Лиотропные жидкие кристаллы кратко

Обновлено: 17.05.2024

По своим общим свойствам ЖК можно разделить на две большие группы:

ЛИОТРОПНЫЕ ЖИДКИЕ КРИСТАЛЛЫ

Представляют собой двух- или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по гр. с двух концов, филос — любящий). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода.

Существует много типов лиотропных жидкокристаллических текстур. Их многообразие объясняется различной внутренней молекулярной структурой, которая является более сложной, чем у термотропных жидких кристаллов. Структурными единицами здесь являются не молекулы, а молекулярные комплексы — мицеллы. Мицеллы могут быть пластинчатыми, цилиндрическими, сферическими или прямоугольными.

Лиотропные жидкие кристаллы образуются при растворении некоторых веществ в определенных растворителях. Например, водные растворы мыл, полипептидов, липидов, белков, ДНК и др. образуют жидкие кристаллы в определенном интервале концентраций и температур. Структурными единицами лиотропных жидких кристаллов являются надмолекулярные образования различных типов, распределенные в среде растворителя и имеющие цилиндрическую, сферическую или др. форму.

По своим общим свойствам ЖК можно разделить на две большие группы:

ЛИОТРОПНЫЕ ЖИДКИЕ КРИСТАЛЛЫ

Представляют собой двух- или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по гр. с двух концов, филос — любящий). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода.

Существует много типов лиотропных жидкокристаллических текстур. Их многообразие объясняется различной внутренней молекулярной структурой, которая является более сложной, чем у термотропных жидких кристаллов. Структурными единицами здесь являются не молекулы, а молекулярные комплексы — мицеллы. Мицеллы могут быть пластинчатыми, цилиндрическими, сферическими или прямоугольными.

Лиотропные жидкие кристаллы образуются при растворении некоторых веществ в определенных растворителях. Например, водные растворы мыл, полипептидов, липидов, белков, ДНК и др. образуют жидкие кристаллы в определенном интервале концентраций и температур. Структурными единицами лиотропных жидких кристаллов являются надмолекулярные образования различных типов, распределенные в среде растворителя и имеющие цилиндрическую, сферическую или др. форму.

В отличие от термотропных жид ких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гид рофобные группы. Такие соединения широко распространены в природе. Так, например, любая жирная кислота является амфифильной. Ее молекулы состоят из двух частей: полярной "головки" (СООН-группа) и углеводородного "хвоста" [СН3(СН2)n—]. Подобные соединения при растворении в воде, как правило, образуют мицеллярные растворы, в которых полярные головки торчат наружу, находясь в контакте с водой, а углеводородные хвосты, контактируя друг с другом, смотрят вовнутрь. Таки е миц еллы (рис. 4, а) и являются теми структурными элементами, из которых строятся лиотропные жидкие кристаллы, формируя, например, цилиндрическую или ламеллярную формы (рис. 4, б, в).

В отличие от термотропных жидких кристаллов, где формирование определенного типа мезофазы определяется лишь температурой, в лиотропных системах тип структ урн ой организации определяется уже двумя параметрами: концентрацией вещества и температурой. Лиотропные жидкие кристаллы наиболее часто образуются биологическими системами, функционирующими в водных средах. Именно в эти х системах в наиболее яркой форме проявляются уникальные особенности жидких кристаллов, сочетающих лабиль ность с высокой склонностью к самоорганизации. Ограничимся лишь одним при мером, относящимся к клеткам и внутриклеточным органеллам, покрытым тонкими высокоупорядоченными оболочками - мембранами. Современные структурные исследования показывают, что мембраны представляют собой типичные лиотропные ламеллярные лабильные ЖК-структуры, составлен ные из двойного слоя фосфолипидов, в котором "растворены" белки, полисахарилы, холестерин и другие жизненно важные компоненты (рис. 4, г). Такое ан из отропное строение мембраны, с одной стороны, по зволяет защ ищ ать ее внутреннюю часть от нежелательных внешних воздействий, а с другой стороны, ее "жидкостной" характер обеспечивает высокие транспортные свойства (прониц аемость, перенос ионов и др.), что придает клетке определяющ ую роль в процессах жизнедеятельности.

Рис. 4. Некоторые типы лиотропных жидкокристаллических структур, образованные амфифиль ными молекулами в водных растворах: а - цилиндрическ ая мицел ла, б - гексагональная упаковка цилиндрических мицелл, в - ламеллярный смектический жидкий кристалл; г - строение мембраны, состоящей из фосфолипидного двойного слоя ( 1) и молекул белков (2).

4.3 Нематические жидкие кристаллы

При понижении температуры все превращения происходят в обратном порядке и точно при тех же температурах, т. е. последовательность фаз такова: прозрачный расплав-смутный расплав-^кристалл или в принятых сокращениях ИЖ-^НЖК-^ТК. " Если все описанные превращения наблюдаются, например, для соединения п—метонсйбензилиден—п'—бу-тиланилин или, как принято сокращенно называть это соединение, МББА, то наблюдаемая жидкокристаллическая фаза называется нематической или просто немати-KOMj Смена же фазовых состояний характеризуется следующими температурами. Температура первого плавления Гя,=21°С. Ниже ТдМББА находится в обычном кристаллическом состоянии. От Т^ до температуры просветления 7^==41°С МББА обладает нематической жидкокристаллической фазой, и выше Тм — обычная (изотропная) жидкость. Интервал температур от Гд, до tn для различных веществ может быть от единиц до сотни гра дусов. Типичное же значение этого интервала — порядка нескольких десятков градусов.

Напомним, что в обычной жидкости не только центры тяжести молекул движутся хаотически, но и ориентации выделенных направлений молекул совершенно случайны и не скоррелированны между собой. А в качестве выделенных направлений в молекуле могут выступать различные величины, например, электрический дипольный момент, магнитный момент или, как в рассматриваемом нами случае, анизотропия формы, характеризуемая выделенными направлениями или, как говорят, осями. В связи с описанным полным хаосом в жидкости жидкость (даже состоящая из анизотропных молекул) изотропна, т. е. ее свойства не зависят от направления.

На самом деле, конечно, молекулы нематика подвержены не только случайному поступательному движению, но и ориентация их осей испытывает отклонения от направления, определяющего ориентацию палочек в рассматриваемой нами жидкости. Поэтому направления палочек задают преимущественную, усредненную ориентацию, и реально молекулы совершают хаотические ориентационные колебания вокруг этого направления усредненной ориентации. Амплитуда соответствующих ориен-тационных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость tn, возрастая по мере приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул полностью исчезает и ориентационные движения молекул так же, как и трансляционные, оказываются полностью хаотическими.

В связи с описанной картиной поведения нематика его принято описывать следующим образом. Для характеристики ориентационного порядка вводится вектор единичной длины с, называемый директором, направление которого совпадает с направлением введенных выше палочек. Таким образом, директор задает выделенное, преимущественное, направление ориентации молекул в холестерине. Кроме того, вводится еще ОДНА величина, параметр порядка, который характеризует, насколько велика степень ориентационного упорядочения молекул или, что то же самое, насколько мала разупорядоченность ориентаций молекул. Параметр порядка определяется следующим образом:

где в—угол между направлениями директора и мгновенным направлением длинной оси молекул, a - обозначает среднее по времени значении cos'@.

Из формулы (1) ясно, что параметр 5 может принимать значения от 0 до 1. Значение -S==1 соответствует полному ориентационному порядку. Причем .S==1 достигается, как нетрудно понять, если значение В не изменяется во времени и равно 0, т. е. если направление длинных осей молекул строго совпадает с направлением директора. =='/3. Значение S==0, таким образом, соответствует уже нематику, перешедшему в изотропную жидкость.

В нематической же фазе значение параметра порядка S^>0, минимально непосредственно при температуре перехода Т 14 из изотропной жидкости в нематическую фазу и возрастает по мере понижения температуры ниже tn' В целом же при изменении температуры происходит смена следующих фазовых состояний. При температуре ниже точки перехода нематика в обыкновенный кристалл или, как ее называют, температуре плавления Тщ — кристаллическое состояние. В интервале температур от Т м, до tn—нематический жидкий кристалл. Выше tin— обычная жидкость.

Пока что речь шла об однодоменном состоянии нема-тического образца, в котором ориентация директора одинакова во всех его точках. В таком однодоменном образце нематика наиболее ярко проявляются его свойства, типичные для твердых кристаллов, в частности, двупреломление света. Последнее означает, что показатели преломления для света, плоскость поляризации которого перпендикулярна директору и плоскость поляризации которого содержит директор, указываются различными. Однако для того чтобы полунить однодоменный образец нематика, как, впрочем, и любых других разновидностей жидких кристаллов, необ ходимо принятие специальных мер, о которых будет рассказано ниже.

Если же не приняты специальные предосторожности, то жидкокристаллический образец представляет собой совокупность хаотическим образом ориентированных малых однодоменных областей. Именно с такими образцами, как правило, имели дело первые исследователи жидких кристаллов, и мутный расплав, возникавший после первого плавления МББА, о котором говорилось выше, и был образцом такого вида. На границах раздела различным образом ориентированных однодоменных областей в таких образцах происходит, как говорят, нарушение оптической однородности или, что то же самое, скачок значения показателя преломления. Это непосредственно следует из сказанного выше о двупреломлении однодоменного нематического образца и просто соответствует тому, что для света, пересекающего границу раздела двух областей с различной ориентацией директора, показатели преломления этих областей различны, т. е. показатель преломления испытывает скачок. А как хорошо известно, на границе раздела двух областей с различными показателями преломления свет испытывает отражение. С таким отражением каждый знаком на примере оконных стекол. Так же, как и в случае с оконным стеклом, на одной границе раздела (одном скачке оптической однородности) отражение света в нематике может быть невелико, но если таких границ много (в образце много неупорядоченных однодоменных областей), такие нерегулярные нарушения оптической однородности приводят к сильному рассеянию света. Вот почему нематики, если не принять специальных мер, сильно рассеивают свет. После первого плавления при температуре Тд, возникает мутный расплав.

Пока что речь шла о том, как выглядит нематик в неполяризованном свете. Очень интересную и своеобразную картину представляет нематик, если его рассматривать в поляризованном свете и анализировать поляризацию прошедшего через него света. Поляризатор Pi линейно поляризует свет от источника света, а поляризатор Pi пропускает только определенным образом линейно поляризованный свет, прошедший через нематический образец А. Картина, которую увидит наблюдатель в свете, прошедшем через поляризатор, представляет собой причудливую совокупность пересекающихся линий. Эти линии или, как их называют, нити и представляют собой изображение границ раздела между однодоменными областями.

Нема — это по гречески нить. Отсюда и название — нематический жидкий кристалл или нематик. Здесь же надо сказать, что реально наблюдения описанной картины нематика в связи с малостью размеров областей с одинаковой ориентацией директора осуществляются с помощью поляризационного микроскопа.


А жидкокристаллический мезофаза называется лиотропный (а чемодан из лио- "раствориться" и -тропический "изменение"), если образовано растворением амфифильный мезоген в подходящем растворителе при соответствующих условиях концентрации, температуры и давления. [1] [2] Смесь мыла и воды - повседневный пример лиотропного жидкого кристалла.

Исторически этот термин использовался для описания общего поведения материалов, состоящих из амфифильный молекул при добавлении растворитель. Такие молекулы составляют водолюбивый гидрофильный головная группа (которая может быть ионной или неионной), прикрепленная к водоненавистнику, гидрофобный группа.

Микрофазовая сегрегация двух несовместимых компонентов в нанометровом масштабе приводит к разным типам протяженных анизотропных процессов, вызванных растворителем. [3] расположение в зависимости от объемного баланса между гидрофильной частью и гидрофобной частью. В свою очередь, они генерируют дальний порядок фаз с растворитель молекулы, заполняющие пространство вокруг соединений, чтобы обеспечить текучесть в систему. [4]

Таким образом, в отличие от термотропных жидких кристаллов лиотропные жидкие кристаллы имеют дополнительную степень свободы, то есть концентрацию, которая позволяет им индуцировать множество различных фаз. По мере увеличения концентрации амфифильных молекул в растворе возникают несколько различных типов лиотропных жидкокристаллических структур. Каждый из этих различных типов имеет разную степень молекулярного упорядочения в матрице растворителя, от сферических мицелл до более крупных цилиндров, выровненных цилиндров и даже двухслойных и многослойных агрегатов. [5]

Содержание

Типы лиотропных систем

Примерами амфифильных соединений являются соли жирных кислот, фосфолипиды. Многие простые амфифилы используются как моющие средства. Смесь мыла и воды - повседневный пример лиотропного жидкого кристалла.

Самостоятельная сборка амфифила

Типичное амфифильное гибкое поверхностно-активное вещество может образовывать агрегаты посредством процесса самосборки, который является результатом специфических взаимодействий между молекулами амфифильного мезогена и молекулами немезогенного растворителя.

В водных средах движущей силой агрегации является "гидрофобный эффектАгрегаты, образованные амфифильными молекулами, характеризуются структурами, в которых гидрофильные головные группы подвергают свою поверхность воздействию водного раствора, защищая гидрофобные цепи от контакта с водой.

Для большинства лиотропных систем агрегация происходит только тогда, когда концентрация амфифила превышает критическую концентрацию (известную как критическая концентрация мицелл (CMC) или критическая концентрация агрегации (CAC)).

При очень низкой концентрации амфифила молекулы будут распределены случайным образом без какого-либо упорядочения. При немного более высокой (но все еще низкой) концентрации, выше ККМ, самоорганизующиеся агрегаты амфифилов существуют как независимые образования в равновесии с мономерными амфифилами в растворе, но без дальнего ориентационного или позиционного (трансляционного) порядка. В результате фазы изотропный (т.е. не жидкокристаллический). Эти дисперсии обычно называют 'мицеллярные растворы', часто обозначаемый символом L1, в то время как составляющие сферические агрегаты известны как 'мицеллы'.

При более высокой концентрации сборки станут упорядоченными. Истинные лиотропные жидкокристаллические фазы образуются, когда концентрация амфифила в воде увеличивается за пределы точки, в которой мицеллярные агрегаты вынуждены регулярно размещаться в космосе. Для амфифилов, которые состоят из одной углеводородной цепи, концентрация, при которой образуются первые жидкокристаллические фазы, обычно находится в диапазоне 25-30 мас.%. [ нужна цитата ]

Жидкокристаллические фазы и состав / температура

Простейшая жидкокристаллическая фаза, образованная сферическими мицеллами, - это 'мицеллярная кубическая', обозначается символом I1. Это высоковязкая, оптически изотропная фаза, в которой мицеллы расположены на кубической решетке. При более высоких концентрациях амфифилов мицеллы сливаются с образованием цилиндрических агрегатов неопределенной длины, и эти цилиндры располагаются на длинной гексагональной решетке. Эта лиотропная жидкокристаллическая фаза известна как 'гексагональная фаза', или, точнее,'нормальная топология'гексагональной фазы и обычно обозначается символом Hя.

При более высоких концентрациях амфифила 'ламеллярная фаза' сформирован. Эта фаза обозначается символом Lα и может считаться лиотропным эквивалентом смектической А-мезофазы. [1] Эта фаза состоит из амфифильных молекул, расположенных в двухслойных слоях, разделенных слоями воды. Каждый бислой является прототипом расположения липиды в клеточных мембранах.

Для большинства амфифилов, которые состоят из одной углеводородной цепи, одна или несколько фаз, имеющих сложную архитектуру, образуются при концентрациях, которые являются промежуточными между концентрациями, необходимыми для образования гексагональной фазы, и теми, которые приводят к образованию ламеллярной фазы. Часто эта промежуточная фаза представляет собой бинепрерывная кубическая фаза.

Lyotropic1.jpg
Схема, показывающая агрегацию амфифилов в мицеллы, а затем в лиотропные жидкокристаллические фазы в зависимости от концентрации амфифилов и температуры.

В принципе, увеличение концентрации амфифилов выше точки, где образуются ламеллярные фазы, привело бы к образованию обратная топология лиотропные фазы, а именно обратные кубические фазы, обратная гексагональная столбчатая фаза (колонки воды, инкапсулированные амфифилами, (HII) и обратная мицеллярная кубическая фаза (объемный образец жидкого кристалла со сферическими водяными полостями). На практике фазы с обратной топологией легче образуются амфифилами, которые имеют, по крайней мере, две углеводородные цепи, прикрепленные к головной группе. Наиболее распространенные фосфолипиды, которые обнаруживаются в клеточных мембранах клеток млекопитающих, являются примерами амфифилов, которые легко образуют лиотропные фазы с обратной топологией.

Даже в пределах одних и тех же фаз самособирающиеся структуры можно настраивать по концентрации: например, в ламеллярных фазах расстояния между слоями увеличиваются с увеличением объема растворителя. Поскольку лиотропные жидкие кристаллы полагаются на тонкий баланс межмолекулярных взаимодействий, их структуру и свойства анализировать сложнее, чем у термотропных жидких кристаллов.

Объекты, создаваемые амфифилами, обычно имеют сферическую форму (как в случае мицелл), но также могут быть дискообразными (бицеллы), палочковидными или двухосными (все три оси мицелл различны). Эти анизотропные самоорганизующиеся наноструктуры могут затем упорядочиваться так же, как термотропные жидкие кристаллы, образуя крупномасштабные версии всех термотропных фаз (например, нематическую фазу стержневидных мицелл).

Молекулы-хозяева

Возможно, что определенные молекулы растворены в лиотропных мезофазах, где они могут располагаться в основном внутри, снаружи или на поверхности агрегатов.

Некоторые из таких молекул действуют как присадки, придавая определенные свойства всей фазе, другие можно рассматривать как простых гостей с ограниченным влиянием на окружающую среду, но, возможно, сильными последствиями для их физико-химических свойств, а некоторые из них используются в качестве зондов для определять свойства всей мезофазы на молекулярном уровне с помощью специальных аналитических методов. [7]

Палочковидные макромолекулы

Термин лиотропный также применялся к жидкокристаллическим фазы которые образованы определенными полимерными материалами, особенно теми, которые состоят из жестких стержневидных макромолекул, когда они смешаны с соответствующими растворителями. [8] Примеры подвески стержневидных вирусы такой как Вирус табачной мозаики а также искусственный коллоидный суспензии несферических коллоидных частиц. Целлюлоза и производные целлюлозы образуют лиотропные жидкокристаллические фазы, как и нанокристаллические ( наноцеллюлоза ) подвески. [9] Другие примеры включают ДНК и Кевлар, которые растворяются в серная кислота дать лиотропную фазу. Следует отметить, что в этих случаях растворитель снижает температуру плавления материалов, тем самым делая доступными жидкокристаллические фазы. Эти жидкокристаллические фазы по архитектуре ближе к термотропный жидкокристаллических фаз, чем обычные лиотропные фазы. В отличие от поведения амфифильных молекул, лиотропное поведение стержнеобразных молекул не связано с самосборка. [ нужна цитата ]

Жидкие кристаллы - графическая визуализация

Жидкий кристалл – это такое фазовое состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов. То есть они обладают текучестью, и вместе с тем им присуща анизотропия – различие свойств данной среды в зависимости от направления внутри нее (например, показатель преломления, скорость звука или теплопроводность).

Жидкие кристаллы имеют структуру вязких жидкостей, которая состоит из молекул дискообразной формы. Ориентация данных молекул может изменяться при взаимодействии с электрическими полями.

История открытия

И хотя в 1904-м году немецкий физик Отто Леман предоставил ряд научных доказательств в пользу жидких кристаллов в своей одноименной книге, все же долгое время жидкие кристаллы не признавались как отдельные состояния вещества. В 1963-м году американский изобретатель Джеймс Фергюсон нашел применение одному из свойств ЖК – изменение цвета в зависимости от температуры. Американец получил патент на изобретение, которое способно обнаруживать невидимые для глаз тепловые поля. С этого популярность жидких кристаллов начала расти.

Группы жидких кристаллов и их свойства

Жидкие кристаллы обычно разделяют на две группы:

    Термотропные – образовываются вследствие разогрева твердого вещества. Способны существовать в условиях определенной температуры и давления. Их разделяют на три типа, в зависимости от расположения молекул:

порядки разных термотропных ЖК

порядки разных термотропных ЖК

Три типа термотропных жидких кристаллов

Три типа термотропных жидких кристаллов

  1. Лиотропные – образовываются в смесях, состоящих из стержневидных молекул данного вещества и полярных растворителей (например, воды).

Применение жидких кристаллов

ЖК-дисплеи

Устройство ЖК-дисплеев достаточно сложное, однако в общем виде представляет собой набор стеклянных пластин, между которыми расположены жидкие кристаллы (ЖК-матрица), и множество источников света. Пиксель ЖК-матрицы включает в себя пару прозрачных электродов, которые позволяют менять ориентацию молекул жидкого кристалла, а также пару поляризационных фильтров, которые регулируют степень прозрачности и др.

Структура жидкокристаллического дисплея

Структура жидкокристаллического дисплея

Термография

Менее популярное, но более важное применение ЖК – это термография. Термография позволяет получить тепловое изображение объекта, в результате регистрации инфракрасного излучения – тепла. Инфракрасные приборы ночного зрения используются пожарными, в случае задымления помещения, с целью обнаружения пострадавших в пожаре. Также они нашли применение у служб безопасности и военных служб.

Тепловые изображения позволяют обнаруживать места перегрева, нарушения теплоизоляции, или другие аварийные участки при обслуживании линий электропередачи или строительстве.

Применение термографии в обслуживании линий электропередач

Также термография используется при медицинской визуализации, в основном для наблюдения молочных желез. Это позволяет обнаруживать различные онкологические заболевания, вроде рака молочной железы.

Компьютерная термография в медицине

Электронные индикаторы

Электронные индикаторы, создаваемые при помощи жидких кристаллов, реагируют на различные температуры, в результате чего могут проинформировать о сбоях и нарушениях в электронике. К примеру, ЖК в виде пленки наносят на печатные платы и интегральные схемы, а также – транзисторы. Неисправные сегменты электроники легко отличить при наличии такого индикатора.

Помимо этого, ЖК-индикаторы, расположенные на коже пациента, позволяют обнаруживать воспаления и опухоли у человека.

Индикаторы из жидких кристаллов используют и для обнаружения паров различных вредных химических соединений, а также обнаружения ультрафиолетового и гамма-излучения. С применением ЖК разрабатываются детекторы ультразвука и измерители давления.

Алкотестер на основе жидкокристаллического индикатора паров

Алкотестер на основе жидкокристаллического индикатора паров

Помимо прямого применения ЖК в перечисленных выше сферах, следует отметить, что жидкие кристаллы во многом похожи на некоторые клеточные структуры, и иногда присутствуют в них. В силу своих диэлектрических свойств жидкие кристаллы регулируют взаимоотношения внутри клетки, между клетками и тканями, а также между клеткой и окружающей средой. Таким образом, изучение природы и поведения жидких кристаллов может привнести вклад в молекулярную биологию.

Читайте также: