Микроядерная архитектура ос кратко

Обновлено: 02.07.2024

Микроядро — это минимальная реализация функций ядра операционной системы.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

  • управление адресным пространствомоперативной памяти.
  • управление адресным пространством виртуальной памяти.
  • управление процессами и тредами (нитями, потоками).
  • средства межпроцессной коммуникации.

Все остальные сервисы ОС, в классических монолитных ядрах предоставляемые непосредственно ядром, в микроядерных архитектурах реализуются в адресном пространстве пользователя (Ring3) и называются сервисами. Примерами таких сервисов, выносимых в пространство пользователя в микроядерных архитектурах, являются сетевые сервисы, файловая система, драйверы.

Такая конструкция позволяет улучшить общее быстродействие системы (небольшое микроядро может уместиться в кэше процессора). [1] Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

И чтобы добавить в ОС с микроядром драйвер того или иного устройства, не надо перекомпилировать всё ядро, а надо лишь отдельно откомпилировать этот драйвер и запустить его в пользовательском пространстве.

Микроядра типа ядра ОС GNU Hurd развиваются медленно, гораздо медленнее, чем BSD, но они обладают огромным потенциалом, то есть заделом на будущее, и, возможно, в этом самом будущем, достигнут аналогичного функционала.

Классическим примером микроядерной системы является Symbian OS. Это пример распространенной и отработанной микроядерной (a начиная c версии Symbian OS v8.1, и наноядерной) операционной системы.

B отличие от Windows NT, создателям Symbian OS удалось совместить эффективность и концептуальную стройность, несмотря на то что современные версии этой системы предоставляют обширные возможности, в том числе средства для работы c потоковыми данными, стеками протоколов, критичными к латентности ядра, графикой и видео высокого разрешения).

В ОС Windows NT версий 3.х микроядерная архитектура с сервисным процессом использовалась для подсистемы графики и пользовательского интерфейса. В частности, драйвер графической аппаратуры загружался в контекст сервисного процесса, а не ядра. Начиная с версии 4, от этого отказались, сервисный процесс сохранился только для управления консольными окнами командной строки, а собственно графическая подсистема вместе с драйвером аппаратуры (в том числе трехмерной графики) переместилась в специально обособленный регион ядра ОС.

ОС Windows CE (и созданные на ее основе сборки, такие, как Windows Mobile), будучи практически полностью совместимой (как подмножество) с Windows NT по вызовам и методам программирования приложений, тем не менее полностью отличается от Windows NT по внутренней архитектуре и является микроядерной ОС с выносом всех драйверов устройств, сетевых стеков и графической подсистемы в сервисные процессы.

Микроядерная архитектура является альтернативой классическому способу по­строения операционной системы.

Все остальные более высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Однозначного решения о том, какие из системных функций нужно оставить в привилегированном режиме, а какие перенести в пользовательский режим, не существует.

В общем случае многие менеджеры ресурсов, являющиеся неотъемлемыми частями обычного ядра — файловая система, подсистемы управления виртуальной памятью и процессами, менеджер безопасности и т. п., — становятся "периферийными" модулями, работающими в пользовательском режиме.

Работающие в пользовательском режиме менеджеры ресурсов имеют принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений. Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции (процедуры) другого приложения возникают крайне редко.

Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого.

Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. д.

Именно по­этому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, т.е. модулями, основным назначением которых является об­служивание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием являет­ся наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.

Схематично механизм обращения к функциям ОС, оформленным в виде серве­ров, выглядит следующим образом (рис.15).


Таким образом, работа микроядерной операционной системы соот­ветствует известной модели клиент-сервер, в которой роль транспортных средств выполняет микроядро.

Микроядерная архитектура является альтернативой классическому способу по­строения операционной системы.




Все остальные более высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Однозначного решения о том, какие из системных функций нужно оставить в привилегированном режиме, а какие перенести в пользовательский режим, не существует.

В общем случае многие менеджеры ресурсов, являющиеся неотъемлемыми частями обычного ядра — файловая система, подсистемы управления виртуальной памятью и процессами, менеджер безопасности и т. п., — становятся "периферийными" модулями, работающими в пользовательском режиме.

Работающие в пользовательском режиме менеджеры ресурсов имеют принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений. Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции (процедуры) другого приложения возникают крайне редко.

Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого.

Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. д.

Именно по­этому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, т.е. модулями, основным назначением которых является об­служивание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием являет­ся наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.

Схематично механизм обращения к функциям ОС, оформленным в виде серве­ров, выглядит следующим образом (рис.15).


Таким образом, работа микроядерной операционной системы соот­ветствует известной модели клиент-сервер, в которой роль транспортных средств выполняет микроядро.

Микроядерная архитектура является альтернативой классическому способу построения операционной системы. Под классической архитектурой в данном случае понимается рассмотренная выше структурная организация ОС, в соответствии с которой все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. При этом некоторые вспомогательные функции ОС оформляются в виде приложений и выполняются в пользовательском режиме наряду с обычными пользовательскими программами, становясь системными утилитами или обрабатывающими программами. Каждое приложение пользовательского режима работает в собственном адресном пространстве и защищено тем самым от какого-либо вмешательства других приложений. Код ядра, выполняемый в привилегированном режиме, имеет доступ к областям памяти всех приложений, но сам полностью от них защищен. Приложения обращаются к ядру с запросами на выполнение системных функций.

Работающие в пользовательском режиме менеджеры ресурсов имеют принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений.

Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции (процедуры) другого приложения, возникают крайне редко. Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого.

Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. д. Именно поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, то есть модулями, основным назначением которых является обслуживание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием является наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.


пользователей






Пользовательский


Привилегированный

Рис. 2.1 Реализация системного вызова в микроядерной архитектуре

Операционные системы, основанные на концепции микроядра, в высокой степени удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, и это является основным недостатком микроядерной архитектуры.

Преимущества и недостатки микроядерной архитектуры

Высокая степень переносимости обусловлена тем, что весь машинно-зависимый код изолирован в микроядре, поэтому для переноса системы на новый процессор требуется меньше изменений, и все они логически сгруппированы вместе.

Концепция микроядерной архитектуры

Микроядерная архитектура является альтернативой классическому способу построения операционной системы. Под классической архитектурой в данном случае понимается рассмотренная выше структурная организация ОС, в соответствии с которой все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. При этом некоторые вспомогательные функции ОС оформляются в виде приложений и выполняются в пользовательском режиме наряду с обычными пользовательскими программами, становясь системными утилитами или обрабатывающими программами. Каждое приложение пользовательского режима работает в собственном адресном пространстве и защищено тем самым от какого-либо вмешательства других приложений. Код ядра, выполняемый в привилегированном режиме, имеет доступ к областям памяти всех приложений, но сам полностью от них защищен. Приложения обращаются к ядру с запросами на выполнение системных функций.

Работающие в пользовательском режиме менеджеры ресурсов имеют принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений.

Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции (процедуры) другого приложения, возникают крайне редко. Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого.

Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. д. Именно поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, то есть модулями, основным назначением которых является обслуживание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием является наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.


пользователей






Пользовательский


Привилегированный

Рис. 2.1 Реализация системного вызова в микроядерной архитектуре

Операционные системы, основанные на концепции микроядра, в высокой степени удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, и это является основным недостатком микроядерной архитектуры.

Преимущества и недостатки микроядерной архитектуры

Высокая степень переносимости обусловлена тем, что весь машинно-зависимый код изолирован в микроядре, поэтому для переноса системы на новый процессор требуется меньше изменений, и все они логически сгруппированы вместе.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Все остальные более высокоуровневые функции ядра оформляются в виде приложений (серверов), работающих в пользовательском режиме.

Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например, создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. д. Именно поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, то есть модулями, основным назначением которых является обслуживание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием является наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.

Преимущества и недостатки микроядерной архитектуры

Преимущества:

Пример архитектуры современной ОС – архитектура: ОС Windows NT.

Структурно Windows NT можно разделить на две части: одна работает в пользовательском режиме (защищенные подсистемы Windows NT ), а другая - в режиме (исполнительная система Windows NT ). Подробно структура Windows NT изображена рис 3.10.

В Windows NT имеется два типа защищенных подсистем: подсистемы среды (environment subsystems) и неотъемлемые подсистемы (integral subsystems). Подсистема среды – это сервер пользовательского режима, реализующий API некоторой ОС. Когда приложение вызывает функцию API, этот вызов доставляется посредством LPC подсистеме среды. Та выполняет вызов и возвращает результаты прикладному процессу, посылая другой LPC.

Самая важная подсистема среды в Windows NT - это подсистема Win32, которая предоставляет прикладным программам API 32-разрядной Windows. Кроме того, подсистема среды Win32 реализует графический интерфейс пользователя Windows NT и управляет всем вводом пользователя и выводом приложений.

Исполнительная система NT (NT executive) – это часть Windows NT, исполняющаяся в режиме ядра; за исключением пользовательского интерфейса, она сама по себе является законченной ОС. Исполнительная система состоит из ряда компонентов, причем каждый из них реализует два набора функций: системные сервисы, к которым могут обращаться как подсистемы среды, так и компоненты исполнительной системы, а также внутренние процедуры, доступные только компонентам исполнительной системы.

Исполнительная подсистема

· Диспетчер объектов (ДО). Создает, поддерживает и уничтожает объекты исполнительной системы NT

· Справочный монитор защиты (СМЗ). Гарантирует выполнение политики защиты на локальном компьютере

· Диспетчер процессов (ДП). Создает и завершает процессы и потоки

· Диспетчер виртуальной памяти (ДВП). Реализует виртуальную память

· Слой абстрагирования от оборудования (НАL). Помещает кодовую прослойку между исполнительной системой NТ и аппаратной платформой, на которой работает ОС, скрывает аппаратно – зависимые детали

13. Подсистема управления процессами. Понятия процесса и потока. Задачи планирования и диспетчеризации процессов (потоков). Состояния процесса (потока). Алгоритмы планирования процессов (потоков): вытесняющие, не вытесняющие, основанные на приоритетах.

До сих пор мы говорили о взгляде на операционные системы извне, о том, что делают операционные системы . Дальнейший наш курс будет посвящен тому, как они это делают. Но мы пока ничего не сказали о том, что они представляют собой изнутри, какие подходы существуют к их построению.

Монолитное ядро

По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Такая структура операционной системы называется монолитным ядром (monolithic kernel). Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро – это такая схема операционной системы , при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.

Во многих операционных системах с монолитным ядром сборка ядра, то есть его компиляция, осуществляется отдельно для каждого компьютера, на который устанавливается операционная система . При этом можно выбрать список оборудования и программных протоколов, поддержка которых будет включена в ядро. Так как ядро является единой программой, перекомпиляция – это единственный способ добавить в него новые компоненты или исключить неиспользуемые. Следует отметить, что присутствие в ядре лишних компонентов крайне нежелательно, так как ядро всегда полностью располагается в оперативной памяти. Кроме того, исключение ненужных компонентов повышает надежность операционной системы в целом.

Монолитное ядро – старейший способ организации операционных систем . Примером систем с монолитным ядром является большинство Unix-систем.

Даже в монолитных системах можно выделить некоторую структуру. Как в бетонной глыбе можно различить вкрапления щебенки, так и в монолитном ядре выделяются вкрапления сервисных процедур, соответствующих системным вызовам . Сервисные процедуры выполняются в привилегированном режиме, тогда как пользовательские программы – в непривилегированном. Для перехода с одного уровня привилегий на другой иногда может использоваться главная сервисная программа, определяющая, какой именно системный вызов был сделан, корректность входных данных для этого вызова и передающая управление соответствующей сервисной процедуре с переходом в привилегированный режим работы. Иногда выделяют также набор программных утилит, которые помогают выполнять сервисные процедуры.

Многоуровневые системы (Layered systems)

Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне. Впервые такой подход был применен при создании системы THE (Technishe Hogeschool Eindhoven) Дейкстрой (Dijkstra) и его студентами в 1968 г. Эта система имела следующие уровни:

Слоеные системы хорошо реализуются. При использовании операций нижнего слоя не нужно знать, как они реализованы, нужно лишь понимать, что они делают. Слоеные системы хорошо тестируются. Отладка начинается с нижнего слоя и проводится послойно. При возникновении ошибки мы можем быть уверены, что она находится в тестируемом слое. Слоеные системы хорошо модифицируются. При необходимости можно заменить лишь один слой, не трогая остальные. Но слоеные системы сложны для разработки: тяжело правильно определить порядок слоев и что к какому слою относится. Слоеные системы менее эффективны, чем монолитные. Так, например, для выполнения операций ввода-вывода программе пользователя придется последовательно проходить все слои от верхнего до нижнего.

Виртуальные машины

В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину , когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько иной подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как голое железо – копия всего hardware в вычислительной системе, включая процессор , привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. И он остается с этим железом один на один. При попытке обратиться к такому виртуальному железу на уровне привилегированных команд в действительности происходит системный вызов реальной операционной системы , которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою операционную систему на виртуальную машину и делать с ней все, что душа пожелает.

Первой реальной системой такого рода была система CP/CMS, или VM/370, как ее называют сейчас, для семейства машин IBM/370.

Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальным компьютером, и, как правило, они очень громоздки. Преимущество же заключается в использовании на одной вычислительной системе программ, написанных для разных операционных систем .

Микроядерная архитектура

Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой ( microkernel architecture) операционной системы , когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром. Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора , первичную обработку прерываний , операции ввода-вывода и базовое управление памятью.

Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы . Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы . Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Смешанные системы

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, ядро операционной системы Linux представляет собой монолитную систему с элементами микроядерной архитектуры . При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра – так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach . Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром . Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры , сохраняя по возможности хорошо отлаженный код монолитного ядра .

Таким образом, Windows NT можно с полным правом назвать гибридной операционной системой .

Читайте также: