Магнитные материалы специального назначения кратко

Обновлено: 30.06.2024

Однако ферриты могут относиться и к материалам специального назначения.Диапазон СВЧ соответствует дли­нам волн от 1 м до 1 мм. В аппаратуре и приборах, где используют­ся электромагнитные волны диапазона СВЧ, необходимо управ­лять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать плоскость поляризации волны, частично или полностью погло­щать мощность потока, изменять скорость распространения вол­ны.

Электромагнитные волны могут распространяться в простран­стве, заполненном диэлектриком, а от металлов они почти пол­ностью отражаются. Поэтому металлические поверхности исполь­зуются для направления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волно­водам, представляющим собой полые или частично заполненные твердыми материалами металлические трубы. В качестве твердых материалов для управления потоком энергии в волноводах исполь­зуются ферриты СВЧ и некоторые немагнитные активные диэ­лектрики. Магнитными характеристиками первых можно управ­лять с помощью внешнего магнитного поля, электрическими свой­ствами вторых — действием внешнего электрического поля.

Практическое применение ферритов СВЧ основано:

• на магнитооптическом эффекте Фарадея;

• эффекте ферромагнитного резонанса;

• изменении внешним магнитным полем значения магнитной проницаемости феррита.

Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются:

• высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем);

• высокое удельное объемное сопротивление (1О 6 . 1О 8 Ом-м) и возможно меньший тангенс угла диэлектрических потерь (10 -3 . 10 -4 ), а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите;

• температурная стабильность свойств и возможно более высо­кое значение температуры Кюри.

В отдельных случаях к ферриту предъявляют и другие требова­ния, которые могут быть даже противоречивыми. Большинство требований удается удовлетворить при использовании магний-марганцевых ферритов с высоким содержанием оксида магния. Для некоторых целей применяют литий-цинковые и никель-цинко­вые ферриты.

Конфигурация и габаритные размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а с другой, зависят от свойств самого материала. В различных прибо­рах СВЧ применяемые ферритовые вкладыши имеют форму пря­моугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспе­чивается наилучшее согласование его с волноводом, т.е. получа­ется минимальное отражение электромагнитной волны от ферри­та. Для изготовления вкладышей используют как поликристаллические материалы, так и монокристаллы ферритов. Последние ха­рактеризуются более узкой шириной линии ферромагнитного ре­зонанса.

Особое место среди материалов для СВЧ занимают ферриты-гранаты иттрия с частичным замещением ионов иттрия и железа другими ионами. Они характеризуются весьма низкими диэлект­рическими и магнитными потерями, слабой анизотропией, наибо­лее узкой резонансной кривой. Монокристаллы Y3Fe5012 с малой концентрацией примесей и структурных дефектов имеют АН-, ле­жащую в пределах 10. 100 А/м. Среди ферритов, применяемых в низкочастотной части диапазона СВЧ, ферриты-гранаты иттрия является наиболее распространенным.

Монокристаллы ферритов-гранатов обычно получают кристал­лизацией из раствора-расплава с использованием оксифторида свинца (РЬО + PbF2) в качестве растворителя.

Следующая группа материалов специального назначения, которые можно выделить - магнитострикционные материалы - магнитные материалы, применение которых основано на явлении магнитострикции и магнитоупругом эффекте, т. е. из­менении размеров тела в магнитном поле и изменении магнитных свойств материала под влиянием механических воздействий. Яв­ление магнитострикции было открыто английским ученым Дж. Джоулем в 1842 г.

Среди магнитострикционных материалов можно отметить как чистые металлы, так и сплавы и различные ферриты. Ферриты являются магнитострикционными материалами для высоких час­тот.

До начала 1960-х гг. наиболее широко применяемым магнитострикционным материалом являлся никель; он частично сохра­няет свое лидирующее место и в настоящее время, хотя постепен­но вытесняется другими магнитострикционными материалами и пьезоэлектрической керамикой. Ценными свойствами никеля яв­ляются высокая механическая прочность, стойкость к коррозии (даже по отношению к морской воде) и малый температурный коэффициент модуля упругости. Основной недостаток заключает­ся в низком удельном сопротивлении, препятствующим его ис­пользованию на частотах свыше 10 кГц из-за возрастающих по­терь на вихревые токи.

Кроме чистого никеля используют железокобальтовые сплавы типа пермендюр 49К2Ф, железоалюминиевые типа альфер 12Ю, а также сплавы платины с железом (Fe + Pt).

Сплав платины с железом обладает большой константой маг­нитострикции, однако он очень дорогой и поэтому имеет весьма ограниченное применение. Пермендюр отличается высокими ди­намическими магнитострикционными параметрами. Предельная интенсивность излучения у преобразователей из пермендюра в четыре раза больше, чем у никелевых. Достоинствами альфера следует считать недефицитность исходных компонентов и повы­шенное удельное сопротивление. Недостатком железокобальтовых и железоалюминиевых сплавов являются низкая пластичность (или даже хрупкость), затрудняющая механическую обработку, и низ­кая антикоррозионная устойчивость, препятствующая использо­ванию таких преобразователей в водной среде. Широкое применение в магнитострикционных устройствах находит ферритовая керамика. По сравнению с никелем и метал­лическими сплавами магнитострикционные ферриты (МСФ) имеют ряд преимуществ. Благодаря высокому удельному сопро­тивлению в них пренебрежимо малы потери на вихревые токи, поэтому отпадает необходимость расслаивать материал на отдель­ные пластины. Частотный диапазон их использования расширяет­ся до 10 7 Гц при сохранении высокой магнитомеханической доб­ротности (10 3 . 10 7 ). В отличие от металлических сплавов ферриты не подвержены действию химически агрессивных сред. С помо­щью керамической технологии можно изготовить преобразовате­ли практически любых форм и размеров.

По составу магнитострикционная керамика представляет со­бой либо чистый феррит никеля NiFe2O4, либо твердые растворы на его основе. Наиболее важную роль играют добавки кобальта, которые существенно улучшают динамические параметры магни­тострикционных преобразователей.

По своим механическим свойствам ферриты тверды и хрупки. Их механическая прочность при продольных колебаниях пример­но в 7— 10 раз меньше прочности металлических материалов. При работе в режиме излучения с большими амплитудами колебаний МСФ проявляют эффект усталости, т. е. постепенное ухудшение динамических параметров преобразователей.

Из магнитострикционных материалов изготовляют сердечники электромеханических преобразователей (излучателей и приемни­ков) для электроакустики и ультразвуковой техники, сердечники электромеханических и магнитострикционных фильтров и резо­наторов, линий задержки. Их используют также в качестве чув­ствительных элементов магнитоупругих преобразователей, при­меняемых в устройствах автоматики и измерительной техники.

К магнитным материалам специального назначения относят магнитные материалы с прямоугольной петлей гистерезиса, СВЧ ферриты, магнитострикционные материалы.

Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, аппаратуре связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, которые соответствуют различным направлениям магнитной индукции. Это свойство используется для хранения и переработки двоичной информации.

Материалы с ППГ характеризуются коэффициентом прямоугольности kпу петли гистерезиса.

Большим значением kпу обладают железоникелевые и железокобальтовые сплавы, легированные медью и некоторыми другими металлами. Эти сплавы обладают кристаллографической или магнитной текстурой. Наиболее высокую прямоугольность (до 0,98) имеют железоникелькобальтовые сердечники из лент микронной толщины.

Более широко распространены ферриты с ППГ, сердечники из которых более технологичны и дешевле. Прямоугольность петли гистерезиса достигается выбором определенного химического состава и условиями спекания феррита. Для сердечников с ППГ чаще применяются магний-марганцевые и литиевые ферриты.

Ферромагниты для устройств СВЧ используются в диапазоне длин волн от 1м до 1 мм. Электромагнитная энергия на таких частотах передается по волноводам, коаксиальным и полосковым линиям передачи. Ферритовый сердечник - вкладыш, помещенный внутрь волновода, изменяет структуру поля и скорость распространения волны. На этих частотах в ферритах используется магнитооптический эффект Фарадея, эффект ферромагнитного резонанса и зависимость магнитной проницаемости от величины внешнего поля.

Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в феррите за счет внешнего поля. Это позволяет изменять угол поворота плоскости поляризации и направлять энергию в разные каналы.

Ферромагнитный резонанс наблюдается при совпадении частоты внешнего поля с собственно частотой прецессии электронов, которой можно управлять с помощью постоянного подмагничивающего поля. При резонансе, волна распространяющаяся в прямом направлении, проходит без затухания, а в обратном - с затуханием. В результате получается высокочастотный вентиль. Это явление используется в антенных переключателях, в фазовращателях, модуляторах и т.д.

Для каждого диапазона длин волн используется определенная разновидность феррита. Например, для диапазона длин волн 0,8 - 2 см используются некоторые никель-цинковые ферриты, для диапазона 5 см и более используют ферриты с добавками хрома (феррохроматы) или алюминия (ферроалюмиты); феррогранат используется в диапазоне волн несколько десятков сантиметров.

Ферриты СВЧ маркируются буквами СЧ, впереди которых стоит цифра, указывающая длину волны в см. Цифра после букв СЧ указывает различие по свойствам.

В магнитострикционных материалах используется явление магнитострикции и магнитоупругий эффект - изменение магнитных свойств материала под влиянием механических воздействий. К магнитострикционным материалам относится никель, пермендюр (сплавы FeCo), альферы (сплавы FeAl), никелевый и никель-кобальтовые ферриты и др. Магнитострикционные ферриты имеют малые потери на вихревые токи по сравнению с никелем и металлическими сплавами, не подвержены действию химических агрессивных сред.

С помощью керамической технологии можно изготовить преобразователи любых форм и размеров. Магнитострикционные материалы применяются для изготовления сердечников электромеханических преобразователей для электроакустической и ультразвуковой технике, сердечника электромеханических и магнитострикционных фильтров, резонаторов и линий задержек.

5. Магнитотвердые материалы

Магнитотвердые материалы обладают высокой коэрцитивной силой и большой площадью петли гистерезиса.

Магнитотвердые материалы по способу изготовления подразделяются на следующие группы:

литые сплавы на основе Fe-Ni-Al и Fe-Ni-Al-Co, легированные медью, титаном, ниобием и др. элементами;

порошковые материалы, из которых постоянные магниты, получают прессованием порошков с последующей термообработкой;

прочие магнитные материалы (например, сплавы на основе редкоземельных металлов, устаревшие материалы, пластически деформируемые сплавы, эластичные магниты и др.).

По применению магнитотвердые материалы подразделяют на материалы, применяемые для изготовления постоянных магнитов и для длительного хранения информации (например, для звукозаписи).

Для получения высокой коэрцитивной силы в магнитном материале, необходимо затруднить процесс перемагничивания. Это достигается в материалах с большим количеством внутренних механических напряжений, дефектов кристаллической структуры и высокой магнитострикции, которые препятствуют смещению доменных границ. Кроме того большая коэрцетивная сила возникает в материале из однодоменных частиц, разделенных немагнитной фазой. Такие структуры получаются после определенной термообработки.

Магнитные свойства магнитотвердых материалов зависят от кристаллографической и магнитной текстур. Магнитная текстура создается путем охлаждения высококоэрцетивных сплавов в сильном магнитном поле. При этом сильно магнитная фаза ориентируется осями легкого намагничивания вдоль направления поля. Кристаллографическую текстуру создают методом направленной кристаллизации сплава, залитого в форму, при особых условиях охлаждения. Литые сплавы тверды и хрупки. После литья их можно подвергать только шлифовке.

Для получения магнитов со строго выдержанными размерами используют методы порошковой металлургии. Магниты из порошковых материалов подразделяют на металлокерамические, металлопластические, оксидные и из микропорошков.

Металлокерамические магниты получают прессованием металлических порошков без связывающего материала и спеканием их при высокой температуре. По магнитным свойствам они немного уступают литым, но дороже последних.

Металлопластические магниты изготавливают прессованием металлических порошков вместе с изолирующей связкой и подвергают нагреву до невысокой температуры, необходимой для полимеризации связывающего вещества. Имеют пониженные магнитные свойства, но обладают большим электрическим сопротивлением, малой плотностью и относительно дешевы. Оксидные магниты чаще всего изготавливают на основе ферритов бария и кобальта.

Магниты из феррита бария имеют высокую коэрцитивную силу, но малую остаточную индукцию, обладают большим удельным электрическим сопротивлением, дешевы, обладают высокой твердостью и хрупкостью и большой зависимостью магнитных свойств от температуры.

Кобальтовые магниты характеризуются большой температурной стабильностью, однако их стоимость выше, чем бариевых.

Сплавы на основе редкоземельных металлов представляют собой интерметаллические соединения редкоземельного элемента (самария, церия и др.) с кобальтом. Они обладают наивысшими магнитными свойствами, полученными в настоящее время. Требуют защиты от окисления.

К числу магнитотвердых материалов относятся магнитные ленты для видео-звукозаписи, для записи, хранения, ввода информации в ЭВМ и магнитные диски. Материалы для магнитной записи должны обладать высокой коэрцитивной силой, высокой остаточной намагниченностью, стабильностью параметров при изменении температуры.

Большинство магнитных лент изготавливают на основе полиэтилентерефталата (лавсана), обладающего высокой механической прочностью. На поверхность основы наносят магнитный порошок, однодоменные частицы которого имеют вытянутую игольчатую форму длиной около 1 мкм при диаметре порядка 0,1 мкм и ориентированы вдоль направления поля при записи. Чем равномерней толщина магнитного слоя и мельче частицы, тем меньше шумовой фон при воспроизведении записи.

В качестве магнитного слоя используют оксиды g - Fe2O3, CrO2, чистое железо или ферромагнитные сплавы. Ленты на основе CrO2 обладают большой коэрцитивной силой и повышенной чувствительностью на высоких частотах. Использование магнитного слоя из чередующихся окислов g - Fe2O3 и CrO2 улучшают воспроизводимость низкочастотной части спектра. Наилучшими магнитными свойствами обладают ленты с рабочим слоем из мельчайших частиц химически чистого железа или ферромагнитных сплавов.

1. Суриков В.С. – Основы электродинамики – М. "Протон" - 2000 г.

2. Карков И.С. – Физика элементарных частиц. – М. – 1999 г.

3. Синджанов И.К. Электродинамика – М. 1998 г.

4. Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.

5. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы . - М.: Радио и связь, 1999. - 352с.

Ферриты и металлические сплавы с ППГ. Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.

Двоичные элементы на магнитных сердечниках с ППГ характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, относительной стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания.

К материалам и изделиям этого типа предъявляют ряд специфических требований, а для их характеристики привлекают некоторые дополнительные параметры. Основным из таких параметров является коэффициент прямоугольности петли гистерезиса Kпу, представляющий собой отношение остаточной индукции Вr к максимальной индукции Вmax:


Для определенности Bmax измеряют при Hmах = 5Hс. Желательно, чтобы Кпубыл возможно ближе к единице. Для обеспечения быстрого перемагничивания сердечников они должны иметь небольшой коэффициент переключения Sq, численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противопо ложное состояние максимальной индукции.

Кроме того, материалы с ППГ должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а, следовательно, иметь высокую температуру Кюри и некоторые другие свойства.

Ферриты с ППГ в практике распространены шире, чем металлические тонкие ленты. Это объясняется тем, что технология изготовления сердечников наиболее проста и экономична.

Ферритам свойственна спонтанная прямоугольность петли гистерезиса, т.е. специфическая форма петли реализуется при выборе определенного химического состава и условий спекания феррита, а не является результатом какой-либо специальной обработки материала, приводящей к образованию текстуры (например, механических воздействий или обработки в сильном магнитном поле).

Из ферритов с ППГ наиболее широкое применение находят магний-марганцевые и литиевые феррошпинели. Установлено, что прямоугольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микронеоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междуузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Мn3+, образующихся при определенных условиях синтеза.

В зависимости от особенности устройств, в которых применяются ферриты с ППГ, требования, предъявляемые к ним, могут существенно различаться. Так, ферриты, предназначенные для коммутационных и логических элементов схем автоматического управления, должны иметь малую коэрцитивную силу (10–20 А/м). Наоборот, материалы, используемые в устройствах хранения дискретной информации, должны иметь повышенное значение Нс(100–300 А/м).

В запоминающих устройствах ЭВМ применяют либо кольцевые ферритовые сердечники малого размера (имеются сердечники с наружным диаметром 0,3–0,4 мм), либо многоотверстные ферритовые платы, в которых область вокруг каждого отверстия выполняет функции отдельного сердечника. При использовании сердечников достигается более высокое быстродействие, однако возникают технологические трудности при прошивке таких сердечников проводниками и сборке матриц.

Ленточные микронные сердечники из пермаллоев имеют лучшие магнитные свойства по сравнению с ферритами и более высокую температурную стабильность. В том же интервале температур (–20 ¸ +60°C) их свойства практически не изменяются.

Прокатка микронной ленты, ее термообработка, требующая вакуума или атмосферы инертного газа, а также изготовление из ленты сердечников значительно сложнее, чем изготовление изделий из ферритов.

В последнее время в микроминиатюрных электронных приборах начали использовать магнитные пленки, наносимые на подложки методами распыления в вакууме.

Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1 м до 1 мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ, необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать плоскость поляризации волны, частично или полностью поглощать мощность потока.

Электромагнитные волны могут распространяться в пространстве, заполненном диэлектриком, а от металлов они почти полностью отражаются. Поэтому металлические поверхности используют для направления волн, их концентрации или рассеяния. Электромагнитная энергия СВЧ чаще всего передается по волноводам, представляющим собой полые или частично заполненные твердыми материалами металлические трубы. В качестве твердых материалов для управления потоком энергии в волноводах используют ферриты СВЧ и некоторые немагнитные активные диэлектрики. Магнитными характеристиками первых можно управлять с помощью внешнего магнитного поля, электрическими свойствами вторых – за счет внешнего электрического поля.

Практическое применение ферритов СВЧ основано на: а) магнитооптическом эффекте Фарадея; б)эффекте ферромагнитного резонанса; в)изменении внешним магнитным полем значения магнитной проницаемости феррита.

Магнитооптический эффект Фарадеязаключается в повороте плоскости поляризации высокочастотных колебаний в феррите, намагниченном за счет внешнего поля. При этом могут быть получены различные углы поворота плоскости поляризации, а, следовательно, и коммутирование энергии в разные каналы.

Ферромагнитный резонанснаблюдается при совпадении частоты внешнего возбуждающего поля с собственной частотой прецессии спинов электронов (т.е. с частотой перемещения оси вращения электрона, описывающей коническую поверхность).

Собственная частота прецессии зависит от магнитного состояния образца, поэтому ее можно изменять с помощью постоянного подмагничивающего (управляющего) поля Н. При резонансе резко возрастает поглощение энергии электромагнитной волны, распространяющейся в волноводе в обратном направлении; для волны прямого направления поглощение оказывается значительно меньшим. В результате получается высокочастотный вентиль. Рассмотренный эффект наиболее сильно проявляется в том случае, когда напряженности переменного возбуждающего и постоянного подмагничивающего полей взаимно перпендикулярны.

Если частоту внешнего поля поддерживать постоянной, а изменять напряженность подмагничивающего поля H–, то вентильные свойства феррита будут проявляться в довольно узком интервале напряженностей постоянного поля DH–, называемом шириной линии ферромагнитного резонанса. Чем меньше значение DH–, тем сильнее поглощение электромагнитной энергии, что благоприятно сказывается на характеристиках ряда СВЧ-устройств (антенные переключатели и циркуляторы, служащие для распределения энергии между отдельными волноводами; фазовращатели; фильтры; модуляторы, ограничители мощности и др.).

Помимо достижения узкой линии резонанса к ферритам СВЧ предъявляют ряд специфических требований. Основными из них являются:

1) высокая чувствительность материала к управляющему полю (возможность управления относительно слабым внешним полем);

2) высокое удельное объемное сопротивление (106–108 Ом · м) и возможно меньший тангенс угла диэлектрических потерь (10–3–10–4), а также возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите;

3) температурная стабильность свойств и возможно более высокое значение точки Кюри.

В отдельных случаях к ферриту предъявляют и другие требования, которые могут быть даже противоречивыми. Большинство требований удовлетворяется при использовании магний-марганцевых ферритов с большим содержанием окиси магния. Для некоторых целей применяют литий-цинковые и никель-цинковые ферриты и ферриты сложного состава (полиферриты).

Конфигурация и размеры ферритового изделия, с одной стороны, определяются принципом действия прибора, а, с другой, зависят от свойств самого материала. В различных приборах СВЧ применяемые ферритовые вкладыши имеют форму прямоугольной пластины, равностороннего треугольника, кольца, диска или сферы. При определенной геометрии вкладыша обеспечивается наилучшее согласование его с волноводом, т.е. получается минимальное отражение электромагнитной волны от феррита. Для изготовления вкладышей используются как поликристаллические материалы, так и монокристаллы ферритов. Последние характеризуются более узкой шириной линии ферромагнитного резонанса.

Особое место среди материалов для СВЧ занимают феррогранаты иттрия с частичным замещением ионов иттрия и железа другими ионами. Они характеризуются весьма низкими диэлектрическими и магнитными потерями, слабой анизотропией, наиболее узкой резонансной кривой. Монокристаллы Y3Fe5Ol2 с малой концентрацией примесей и структурных дефектов имеют DН, лежащую в пределах 10–100 А/м. Среди ферритов, применяемых в низкочастотной части диапазона СВЧ, феррогранат иттрия является наиболее распространенным.

Монокристаллы феррогранатов обычно получают кристаллизацией из раствора-расплава с использованием оксифторида свинца (РbО + PbF2) в качестве растворителя.

Магнитострикционные материалы. Магнитострикционными называют магнитные материалы, применение которых основано на явлении магнитострикции и магнитоупругом эффекте, т.е. изменении размеров тела в магнитном поле и изменении магнитных свойств материала под влиянием механических воздействий.

Среди магнитострикционных материалов можно отметить как чистые металлы, так и сплавы, и различные ферриты. Ферриты являются магнитострикционными материалами для высоких частот.

В эксплуатационных условиях в большинстве случаев магнитное состояние сердечника магнитострикционного преобразователя определяется одновременным воздействием переменного и постоянного подмагничивающего полей. Если выполняется соотношение Bm Будет полезно почитать по теме:

МАГНИ́ТНЫЕ МАТЕРИА́ЛЫ СПЕЦИАЛИЗИ́РОВАННОГО НАЗНАЧЕ́НИЯ, магнитные материалы, имеющие узкие области применения, благодаря высоким значениям одного, иногда двух параметров. К числу таких материалов относятся: материалы с прямоугольной петлей гистерезиса, ферриты для устройств СВЧ, магнитострикционные материалы (см. МАГНИТОСТРИКЦИОННЫЕ МАТЕРИАЛЫ) , термомагнитные материалы (см. ТЕРМОМАГНИТНЫЕ СПЛАВЫ) , материалы с постоянным значением магнитной проницаемости в слабых полях.
Материалы с прямоугольной петлей гистерезиса
Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) широко применяются в разнообразных запоминающих и логических устройствах вычислительной техники, автоматики, аппаратах телеграфной связи, в многоканальных импульсных системах радиосвязи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Запись и считывание информации осуществляется переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.
Основным параметром таких материалов является коэффициент прямоугольности петли гистерезиса Кпу, представляющий собой отношение остаточной индукции Br к максимальной индукции Bmax:
Кпу = Br/Bmax
Коэффициент прямоугольности должен приближаться к единице. Для обеспечения быстрого перемагничивания сердечников материалы с ППГ должны иметь небольшой коэффициент переключения Sq, численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противоположное состояние максимальной индукции. Кроме того, материалы с ППГ должны обеспечивать малое время перемагничивания, термостабильность магнитных характеристик, т.е. иметь высокую температуру Кюри (см. КЮРИ ТОЧКА) .
Наиболее широко используются ферриты с ППГ. Их разделяют на два вида: со спонтанной и с индуцированной прямоугольностью петли гистерезиса. В первом случае ППГ обусловлена составом и условиями обжига, эти ферриты получили наиболее широкое применение. Во втором случае ППГ образуется в результате термомагнитной обработки. Ферриты со спонтанной прямоугольностью петли гистерезиса получают введением в их состав Na, Mg, Mn, что позволяет поднять коэффициент прямоугольности до 0,9. Введение в состав феррита оксида цинка или кальция повышает коэффициент ППГ до 0,94, одновременно увеличивается индукция и снижается коэрцитивная сила.
Ферриты для устройств СВЧ
Для управления потоком энергии (переключение потока энергии с одного направления на другое, изменение фазы колебаний, поворот плоскости поляризации волны, частичное или полное поглощение мощности потока) в качестве твердых материалов применяют ферриты СВЧ. Магнитными характеристиками ферритов можно управлять с помощью внешнего магнитного поля. В СВЧ-технике используют ряд эффектов, основанных на взаимодействии электромагнитной волны с магнитными моментами атомов (ионов) СВЧ ферритов. К ним относятся: магнитооптический эффект Фарадея (см. ФАРАДЕЯ ЭФФЕКТ) , эффект ферромагнитного резонанса (см. ФЕРРОМАГНИТНЫЙ РЕЗОНАНС) , изменение внешним магнитным полем значения магнитной проницаемости феррита.
СВЧ ферриты должны иметь узкую ширину линии ферромагнитного резонанса, высокое удельное сопротивление(10 6 -10 8 Ом . м), минимальный тангенс угла диэлектрических потерь (10 -3 -10 -4 ), возможно меньшее значение магнитных потерь вне области резонанса, обеспечивающее малое затухание в феррите, температурную стабильность свойств и возможно большее значение точки Кюри (см. КЮРИ ТОЧКА) . Кроме этого материал должен обладать высокой чувствительностью к управляющему полю, что позволяет использовать для управления сравнительно слабые поля. Для разных участков диапазона СВЧ к ферритам предъявляют различные требования.
В качестве ферритов СВЧ используются магний-марганцевые ферриты с большим содержанием оксида магния. Для некоторых целей (в диапазоне длин волн 0,8—2см) применяют литий-цинковые ферриты. Для длин волн 5 см и более используют ферриты с низкой индукцией насыщения, что достигается заменой части ионов железа ионами хрома или алюминия. Применяются никель-цинковые ферриты и ферриты сложного состава (полиферриты). Особое место среди материалов для СВЧ занимают феррогранаты (см. ФЕРРОГРАНАТЫ) иттрия.
Конфигурация и размеры ферритового изделия определяются принципом действия прибора и зависят от свойств материала.
Материалы с постоянным значением магнитной проницаемости в слабых полях.
К этим сплавам относится тройной сплав железо-никель-кобальт (45% Ni, 30% Fe, 25% Co), называемый перминвар (см. ПЕРМИНВАР) . Более высокой стабильностью магнитной проницаемости обладают изопермы — сплавы, представляющие собой твердые растворы железа и никеля с медью или алюминием. Магнитная проницаемость изопермов н= 30—80 и мало изменяется в магнитных полях до Н = 500А/м. Но удельное сопротивление этих сплавов невысокое.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "МАГНИТНЫЕ МАТЕРИАЛЫ СПЕЦИАЛИЗИРОВАННОГО НАЗНАЧЕНИЯ" в других словарях:

магнитные материалы — применяются в технике для изготовления магнитопроводов, постоянных магнитов, носителей информации (магнитные диски, барабаны, ленты) и т. п. Разделяются на магнитомягкие и магнитотвёрдые материалы. * * * МАГНИТНЫЕ МАТЕРИАЛЫ МАГНИТНЫЕ МАТЕРИАЛЫ,… … Энциклопедический словарь

СССР. Естественные науки — Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

Компьютерная память — НЖМД объёмом 44 Мб 1980 х годов выпуска и CompactFlash на 2 Гб 2000 х годов выпуска … Википедия

Бурханов, Геннадий Сергеевич — В Википедии есть статьи о других людях с такой фамилией, см. Бурханов. Геннадий Сергеевич Бурханов … Википедия

Коваленко, Анатолий Павлович — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. В Википедии ест … Википедия

Читайте также: