Магнитное поле соленоида кратко

Обновлено: 04.07.2024

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида — неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I — длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

У достаточно длинного соленоида В этом случае формула (20) примет вид

соответствующий формуле (18).

Таким образом, внутри достаточно длинного соленоида напряженность магнитного поля практически везде одинакова; она направлена вдоль оси соленоида в соответствии с правилом буравчика.

Практически важное значение имеет также магнитное поле тороида — катушки из проволоки, навитой на тор (рис. 226). Магнитное поле тороида однородно и замкнуто внутри самого тороида; вне тороида поле отсутствует. Тороид можно рассматривать как свернутый кольцом достаточно длинный соленоид, и для расчета напряженности магнитного поля тороида можно пользоваться формулой (18):

где длина оси тороида, радиус тороидального кольца, сила тока, число витков тороида,

Применим теорему о циркуляции вектора для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).


Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.


Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.



Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.

Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.



Второй и четвёртый интегралы равны нулю, т.к. вектор перпендикулярен направлению обхода, т.е .

Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда


где – магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.

Если отрезок 1–2 внутри соленоида, контур охватывает ток:


где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).

Тогда магнитная индукция внутри соленоида:


,
(2.7.1)

Вне соленоида:

и , т.е. .

Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.

Произведение nI – называется число ампер витков на метр.

У конца полубесконечного соленоида, на его оси магнитная индукция равна:


,
(2.7.2)

Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.

Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:

· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:


,
(2.7.3)

где L – длина соленоида, R – радиус витков.

· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле


,
(2.7.4)



На рисунке 2.15 изображены силовые линии магнитного поля : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.

Соленоидом называется цилиндрическая катушка, состоящая из большого числа витков провода, образующих винтовую линию (рис. 6.23-1).


Рис. 6.23. Магнитные силовые линии поля: 1 — соленоида; 2 — полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид — это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh, находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением


На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?


Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R/l > R имеем

Это — так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R, чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.


Рис. 6.25. Визуализация силовых линий магнитного поля

Видео 6.1. Силовые линии магнитного поля проводников с током различной формы: прямой ток, соленоид, один виток.

§ 3 Закон полного тока.

Вихревой характер магнитного поля


;


,

где – проекция вектора на вектор .


;


;


.


Закон полного тока:


Циркуляция вектора по произвольному замкнутому контуру равна сумме токов, охватываемых этим контуром


;


.

Положительными считаются те токи, направление которых с направлением обхода подчиняется правилу правой руки. Токи, направление которых противоположно направлению обхода, берутся со знаком минус.


.

  1. В отличие от электростатического поля, для которого циркуляция вектора равна нулю и электростатическое поле является потенциальным, циркуляция магнитного поля не равна нулю , если контур, по которому мы рассматриваем циркуляцию, охватывает токи. Поле, циркуляция которого отлична от нуля, называется вихревым или соленоидальным. Следовательно, магнитное поле является вихревым. У вихревого поля силовые линии замкнуты, следовательно, магнитных зарядов не существует.

§4 Магнитное поле соленоида и тороида


Соленоид представляет цилиндрический каркас, на который намотаны витки проволоки. Рассмотрим бесконечно длинный соленоид, т.е. соленоид у которого ? >> d , где ? - длина, d – диаметр соленоида. Внутри такого соленоида магнитное поле однородно. Однородным называется поле, силовые линии которого параллельны и густота их постоянна.

Применим закон полного тока для вычисления напряженности магнитного поля соленоида. Представим контур L , по которому рассматривается циркуляция вектора , состоящим из четырех связанных участков 1-2; 2-3; 3-4; 4-1. Тогда циркуляция вектора по выбранному нами контуру L будет равна


.


;

, т.к. и, следовательно, ,


, т.к. мы выбрали участок 3-4 достаточно далеко от соленоида и можно считать, что поле вдали от соленоида равно нулю,

, т.к. и, следовательно, .


L охватывает N токов, где N – число витков соленоида, тогда по закону полного тока


;


- магнитное поле бесконечно длинного соленоида


n – плотность намотки – число витков на единицу длины .

Напряженность поля внутри соленоида равна числу витков, приходящихся на единицу длины соленоида, умноженному на силу тока.


Тороид – тор, с намотанными на него витками проволоки. В отличие от соленоида, у которого магнитное поле имеется как внутри, так и снаружи, у тороида магнитное поле полностью сосредоточено внутри витков, т.е. нет рассеивания энергии магнитного поля.


,


где .


– магнитное поле тороида.

§5 Сила Ампера

  1. Ампер изучал действие магнитного поля на проводники с током и установил, что сила , с которой магнитное поле действует на элемент проводника с током ? , находящимся в магнитном поле , прямо пропорциональна силе тока ? и векторному произведению элемента проводника на магнитную индукцию


– Сила Ампера (или закон Ампера)

Направление силы Ампера находится по правилу векторного произведения – по правилу левой руки: четыре вытянутых пальца левой руки расположить по направлению тока, вектор входит в ладонь, отогнутый под прямым углом большой палец покажет направление силы, действующей на проводник с током. (Можно также определить направление с помощью правой руки: вращаем четыре пальца правой руки от первого сомножителя ко второму , большой палец укажет направление .)

Модуль силы Ампера


,

где α – угол между векторами и .

Если поле однородно, а проводник с током конечных размеров, то


,


.

При перпендикулярном


.

Любой проводник с током создает вокруг себя магнитное поле. Если поместить в это поле другой проводник с током, то между этими проводниками возникают силы взаимодействия. При этом параллельные сонаправленные токи притягиваются, противоположно направленные - отталкиваются.


Рассмотрим два бесконечно длинных параллельных проводника с токами I 1 и I 2, находящимися в вакууме на расстоянии d (для вакуума µ = 1). В соответствии с законом Ампера


.

Магнитное поле прямого тока равно


,


,

сила, действующая на единицу длины проводника


.

Сила, действующая на единицу длины проводника между двумя бесконечно длинными проводниками с током, прямо пропорциональна силе тока в каждом из проводников и обратно пропорциональна расстоянию между ними.

Определение единицы измерения силы тока – Ампера:

За единицу силы тока в системе СИ принята такая сила постоянного тока, который протекая по двум бесконечно длинным параллельным проводникам бесконечно малого сечения, расположенным в вакууме на расстоянии 1 м друг от друга, вызывает силу, действующую на единицу длины проводника, равную 2·10 -7 Н.


.

§6 Сила Лоренца


В соответствии с законом Ампера сила, действующая на элемент тока , определяется по формуле


.

Учтём, что элементарный ток есть не что иное, как направленное движение электрических зарядов




,


где V – объём, n – концентрация носителей, j – плотность тока, S – площадь поперечного сечения проводника, e – заряд электрона ( e = 1,6·10 -19 Кл), dl - длина элемента проводника, – скорость направленного движения электронов.


;


;


.


Силу Ампера, действующую на элементарный ток можно рассматривать, как результирующую силу действия всех сил со стороны магнитного поля на каждый заряд в отдельности. Тогда, силу, действующую на движущийся заряд в магнитном поле, мы найдём, разделив силу Ампера на число зарядов в рассматриваемом элементе объёма проводника


.

Эта сила называется силой Лоренца:


.


– модуль силы Лоренца

Направление силы Лоренца определяется по правилу левой руки: четыре пальца левой руки – по скорости, вектор входит в ладонь, отогнутый под прямым углом большой палец покажет направление силы Лоренца для положительного заряда. Для отрицательного заряда – четыре пальца против скорости, дальше тоже, что и для положительного заряда.

Читайте также: