Линейное расположение генов в хромосоме кратко

Обновлено: 05.07.2024

Морган предположил, что кроссинговер между двумя генами может происходить не только в одной, но и в двух и даже большем числе точек. Четное число перекрестов между двумя генами, в конечном счете, не приводит к их перемещению из одной гомологичной хромосомы в другую, поэтому число кроссинговеров и, следовательно, расстояние между этими генами, определенное в эксперименте, снижаются. Обычно это относится к достаточно далеко расположенным друг от друга генам. Естественно, что вероятность двойного перекреста всегда меньше вероятности одинарного. В принципе она будет равна произведению вероятности двух единичных актов рекомбинации. Например, если одиночный перекрест будет происходить с частотой 0,2, то двойной – с частотой 0,2 × 0,2 = 0,04. В дальнейшем, наряду с двойным кроссинговером, было открыто и явление множественного кроссинговера: гомологичные хроматиды могут обмениваться участками в трех, четырех и более точках.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m. Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).

Представления о расположении генов на хромосомах (в группах сцепления) сводятся к тому, что они располагаются в линейном порядке, причем, чем больше расстояние между генными локусами,тем большей является частота кроссинговера между ними и наоборот, линейный порядок генов характерен для групп сцепления всехорганизмов, включая человека, и определяет принципы построениягенетических карт хромосом, которые представляют собой графическое изображение расстояний между генами в группах сцепления.

Эти представления указывали на то, что линейный порядок характерен не толькодля расположения генов на хромосомах, но и для организации генетического материала внутри генов.

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

Гены расположены в хромосоме в линейной последовательности.

Гены одной хромосомы образуют группу сцепления, благодаря нему происходит сцепленное наследование некоторых признаков. При этом сила сцепления находится в обратной зависимости от расстояния между генами.

Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.


Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.
Таким образом, когда рекомбинация генов черного цвета тела и коротких крыльев у дрозофилы происходит с частотой 17%, эта величина определенным образом характеризует расстояние между генами в хромосоме.
Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела у, белый цвет глаз до и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у идо, 3,5% — от кроссинговера между генами w и bi и 4,7% — между у и bi. Полученные результаты на схеме выглядят следующим образом:

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w, w и bi, следует предположить, что гены расположены в хромосоме последовательно, т. е. линейно.
Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место — локус.

Кроссинговер впер­вые был обнаружен при изучении сцепленного наследования признаков, обус­ловленных генами, находящимися в одной и той же хромосоме. При проведе­нии опытов появлялось небольшое количество особей с перекомбинирован­ными признаками. При этом один из прежде сцепленных генов оказывался на одной хромосоме, а второй — на другой, т.е. гомологичной, так как хромосо­мы перехлестывались и обменивались своими участками. Такое явление и на­звали кроссинговером.

Кроссинговер может произойти в любой хромосоме. Гены, входящие в группы сцепления в хромосомах родительских особей, в результате кроссинговера разделяются, образуют новые сочетания и в таком новом виде по­падают в гаметы. Потомство от таких гамет имеет новое сочетание аллельных генов, что вызывает генетическую изменчивость, часто наблюдаемую в популяциях.

Кроссинговер — важный источник появления новых комбинаций генов в генотипах особей и возникновения изменчивости признаков. Кроссинговер играет важную роль в эволюции, так как способствует возникновению наслед­ственной изменчивости. Осуществляя перекомбинации генов, он создает воз­можность отбора отдельных генов, а не их сочетаний. Например, в хромосо­ме одновременно могут находиться как полезные, так и вредные для организ­ма гены. Благодаря кроссинговеру новые перегруппировки генов, попав за­тем под действие отбора, могут привести к исчезновению вредных генов и со­хранению полезных, что обеспечит преимущество существования в окружаю­щей среде особи с таким генотипом. Новые генотипы, возникшие вследствие кроссинговера, в сочетании с естественным отбором могут дать новое на­правление в проявлении свойств живых организмов, обеспечивающее им большую приспособленность к условиям среды


Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.
Таким образом, когда рекомбинация генов черного цвета тела и коротких крыльев у дрозофилы происходит с частотой 17%, эта величина определенным образом характеризует расстояние между генами в хромосоме.
Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела у, белый цвет глаз до и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у идо, 3,5% — от кроссинговера между генами w и bi и 4,7% — между у и bi. Полученные результаты на схеме выглядят следующим образом:

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w, w и bi, следует предположить, что гены расположены в хромосоме последовательно, т. е. линейно.
Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место — локус.



Кроссинговер впер­вые был обнаружен при изучении сцепленного наследования признаков, обус­ловленных генами, находящимися в одной и той же хромосоме. При проведе­нии опытов появлялось небольшое количество особей с перекомбинирован­ными признаками. При этом один из прежде сцепленных генов оказывался на одной хромосоме, а второй — на другой, т.е. гомологичной, так как хромосо­мы перехлестывались и обменивались своими участками. Такое явление и на­звали кроссинговером.

Кроссинговер может произойти в любой хромосоме. Гены, входящие в группы сцепления в хромосомах родительских особей, в результате кроссинговера разделяются, образуют новые сочетания и в таком новом виде по­падают в гаметы. Потомство от таких гамет имеет новое сочетание аллельных генов, что вызывает генетическую изменчивость, часто наблюдаемую в популяциях.

Кроссинговер — важный источник появления новых комбинаций генов в генотипах особей и возникновения изменчивости признаков. Кроссинговер играет важную роль в эволюции, так как способствует возникновению наслед­ственной изменчивости. Осуществляя перекомбинации генов, он создает воз­можность отбора отдельных генов, а не их сочетаний. Например, в хромосо­ме одновременно могут находиться как полезные, так и вредные для организ­ма гены. Благодаря кроссинговеру новые перегруппировки генов, попав за­тем под действие отбора, могут привести к исчезновению вредных генов и со­хранению полезных, что обеспечит преимущество существования в окружаю­щей среде особи с таким генотипом. Новые генотипы, возникшие вследствие кроссинговера, в сочетании с естественным отбором могут дать новое на­правление в проявлении свойств живых организмов, обеспечивающее им большую приспособленность к условиям среды

Гены и хромосомы человека. Строение

Неудивительно, что при часто встречающихся аномалиях (трисомиях) хромосом 13, 18 и 21 плод доживает до родов, поскольку эти хромосомы имеют наименьшее количество генов.

Гены могут изменяться и становиться причиной заболеваний человека за счет нескольких механизмов. Точечные мутации, при которых происходит замена одного основания ДНК в последовательности, могут оказывать влияние на многие функции гена. Миссенс-мутация — замещение одного основания в последовательности ДНК, из-за которого в синтезируемом протеине одна исходная аминокислота заменяется на другую. Такие мутации могут практически не повлиять на функции протеина, если замещающая аминокислота близка к исходной.

гены человека

Эти изменения приводят к нисходящему сдвигу рамки считывания, что часто вызывает усечение белка. В целом такие мутации становятся причиной потери функций протеина и, соответственно, изменяют фенотип за счет снижения активности этого белка.

хромосомы человека

Со времен опытов Грегора Менделя с горохом, раскрывших механизмы наследования, генетика уделяет огромное внимание генным дефектам. Сегодня типы наследования определены для многих патологических состояний.

Как правило, акушер-гинеколог сталкивается с хромосомными аномалиями в двух клинических аспектах. Во-первых, это беременность в позднем репродуктивном возрасте матери, при которой риск хромосомных аномалий возрастает. Во-вторых, существует связь между невынашиванием беременности и хромосомными аномалиями: более половины спорадических выкидышей вызвано хромосомными аномалиями. Кроме того, акушеры-гинекологи занимаются лечением пациенток с привычными выкидышами и бесплодием в анамнезе, причиной которых тоже могут быть хромосомные аномалии.

В клетках человека содержится 23 пары хромосом, из них 22 пары — аутосомы, общие для мужчин и женщин, и 1 пара — половые хромосомы (XX и XY). Упорядоченное расположение хромосом называют ка-риотипом. Рутинный хромосомный анализ производят путем взятия крови и стимулирования ускоренного деления лимфоцитов в культуре. После этого деление клеток ингибируют в метафазе и фиксируют хромосомы на предметном стекле. Затем хромосомы окрашивают и фотографируют для анализа.

Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.

Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.

Хромосомная теория наследственности

  • Гены расположены в хромосомах в линейном порядке
  • Каждый ген занимает в хромосоме определенное место - локус
  • Гены, расположенные в одной хромосоме, образуют группу сцепления
  • Сцепление генов может нарушаться в результате кроссинговера
  • Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
  • Расстояние между генами измеряется в морганидах (1 морганида - 1% кроссинговера)

Хромосомная теория

Группы сцепления

В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования, в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом случае говорят о сцепленном наследовании.

Группа сцепления - совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара - половые хромосомы XX), а у мужчины - 24 группы сцепления (X и Y представляют собой две отдельные группы).

Группа сцепления

Сцепление генов

Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) - черный (a) цвет тела, длинные (B) - зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными крыльями (AABB) и черных с зачаточными (aabb).

Опыт Томаса Моргана

Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте - при дигибридном скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом AaBb - с серым телом и длинными крыльями.

Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами (серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.

Опыт Томаса Моргана

Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело + длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?

Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB - кроссоверные гаметы.

Полное и неполное сцепление генов

Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина - 8.5%

Пример решения генетической задачи №1

"Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме. Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален".

Очень важно обратить внимание на то, что "гены полностью сцеплены" - это говорит об отсутствии кроссинговера, и то, что мы заметили это, обеспечивает верное решение задачи.

Полное сцепление генов

Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет - AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых здоров только один - aabb. Шанс родить здорового ребенка в такой семье ½ (50%).

Пример решения генетической задачи №2

"Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения больного обеими аномалиями ребенка в этой семье".

Ключевые слова в тексте этой задачи, на которые следует обратить внимание: "гены неполностью сцеплены". Это означает, что между ними происходит кроссинговер.

Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет сомнения: "отец которой был здоров". Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь становится очевидно, что генотип дочери AaBb - она дигетерозиготна.

Неполное сцепление генов

В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы Ab, aB - которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка, больного обеими аномалиями, составляет ¼ (25%).

Наследование, сцепленное с полом

Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY - для мужчин. Мужская Y-хромосома не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с полом, чаще болеют мужчины.

Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется "здоровый" ген, доминантный, которой подавит действие рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но сама болеть не будет.

У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще страдают дальтонизмом, гемофилией и т.д.

X и Y хромосома

Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского - XX. У пресмыкающихся, птиц, бабочек женские особи имеют гетерогаметный пол- XY, а мужские - XX. То же самое относится к домашним курам: петух - XX, курица - XY.

Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками - признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).

Пример решения генетической задачи №3

"Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства".

Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа - X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.

Задача на сцепленное с полом наследование

  • X D X D , X D X d - фенотипически здоровые девочки
  • X D Y - здоровый мальчик
  • X d Y - мальчик, который болен дальтонизмом
Пример решения генетической задачи №4

"Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость - как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?"

Ответ на вопрос: "Каковы генотипы матери и отца?" - лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaX b Y. Чтобы сформировался такой генотип, от матери должна прийти гамета aX b , а от отца - aY. Выходит, что единственно возможный генотип матери - AaX b X b , а генотип отца - aaX B Y.

Пример решения генетической задачи

Рождение ребенка с двумя аномалиями возможно - AaX B X b , вероятность такого события ¼ (25%).

Пример решения генетической задачи №5

"Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина с нормальным цветовым зрением и гемофилией женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Известно, что мать женщины была гомозиготна по исследуемым признакам. Какое потомство получится от брака их дочери со здоровым мужчиной?"

Генотип мужчины вопросов не вызывает, так как единственный возможный вариант - X hD Y. Генотип женщины дает возможность узнать ее отец (X Hd Y), который передал ей гамету X Hd (отец всегда передает дочке X хромосому, а сыну - Y), следовательно, ее генотип - X HD X Hd

Пример решения генетической задачи

Как оказалось, возможны два варианта генотипа дочери: X HD X hD , X Hd X hD . Генотип здорового мужчины X HD Y. Следуя логике задачи, мы рассмотрим два возможных варианта брака.

Пример решения генетической задачи

Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после того, как вы напишите слово "Ответ: . ". В ответе должны быть указаны все фенотипы потомства, их описание, что возможно покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные баллы :)

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: