Механизм действия лекарственных веществ кратко

Обновлено: 05.07.2024

Рецепторная теория действия лекарств. Комплекс агонист-рецептор

Лекарства (включая такие растительные алкалоиды, как никотин, кураре и атропин), которые оказывают сходные или противоположные нейротрансмиттерам эффекты, привели Лэнгли к формулировке теории рецепторов. Изучение действия этих средств первоначально сводилось к оценке их эффектов у животных и на изолированных тканях: например, на артериальное давление, частоту сердечных сокращений, секрецию или, чаще, сокращения гладких мышц кишечника, бронхов, сосудов или матки. Эти эффекты давно расценивают как побочную реакцию на взаимодействие лекарств с их рецепторами. Теория рецепторов способствовала развитию подходов, использующих эти данные для классификации лекарств по рецепторам, с которыми они взаимодействуют, и разработке новых лекарств, нацеленных на специфические рецепторы.

Стало ясно, что многие рецепторы являются белками. Они содержат как минимум один отдельный центр, с которым связываются и агонисты, и антагонисты. Когда связывается агонист, он запускает цепь трансдукции, которая либо непосредственно вызывает измеримый ответ (например, открытие канала), либо изменяет активность фермента, что в свою очередь приводит к измеримому ответу. Связь между действием агониста и трансдукцией может быть прямой или вовлекать в действие вторичные мессенджеры и каскад других белков. В общем случае трансдукцию вызывает не распознаваемый участок, а, скорее, происходящие аллостерические изменения рецепторной молекулы, обусловливающие каталитическую активность других частей белка (обычно во внутриклеточной среде). При этом другие части молекулы рецептора могут работать как мишени для других типов лекарств-ингибиторов, которые не являются конкурентными антагонистами.

Активный комплекс агонист-рецептор инициирует трансдукцию либо локально на уровне мембраны, либо внутриклеточно. Примеры системы трансдукции приведены далее. Общепризнано, что в большинстве случаев ассоциация агониста с рецептором ведет к конформационным изменениям последнего и возникновению активного комплекса лекарство-рецептор. Это дает основу для модели, с помощью которой можно объяснить различное действие агонистов, частичных агонистов и антагонистов.

рецепторная теория действия лекарств

С рецептором могут связываться различные типы лекарства. Здесь связывание определяет лекарство в качестве лиганда для рецептора, а результат связывания показывает, является ли лекарство аго-нистом, антагонистом, частичным агонистом или обратным агонистом:

• если лиганд связывается с рецептором и вызывает молекулярный ответ (конформационное изменение рецептора) с последующим клеточным ответом, это агонист;

• если лиганд связывается с рецептором без индукции молекулярного ответа, ведущего к клеточному и тканевому ответу, и конкурентно блокирует доступ агониста к рецептору, этот лиганд рассматривают как конкурентный антагонист;

• если лиганд связывается с рецептором, который в отсутствие агониста находится в активном состоянии, и делает этот рецептор неактивным, этот лиганд — обратный агонист. Базальный уровень активности вызывает фоновый уровень трансдукции и клеточных эффектов. Когда обратный агонист связывается с активным рецептором, он инактивирует его и тем самым ингибирует базальную активность.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Конечным этапом фармакокинетических процессов является экскреция ЛС и/или их метаболитов через различные выделительные органы (почки, печень, кишечник, лёгкие, кожу, слюнные, сальные, потовые, слёзные, молочные железы). Основным органом экскреции являются почки.

Механизмы экскреции ЛС в почках:

1. клубочковая фильтрация – выделение воды и низкомолекулярных ЛС (молекулярная масса ниже 50000) путём пассивной диффузии; процесс зависит от состояния микроциркуляции в почках;

2. канальцевая экскреция – выделение ЛС в проксимальных канальцах путём активного транспорта;

3. канальцевая реабсорбция – обратное всасывание ЛС в дистальных канальцах путём пассивной диффузии.

Экскреция ЛС печенью – выделение ЛС с желчью в кишечник, при этом часть ЛС выводится с калом, а часть ЛС после воздействия ферментов кишечника обратно всасывается в кровь (печёночно-кишечная циркуляция).

Экскреция ЛС лёгкими - выведение в основном газообразных ЛС и этилового спирта.

Факторы, изменяющие эффект лекарственных средств:

1. Физиологические факторы:

- возраст (дети и пожилые больные);

- пол (женщины, особенно во время беременности, могут быть более чувствительны к ЛС);

- хронестезия - циклические изменения чувствительности биологических систем организма к ЛС (циркадианные изменения - в течение суток; циркатригентантные - в течение месяца; цирканнуальные - в течение года);

- хронергия - изменения биологических системных эффектов (например, эффективности препаратов), подчиняющиеся определённому ритму; учёт хронергии позволяет определить время достижения оптимального эффекта (например, гормональных препаратов) при минимальном риске возникновения побочных явлений.

2. Особенности индивидуальной фармакокинетики ЛС.

3. Время введения ЛС в зависимости от приёма и характера пищи, влияния факторов внешней среды.

4. Генетические факторы, влияющие на биологическую усвояемость и эффективность ЛС.

5. Лекарственное взаимодействие при приёме нескольких препаратов.

6. Сопутствующие патологические изменения в органах (печень, почки, ЖКТ).

7. Чувствительность больного к ЛС.

8. Приверженность больного лечению.

Фармакодинамика– основной раздел фармакологии, изучающий особенности действия ЛС на организм человека.В рамкахклинической фармакодинамики изучаются механизмы действия ЛС, принципы их дозирования, избирательность действия ЛС и т.д.

Виды действия ЛС на организм:

1. В зависимости от места приложения ЛС:

1. системное (генерализованное) действие – адреналин, атропин и др.;

2. органоспецифическое действие – слабительные, мочегонные и др.

2. В зависимости от способа применения и особенностей всасывания в кровь:

1. местное действие (лидокаин аэрозоль);

2. резорбтивное действие (лидокаин в/м):

- прямое действие (теофиллин);

- опосредованное, непрямое (сальбутамол); как вариант – рефлекторное действие (горчичники).

3. В зависимости от характера изменений в органах и тканях:

1. обратимое действие (большинство лекарств);

2. необратимое действие (цитостатики).

4. В зависимости от оказываемого эффекта:

1. главное действие (терапевтический эффект);

2. побочное действие.

Эти действия в зависимости от цели терапии могут меняться местами.

5. В зависимости от широты спектра фармакологического эффекта:

1. неспецифическое действие (витамины, глюкоза, адаптогены);

2. специфическое действие:

Действие лекарственных веществ на организм:

Основные характеристики действия ЛС:

3. время действия препарата:

- латентный период действия – это время с момента приёма ЛС до начала его терапевтического действия (короткий период – допамин, лидокаин, нитроглицерин; длительный период – спиронолактон, кризанол и др.);

- период максимального действия – время, в течение которого в максимальной мере проявляется терапевтический эффект;

- время удержания эффекта – показатель, определяющий частоту и длительность приёма препарата;

- время последействия ЛС – это время после прекращения приёма ЛС, в течение которого в организме сохраняются функциональные изменения, вызванные действием препарата;




4. быстрота наступления эффекта, его сила и продолжительность (зависит от скорости введения, количества ЛС и функционального состояния организма или органов).

Основные механизмы действия ЛС:

1. прямое химическое (цитотоксическое) воздействие – непосредственное взаимодействие ЛС с внутриклеточными молекулами или ионами, приводящее чаще к нарушению функции клеток (антибиотики, противовирусные препараты, цитостатики, антациды);

2. физико-химическое действие на мембраны клеток – изменение или блокирование электрофизиологической активности мембран нервных и мышечных клеток (антиаритмические и противосудорожные препараты, местные анестетики, средства для наркоза);

3. действие на специфические ферменты – влияние ЛС на активность различных ферментов (индукторы ферментов – фенобарбитал; ингибиторы ферментов - антихолинэстеразные препараты: прозерин, физостигмин, галантамин);

4. действие через специфические рецепторы – взаимодействие ЛС с рецепторами (мембранными, цитозольными, ядерными):

- агонисты – действуют подобно медиаторам организма, т.е. стимулирующие активность рецепторов;

- антагонисты – препятствуют взаимодействию с рецептором эндогенных и экзогенных агонистов или блокирующие рецепторы;

- вещества, обладающие одновременно свойствами агониста и антагониста.

Факторы, влияющие на действие лекарств:

1. пол (женщины более чувствительны к ЛС во время беременности);

2. возраст (наиболее чувствительны к ЛС новорождённые, дети младшего возраста, пожилые люди);

3. генетические факторы (исследование влияния генетических факторов на чувствительность организма к лекарственным веществам - основная задача специальной области фармакологии – фармакогенетики);

4. функциональное состояние организма (наличие сопутствующих заболеваний изменяет действие ЛС);

5. суточные ритмы (зависимость фармакологического эффекта от суточного ритма изучает хронофармакология; действие ЛС и их токсичность зависят от суточного и сезонного ритмов);

6. алкоголь и табакокурение (влияют на биотрансформацию ЛС).

Экскреция (выведение) лекарственных средств

Конечным этапом фармакокинетических процессов является экскреция ЛС и/или их метаболитов через различные выделительные органы (почки, печень, кишечник, лёгкие, кожу, слюнные, сальные, потовые, слёзные, молочные железы). Основным органом экскреции являются почки.

Механизмы экскреции ЛС в почках:

1. клубочковая фильтрация – выделение воды и низкомолекулярных ЛС (молекулярная масса ниже 50000) путём пассивной диффузии; процесс зависит от состояния микроциркуляции в почках;

2. канальцевая экскреция – выделение ЛС в проксимальных канальцах путём активного транспорта;

3. канальцевая реабсорбция – обратное всасывание ЛС в дистальных канальцах путём пассивной диффузии.

Экскреция ЛС печенью – выделение ЛС с желчью в кишечник, при этом часть ЛС выводится с калом, а часть ЛС после воздействия ферментов кишечника обратно всасывается в кровь (печёночно-кишечная циркуляция).

Экскреция ЛС лёгкими - выведение в основном газообразных ЛС и этилового спирта.

Факторы, изменяющие эффект лекарственных средств:

1. Физиологические факторы:

- возраст (дети и пожилые больные);

- пол (женщины, особенно во время беременности, могут быть более чувствительны к ЛС);

- хронестезия - циклические изменения чувствительности биологических систем организма к ЛС (циркадианные изменения - в течение суток; циркатригентантные - в течение месяца; цирканнуальные - в течение года);

- хронергия - изменения биологических системных эффектов (например, эффективности препаратов), подчиняющиеся определённому ритму; учёт хронергии позволяет определить время достижения оптимального эффекта (например, гормональных препаратов) при минимальном риске возникновения побочных явлений.

2. Особенности индивидуальной фармакокинетики ЛС.

3. Время введения ЛС в зависимости от приёма и характера пищи, влияния факторов внешней среды.

4. Генетические факторы, влияющие на биологическую усвояемость и эффективность ЛС.

5. Лекарственное взаимодействие при приёме нескольких препаратов.

6. Сопутствующие патологические изменения в органах (печень, почки, ЖКТ).

7. Чувствительность больного к ЛС.

8. Приверженность больного лечению.

Фармакодинамика– основной раздел фармакологии, изучающий особенности действия ЛС на организм человека.В рамкахклинической фармакодинамики изучаются механизмы действия ЛС, принципы их дозирования, избирательность действия ЛС и т.д.

Виды действия ЛС на организм:

1. В зависимости от места приложения ЛС:

1. системное (генерализованное) действие – адреналин, атропин и др.;

2. органоспецифическое действие – слабительные, мочегонные и др.

2. В зависимости от способа применения и особенностей всасывания в кровь:

1. местное действие (лидокаин аэрозоль);

2. резорбтивное действие (лидокаин в/м):

- прямое действие (теофиллин);

- опосредованное, непрямое (сальбутамол); как вариант – рефлекторное действие (горчичники).

3. В зависимости от характера изменений в органах и тканях:

1. обратимое действие (большинство лекарств);

2. необратимое действие (цитостатики).

4. В зависимости от оказываемого эффекта:

1. главное действие (терапевтический эффект);

2. побочное действие.

Эти действия в зависимости от цели терапии могут меняться местами.

5. В зависимости от широты спектра фармакологического эффекта:

1. неспецифическое действие (витамины, глюкоза, адаптогены);

2. специфическое действие:

Действие лекарственных веществ на организм:

Основные характеристики действия ЛС:

3. время действия препарата:

- латентный период действия – это время с момента приёма ЛС до начала его терапевтического действия (короткий период – допамин, лидокаин, нитроглицерин; длительный период – спиронолактон, кризанол и др.);

- период максимального действия – время, в течение которого в максимальной мере проявляется терапевтический эффект;

- время удержания эффекта – показатель, определяющий частоту и длительность приёма препарата;

- время последействия ЛС – это время после прекращения приёма ЛС, в течение которого в организме сохраняются функциональные изменения, вызванные действием препарата;

4. быстрота наступления эффекта, его сила и продолжительность (зависит от скорости введения, количества ЛС и функционального состояния организма или органов).

Основные механизмы действия ЛС:

1. прямое химическое (цитотоксическое) воздействие – непосредственное взаимодействие ЛС с внутриклеточными молекулами или ионами, приводящее чаще к нарушению функции клеток (антибиотики, противовирусные препараты, цитостатики, антациды);

2. физико-химическое действие на мембраны клеток – изменение или блокирование электрофизиологической активности мембран нервных и мышечных клеток (антиаритмические и противосудорожные препараты, местные анестетики, средства для наркоза);

3. действие на специфические ферменты – влияние ЛС на активность различных ферментов (индукторы ферментов – фенобарбитал; ингибиторы ферментов - антихолинэстеразные препараты: прозерин, физостигмин, галантамин);

4. действие через специфические рецепторы – взаимодействие ЛС с рецепторами (мембранными, цитозольными, ядерными):

- агонисты – действуют подобно медиаторам организма, т.е. стимулирующие активность рецепторов;

- антагонисты – препятствуют взаимодействию с рецептором эндогенных и экзогенных агонистов или блокирующие рецепторы;

- вещества, обладающие одновременно свойствами агониста и антагониста.

Факторы, влияющие на действие лекарств:

1. пол (женщины более чувствительны к ЛС во время беременности);

2. возраст (наиболее чувствительны к ЛС новорождённые, дети младшего возраста, пожилые люди);

3. генетические факторы (исследование влияния генетических факторов на чувствительность организма к лекарственным веществам - основная задача специальной области фармакологии – фармакогенетики);

4. функциональное состояние организма (наличие сопутствующих заболеваний изменяет действие ЛС);

5. суточные ритмы (зависимость фармакологического эффекта от суточного ритма изучает хронофармакология; действие ЛС и их токсичность зависят от суточного и сезонного ритмов);

В основе механизма действия ЛС, как правило, лежит их способность инициировать (запускать) сложные биохимические и/или биофизические процессы, которые в конечном итоге изменяют и/или оптимизируют функциональную активность клетки-мишени.Лекарственные средства могут реализовывать свое действие в отношении органов и/или клеток-мишеней путем:

• прямого химического взаимодействия;

• физико-химического взаимодействия на мембране клетки;

• действия на специализированные ферменты;

• действия на регуляторные гены;

• действия на специфические рецепторы.

Прямое химическое взаимодействие ЛС.

Этот механизм действия ЛС встречается достаточно редко и может реализоваться вне клетки, например, в просвете желудка или кишечника. Суть его заключается в том, что ЛС вступает в прямую химическую реакцию с молекулами и/или ионами, образующимися в организме в норме или при патологическом состоянии. Примером прямого химического взаимодействия может служить химическая реакция нейтрализации соляной кислоты желудка при приеме антацидных ЛС.

Физико-химическое взаимодействие ЛС на мембране клетки.

Одной из основных функций цитоплазматической мембраны является осуществление ионного обмена между цитоплазмой и внеклеточной средой. Трансмембранный ионный обмен может осуществляться в том числе и через специальные потенциалзависимые трансмембранные ионные каналы — натриевые, калиевые, кальциевые, хлорные и т.д. Некоторые лекарства, достигая клеточной мембраны, взаимодействуют с этими каналами и изменяют их функциональную активность. Так, например, в основе антиаритмического действия препарата IA класса — хинидина — лежит его способность блокировать прохождение ионов Na + через трансмембранные натриевые каналы.

Действие ЛС на специализированные ферменты.

Относительно небольшое количество ЛС реализует свой фармакологический эффект путем изменения активности некоторых специализированных клеточных ферментов. Лекарственные средства, повышающие активность клеточных ферментов, называют индукторами ферментов. Таким действием обладает, например, снотворный и противосудорожный препарат фенобарбитал, который значительно усиливает активность микросомальных ферментов печени. Биологическое значение этого эффекта фенобарбитала и близких к нему ЛС будет рассмотрено далее.

Лекарственные средства, угнетающие активность специализированных ферментов, называют ингибиторами ферментов. Так, например, антидепрессант из группы ингибиторов моноаминоксидазы (МАО) препарат пирлиндол реализует свое антидепрессивное действие путем подавления активности фермента МАО в ЦНС.

Способность ингибировать активность фермента ацетилхолинэстеразы лежит в основе фармакологической активности антихолинэстеразных ЛС, например физостигмина. Известно, что в физиологических условиях ацетилхолинэстераза инактивирует (разрушает) ацетилхолин — нейромедиатор, передающий возбуждение в синапсах парасимпатической нервной системы. Физостигмин, подавляя активность ацетилхолинэстеразы, способствует накоплению в синапсах парасимпатической системы нейромедиатора ацетилхолина, в результате чего тонус парасимпатической нервной системы повышается, что на системном уровне проявляется развитием брадикардии, снижением артериального давления (АД), усилением моторики желудочно-кишечного тракта (ЖКТ), сужением зрачка и т.д.

Лекарственные средства могут взаимодействовать с ферментами обратимо и необратимо. Так, например, препарат эналаприл обратимо ингибирует активность ангиотензинпревращающего фермента, что влечет за собой, в частности, понижение АД, тогда как фосфорорганические отравляющие вещества необратимо подавляют активность ацетилхолинэстеразы.

Действие ЛС на регуляторные гены. В настоящее время ученые предпринимают попытки создания ЛС, реализующих свои фармакологические эффекты путем прямого воздействия на физиологическую активность регуляторных генов. Особенно перспективным это направление представляется после того, как в 2000 г. была расшифрована структура генома человека. Полагают, что избирательная нормализация функции регуляторных генов под воздействием ЛС позволит добиться успеха в лечении многих, в том числе ранее неизлечимых, болезней.

К сенсорным рецепторам относятся рецепторы органов слуха, зрения, обоняния, вкуса, осязания и т.д. Сенсорные рецепторы этих органов относятся к так называемым экстерорецепторам.

Если наличие органов чувств, реагирующих на внешние стимулы раздражения, было известно с давних времен, то наличие сенсорных рецепторов и внутри организма подвергалось сомнению вплоть до середины XIX в. Впервые о наличии такого рода рецепторов и внутри организма высказал предположение русский физиолог И.Ф. Цион, показавший в 1866 г. падение АД вследствие раздражения аорты в опыте на кролике. Это открытие дало начало для поиска и изучения рецепторов, расположенных внутри организма, а сами эти рецепторы получили название интерорецепторов.

К началу XX в. было выявлено достаточное количество сенсорных интерорецепторов и доказана их важная роль в регуляции физиологических функций организма.

В 1905 г. Дж. Лэнгли (J. Langley) доказал, что при нанесении ЛС на клеточную мембрану фармакологический эффект развивается в том случае, если оно нанесено только на определенный ее участок. Причем этот участок составляет лишь небольшую часть общей площади клеточной поверхности. Это наблюдение позволило Дж. Лэнгли сделать заключение о том, что на клеточной мембране существуют специализированные рецепторные участки, взаимодействующие с ЛС.

Таким образом, еще в начале XX в. стало очевидно, что существует, как минимум, два класса интерорецепторов: сенсорные рецепторы, осуществляющие передачу информации о состоянии внутренних органов и тканей организма в ЦНС; клеточные рецепторы, которые взаимодействуют с ЛС, изменяющими функциональную активность клеток-мишеней.

Открытие П.Эрлихом на клеточной мембране рецепторов для ЛС послужило отправной точкой для развития фармакологической науки, в частности фармакодинамики, одной из основных задач которой является изучение рецепторных механизмов действия ЛС.

В настоящее время выявлена структура большого числа клеточных рецепторов, особенности взаимодействия с ними тех или иных биологически активных соединений, что позволило, с одной стороны, понять механизм действия известных ЛС, а с другой стороны, явилось основой для создания новых высокоэффективных ЛС.

Естественно, трудно себе представить, что в организме человека в процессе эволюции образовались рецепторы к различным синтетическим (полученным химическим путем) ЛС, тем более, что подавляющее большинство представленных на современном фармацевтическом рынке ЛС были синтезированы в последние 50 лет и менее. Доказано, что рецепторный аппарат клетки — очень древнее функционально-структурное образование. Так, a- и b-адренорецепторы (рецепторы, взаимодействие с которыми норадреналина и адреналина влияет на функциональную активность клетки) обнаружены не только в клетках животных, но и на клеточных мембранах клеток растений, например в клетках растения ниттела, где a- и b-адренорецепторы регулируют движение протоплазмы (содержимого клетки).

Тогда что же представляют собой рецепторы для ЛС, открытые П.Эрлихом, и почему с ними они взаимодействуют?

В настоящее время не вызывает сомнений, что так называемые лекарственные рецепторы на самом деле являются рецепторами для эндогенных (вырабатываемых в организме) биологически активных веществ, участвующих в регуляции функциональной активности внутренних органов и тканей организма. К таким биологически активным соединениям относятся вещества, выделяющиеся из нервных окончаний в момент передачи нервного сигнала, а также гормоны, витамины, аминокислоты и т.д. Для каждого эндогенного биологически активного вещества существуют строго специфичные для него рецепторы. Так, например, вырабатываемое в организме биологически активное вещество адреналин может активировать строго специфичные для него a- и b-адренорецепторы, а глюкокортикостероиды — гормоны коры надпочечников — взаимодействуют только со строго специфичными для них глюкокортикостероидными рецепторами.

Синтетические ЛС, реализующие свои эффекты путем взаимодействия с рецепторным аппаратом клетки, по своей химической структуре в той или иной мере подобны эндогенным биологически активным соединениям, взаимодействующим с аналогичными рецепторами. Так, например, синтетическое вазоконстрикторное (вызывающее сужение сосудов) ЛС фенилэфрин по своей химической структуре близок к эндогенному биологически активному веществу норадреналину, поэтому так же как и норадреналин, обладает способностью стимулировать a-адренорецепторы.

Иногда в связи с особенностями своего химического строения ЛС могут взаимодействовать не с самим рецептором, а с прилежащим к нему участком клеточной мембраны. Так как в данном случае ЛС взаимодействует не с самим рецептором, а с прилегающим к нему участком клеточной мембраны, говорят не о возбуждающем или блокирующем влиянии на рецептор, а об аллостерическом (от греч. allos — другой, иной) воздействии, или эффекте. В результате может происходить изменение как структуры прилежащей к рецептору мембраны, так и отдельных компонентов самого рецептора, что может повлечь за собой изменение чувствительности рецептора к специфичному для него биологически активному веществу. В тех случаях, когда чувствительность рецептора к биологически активному веществу повышается, говорят о сенситизации (от лат. sensus — чувство) или о сенсибилизации (от лат. sensibilis — чувствительность) рецептора, а в тех случаях, когда чувствительность рецептора понижается, говорят о десенситизации рецептора.

Особенность аллостерического воздействия заключается в том, что ЛС, обладающее такого рода механизмом действия, непосредственно на передачу нервного импульса не влияет, но видоизменяет ее в желаемом направлении. Например, в основе механизма действия анксиолитиков (противотревожных ЛС; синонимы: транквилизаторы), по своей химической структуре являющихся производными бензодиазепина, лежит феномен аллостерического возбуждения постсинаптических бензодиазепиновых рецепторов. Возбуждение последних в свою очередь, способствует активации тормозных постсинаптических рецепторов гамма-аминомасляной кислоты (ГАМК-рецепторов), что клинически проявляется устранением таких симптомов невротических заболеваний, как чувство беспокойства, тревоги, страха и т.д.

Рецепторы, взаимодействуя с которыми, биологически активное вещество или ЛС каким-либо образом изменяет функциональное состояние клетки-мишени, называют специфическими.

При взаимодействии с рецептором эндогенного биологически активного вещества и/или подобно ему действующего ЛС происходит конформация — пространственное изменение формы — белковой макромолекулы, что является пусковым механизмом для различных внутриклеточных процессов, определяющих реакцию клетки-мишени на медиатор и/или ЛС. Например, активацияb2-адренорецепторов гладких мышц бронхов под влиянием b2-адре-ностимулятора фенотерол влечет за собой повышение активности фермента аденилатциклазы, который способствует накоплению в клетке циклического аденозинмонофосфата (цАМФ) и, как следствие этого, расслаблению клетки.

Изучение особенностей взаимодействия ЛС с рецептором, с одной стороны, позволяет понять основу молекулярного механизма его действия, а с другой стороны, позволяет получить информацию о том, какие изменения следует провести в структуре ЛС, чтобы усилить его способность взаимодействовать с данным рецептором, т. е. позволяет вести целенаправленный синтез новых высокоэффективных ЛС.

В физиологических условиях разные клеточные рецепторы функционируют не самостоятельно, а находятся в постоянном взаимодействии друг с другом, регулируя тем самым специфическую активность клетки. Так, например, активация b-адренорецепторов сердечной клетки эндогенным норадреналином вызывает, в частности, учащение числа сердечных сокращений, а активация М-холинорецепторов сердечных клеток эндогенным ацетилхолином, напротив, вызывает урежение числа сердечных сокращений.

Большой вклад в понимание рецепторных механизмов действия ЛС внесло открытие пре- и постсинаптических рецепторов. Синапс (от греч. synopsis — соединение, связь) представляет собой специализированную зону контакта между нервными клетками или другими возбудимыми структурами организма, обеспечивающую передачу приходящей информации и сохранение ее информационной значимости. Изучение структуры и функциональной роли синапсов было начато в конце XIX в. после того, как испанский гистолог С. Рамон-и-Кахаль (S.Ramon у Cajal) высказал предположение о наличии в ЦНС специализированной передающей системы. Свое название синапсы получили в 1897 г., когда английский физиолог Ч.Шеррингтон (Ch. Sherrington) предложил этот термин для обозначения зоны контакта между нервными клетками.

В настоящее время выделяют три вида синапсов:

Фармакологические эффекты подавляющего большинства ЛС, влияющих на функции синапсов, реализуются путем их воздействия на тот или иной этап передачи сигнала в химических синапсах, т.е. в синапсах второго вида.

Как правило, химические синапсы классифицируют по нейромедиаторам, осуществляющим в них передачу нервного импульса, следующим образом:

• синапсы, в которых в качестве медиатора выступает ацетилхолин, называют холинергическими;

• синапсы, в которых в качестве медиатора выступают адреналин и норадреналин, называют адренергическими;

• синапсы, в которых в качестве медиатора выступают АТФ и аденозин, называют пуринергическими;

• синапсы, в которых в качестве медиатора выступает гамма-аминомасляная кислота, называются ГАМК-ергические и т.д.

Избирательное (селективное) действие лекарственных веществ обусловлено их сродством (аффинитетом) к отдельным подтипам рецепторов или селективным изменением транспорта ионов (Na+, K+, Ca2+, Cl-) в определенном органе, что зависит от химической структуры биологически активного вещества, наличием в его структуре определенных функциональных групп.

Преферанская Нина Германовна
Доцент кафедры фармакологии фармфакультета Первого МГМУ им. И.М. Сеченова, к.фарм.н.

Например, сердечные гликозиды избирательно влияют на сердечную мышцу; Окситоцин – на гладкую мускулатуру матки; Сальбутамол (Вентолин) избирательно стимулирует b2-адренорецепторы бронхов и матки; Метопролол (Беталок ЗОК) селективно блокирует b1-адренорецепторы сердца. Антидиарейное средство Лоперамид (Имодиум) – селективный агонист опиоидных рецепторов кишечника. Он на длительный период замедляет перистальтику ЖКТ, устраняет понос и нормализует нормальный стул пациента. Препарат не оказывает влияния на подтипы опиоидных рецепторов ЦНС, поэтому при повторном применении не вызывает привыкания и лекарственной зависимости.

Неизбирательным (неселективным) действием обладают ЛС, воздействующие на многие рецепторы одновременно. Например, такое действие оказывает гормон мозгового слоя надпочечников – адреналин, как ЛС является адреномиметиком, связывается с α, β-адренергическими рецепторами. Антихолинергические средства (атропин, платифиллин) блокируют неизбирательно все мускариночувствительные М1, М2, М3-холинорецепторы.

Преимущественное действие – когда один и тот же препарат, действуя на различные рецепторы, обладает более выраженным фармакологическим эффектом на один из рецепторов. Например, орципреналина сульфат (Алупент, Астмопент), воздействуя на β1β2 адренорецепторы, вызывает более выраженный эффект на β2-адренорецепторы бронхов, поэтому в клинической практике его используют как бронхорасширяющее средство.

Иногда трудно определить, на какой конкретно орган действует то или иное лекарственное средство, тогда говорят об общем действии на организм или о неспецифическом действии. Такие препараты вызывают широкий спектр фармакологических эффектов и влияют на различные биохимические процессы в организме. При воздействии ЛС на конкретные отделы головного, спинного мозга, обеспечивающим адекватную ответную реакцию организма, говорят о центральном действии. Влияние ЛС на функции внутренних органов рассматривают как периферическое действие.

Общее действие развивается при применении лекарств, оказывающих фармакологический эффект одновременно на весь организм (в целом). Общим действием обладают общетонизирующие ЛС, адаптогены, такие как женьшень, элеутерококк, заманиха. Действующие вещества этих растений приспосабливают организм к изменившейся внешней или внутренней среде. При применении этих препаратов в осенне-весенний период повышается общий тонус, работоспособность, снимается умственная и физическая усталость, переутомление, общая слабость организма. Таким же общим действием обладают поливитаминные препараты, содержащие комплекс витаминов, макро- и микроэлементов. Наркозные средства или общие анестетики – Ксенон, Кетамин – обладают общим обратимым угнетающим действием на большинство клеток в ЦНС и этот эффект распространяется и на периферические органы.

Периферическое действие развивается при действии лекарств непосредственно на периферические органы и ткани: печень, почки, сердце, сосуды, органы дыхания или при влиянии на эфферентные нервные окончания, иннервирующие внутренние органы и скелетную мускулатуру. Периферическим действием обладают диуретики, маточные, кардиотонические, гепатопротекторы, холинергические, адренергические средства и др.

Наряду с основными фармакологическими эффектами ЛС, применяемых в терапевтических дозах, проявляются побочные эффекты действия. Они могут быть как положительными, так и отрицательными (нежелательными). Побочные эффекты возникают при применении любой терапевтической дозы препарата, но сила проявления побочных эффектов оказывается разной: минимальной – при пороговой дозе и максимальной – при применении наивысшей терапевтической дозы. Побочными отрицательными эффектами действия у Морфина являются: угнетение дыхания, сонливость, запоры, лекарственная зависимость и др.; у Клофелина – повышенная утомляемость, замедление скорости психических и двигательных реакций, депрессия, импотенция, кожная сыпь и др.

Местное нежелательное действие проявляется при прямом контакте ЛС с кожей, подкожной жировой клетчаткой, слизистыми оболочками. Такое действие могут оказать препараты, обладающие раздражающим действием. Так, многие противогистаминные средства (например, Диазолин) оказывают раздражающее действие при введении внутрь, для устранения которого их выпускают в драже или таблетках, покрытых оболочкой.

Рефлекторное нежелательное действие является следствием выраженного местного эффекта (раздражающего влияния) и сводится к торможению функций органа или системы органов, на которые оказывается основное действие. Например, рефлекторная остановка сердца и дыхания возможна при вдыхании больших концентраций эфира для наркоза.

Дисбактериоз – нарушение подвижного равновесия состава естественной микрофлоры, в норме заселяющей слизистые оболочки ЖКТ или влагалища. Это клинико-лабораторный синдром, сопутствующий острым и хроническим заболеваниям органов пищеварения, возникающий на фоне длительной антибактериальной терапии, хронического употребления алкоголя, нарушения питания, проживания в неблагоприятных условиях. Наблюдаются качественные и количественные изменения состава микробных ассоциаций, нарушается антагонистическая активность микрофлоры, начинают активно развиваться условно-патогенные и патогенные микроорганизмы.

Читайте также: