в возбужденное состояние, может образовать четыре ковалентные малополярные связи, т.к. на последнем энергетическом уровне он имеет четыре непарных электрона в результате распаривания 2s – электронов и переходе одного из них на 2р – орбиталь.

Электронно-графическое строение атома углерода

Структурные формулы

Языком органической химии являются структурные формулы, в которых указан поря.

Языком органической химии являются структурные формулы, в которых указан порядок соединения атомов друг с другом.
Черточка обозначает общую электронную пару, которую образовал углерод с непарным электроном атома водорода, и единицу валентности. Таким образом, атом углерода в органических соединениях четырехвалентен, а водород одновалентен.

Явление изомерии органических веществ

Явление изомерии органических веществ


Геометрическая изомерия характерна для соединений, содержащих двойные связи.

Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс-положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей.
Геометрическая изомерия

Оптическая изомерияОптическая изомерия возникает, если молекула несовместима.

Оптическая изомерия
Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим.

Органические вещества, созданные человеком


Природные органические вещества


Основные классы органических соединений

Основные классы органических соединений


Общее число известных органических веществ составляет почти 27 миллионов, в т.

Общее число известных органических веществ составляет почти 27 миллионов, в то время как неорганических — около 100 тысяч.


Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины. Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомерии).
В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.

СПАСИБО ЗА ВНИМАНИЕ!

СПАСИБО ЗА ВНИМАНИЕ!


  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов


Курс повышения квалификации

Охрана труда


Курс профессиональной переподготовки

Охрана труда


Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 344 человека из 66 регионов
  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 612 695 материалов в базе

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 20.03.2020 440
  • PPTX 1.5 мбайт
  • 7 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Колупаева Елена Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Новые курсы: преподавание блогинга и архитектуры, подготовка аспирантов и другие

Время чтения: 16 минут

Время чтения: 2 минуты

ГИА для школьников, находящихся за рубежом, может стать дистанционным

Время чтения: 1 минута

Россияне ценят в учителях образованность, любовь и доброжелательность к детям

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Читайте также: