Квантово релятивистская картина мира кратко

Обновлено: 05.07.2024

В 1896 г. французский физик Антуан Анри Беккерель (1852— 1908) открыл явление самопроизвольного излучения урановой соли. Исследуя это явление, он наблюдал разряд наэлектризо­ванных тел под действием указанного излучения и установил, что активность препаратов урана оставалась неизменной более года. Однако природа нового явления еще не была понята.

В 1911 г. знаменитый английский физик Эрнест Резерфорд (1871—1937) предложил свою модель атома, которая получила название планетарной. Появлению этой новой модели атома предшествовали эксперименты, проводимые Э. Резерфордом и его учениками, ставшими впоследствии знаменитыми физика­ми, Гансон Гейгером (1882—1945) и Эрнстом Марсденом (1889-1970). В результате этих экспериментов, показавших неприемлемость модели атома Дж. Дж. Томсона, было обнаружено, что в атомах существуют ядра — положительно заряженные микрочастицы, размер которых очень мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Исходя из этих новых представлений, Резерфорд и выдвинул свое понимание строения атома, которое он обнародовал 7 марта 1911 г. на заседании Манчестерского философского общества. По его мнению, атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него.[171]

Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. С этой точки зрения, оставалась непонятной необычайная устойчивость атомов. Кроме того, в соответствии с законами электродинамики, частота излучаемой электроном электромагнитной энергии должна бытъ равна частоте собственных колебаний электрона в атоме или (что то же) числу оборотов электрона вокруг ядра в секунду. Но в этом случае спектр излучения электрона должен быть непрерывным, так как этектрон, приближаясъ к ядру, менял бы свою частоту. Опыт же показывал другое: атомы дают электромагнитное излучение только определенных частот (именно поэтому атомные спектры называют линейчатыми, т. е. состоящими из вполне определенных линий). Такая определенность спектра, его ярко выраженная химическая индивидуальность очень труд­но совмещается с универсальностью электрона, заряд и масса которого не зависят от природы атома.

Разрешение этих противоречий выпало на долю известного датского физика Нильса Бора (1885—1962), предложившего свое представление об атоме. Последнее основывалось на квантовой теории, начало которой было положено на рубеже XX в. немецким физиком Максом Плавком (1858—1947) Планк выдвинул гипотезу, гласящую, что испускание и поглощение электромагнитного излучения может происходить только дискретно, конечными порциями — квантами.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал 1913 г. квантовую теорию строения ато­ма. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные состояния), находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.

Предложенная Бором модель атома, которая возникла в результате развития исследований радиоактивного излучения и квантовой теории, фактически явилась дополненным и исправленным вариантом планетарной модели Резерфорда. Поэтому в истории атомной физики говорят о квантовой модели атома Резерфорда—Бора.

Как тут не вспомнить крушение стремлений и надежд многих поколений алхимиков получать одни химические элементы (чаще всего — золото) из других в связи с открытием во второй половине XVIII в. Лавуазье закона неизменности химических элементов. И вдруг, в начале XX в., оказалось, что в результате радиоактивного распада некоторые элементы самопроизвольно превращаются в другие. Это было поистине научной сенсацией.

Впрочем, наука XX века принесла немало сенсационных открытий, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером этого может служить теория относительности, созданная в начале нашего столетия мало кому известным тогда мыслителем Альбертом Эйнштейном (1879—1955).

В 1905г. им была создана так называемая специальная теория относительности. В этой теории было установлено; что пространственно-временные свойства тел меняются с изменением скорости их движения. По мере приближения скорости движе­ния тела к скорости света его линейные размеры сокращаются в направлении движения, а ход времени замедляется. Эти выводы специальной теории относительности нашли экспериментальное подтверждение.

Новые аспекты зависимости пространственно-временных характеристик от материальных процессов раскрыла общая теория относительности (1916 г.). Согласно этой теории пространство в разных частях Вселенной имеет различную кривизну и описывается неевклидовой геометрией. Кривизна пространства обусловлена действием гравитационных полей, создаваемых огромными массами космических тел. Эти поля вызывают и замедление хода протекания материальных процессов. Выводы общей теории относительности также были подтверждены экспериментами (например, было обнаружено искривление световых лучей под влиянием полей тяготения, близкое к значению, предсказываемому общей теорией относительности).

Теория Эйнштейна получила признание далеко не сразу. Специальная теория относительности была быстро принята лишь узким кругом известных физиков-теоретиков. Но в 20-х годах, после появления общей теории относительности, этот круг существенно расширился. Эйнштейн получил полную поддержку многих выдающихся ученых, работавших в других областях физики, но обладавших широкой культурой физического мышления.

Хотя имя А. Эйнштейна по сей день в массовом сознании связывается с теорией относительности, эта теория была далеко не единственным его научным достижением. Опираясь на пред­ставление Планка о квантах, Эйнштейн еще в 1905 г. сумел обосновать природу фотоэффекта. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.

Казалось, что корпускулярная теория материи торжествует. Фотон, например, явно имеет корпускулярные свойства (русский физик П. Н. Лебедев экспериментально доказал в 1899 г. существование светового давления). Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон—это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается—как частица.

Наиболее убедительное подтверждение существования волновых свойств материи было получено в результате открытия (наблюдений) дифракции электронов в эксперименте, поставленном в 1927 г. американскими физиками Клинтоном Дэвиссоном (1881-1958) и Лестером Джермером (1896-1971). Быстрые электроны, проходя сквозь очень тонкие пластинки металла, вели себя подобно свету, проходящему мимо малых отверстий или узких щелей. Другими словами, распределение электронов, отражавшихся от пластинки и летевших лишь по некоторым избранным направлениям, было таким же, как если бы на пластинку падал пучок света с длиной волны, равной длине волны электрона, вычисленной по формуле де Бройля.

Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу, пожалуй, наиболее широкой физической теории — квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего — это корпускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы и волны одновременно, а точнее — диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например ,положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.

Об абсолютной непригодности законов классической механики в микромире свидетельствует, например, установленное видным немецким физиком Вернером Гейзенбергом(1901—1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот. Это одно из фундаментальных положений квантовой механики.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений. Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира.[174]

Вместе с этим закончился прежний, так называемый классический период в развитии естествознания, характерный для эпохи Нового времени. Наступил новый этап неклассического естествознания XX века, характеризующийся, в частности, новыми, квантово-релятивистскими представлениями о физической реальности.

В 1896 г. французский физик Антуан Анри Беккерель (1852— 1908) открыл явление самопроизвольного излучения урановой соли. Исследуя это явление, он наблюдал разряд наэлектризо­ванных тел под действием указанного излучения и установил, что активность препаратов урана оставалась неизменной более года. Однако природа нового явления еще не была понята.

В 1911 г. знаменитый английский физик Эрнест Резерфорд (1871—1937) предложил свою модель атома, которая получила название планетарной. Появлению этой новой модели атома предшествовали эксперименты, проводимые Э. Резерфордом и его учениками, ставшими впоследствии знаменитыми физика­ми, Гансон Гейгером (1882—1945) и Эрнстом Марсденом (1889-1970). В результате этих экспериментов, показавших неприемлемость модели атома Дж. Дж. Томсона, было обнаружено, что в атомах существуют ядра — положительно заряженные микрочастицы, размер которых очень мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Исходя из этих новых представлений, Резерфорд и выдвинул свое понимание строения атома, которое он обнародовал 7 марта 1911 г. на заседании Манчестерского философского общества. По его мнению, атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него.[171]

Но планетарная модель Резерфорда обнаружила серьезный недостаток: она оказалась несовместимой с электродинамикой Максвелла. Согласно законам электродинамики, любое тело (частица), имеющее электрический заряд и движущееся с ускорением, обязательно должно излучать электромагнитную энергию. Но в этом случае электроны очень быстро потеряли бы свою кинетическую энергию и упали на ядро. С этой точки зрения, оставалась непонятной необычайная устойчивость атомов. Кроме того, в соответствии с законами электродинамики, частота излучаемой электроном электромагнитной энергии должна бытъ равна частоте собственных колебаний электрона в атоме или (что то же) числу оборотов электрона вокруг ядра в секунду. Но в этом случае спектр излучения электрона должен быть непрерывным, так как этектрон, приближаясъ к ядру, менял бы свою частоту. Опыт же показывал другое: атомы дают электромагнитное излучение только определенных частот (именно поэтому атомные спектры называют линейчатыми, т. е. состоящими из вполне определенных линий). Такая определенность спектра, его ярко выраженная химическая индивидуальность очень труд­но совмещается с универсальностью электрона, заряд и масса которого не зависят от природы атома.

Разрешение этих противоречий выпало на долю известного датского физика Нильса Бора (1885—1962), предложившего свое представление об атоме. Последнее основывалось на квантовой теории, начало которой было положено на рубеже XX в. немецким физиком Максом Плавком (1858—1947) Планк выдвинул гипотезу, гласящую, что испускание и поглощение электромагнитного излучения может происходить только дискретно, конечными порциями — квантами.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал 1913 г. квантовую теорию строения ато­ма. В ее основе лежали следующие постулаты: в любом атоме существуют дискретные (стационарные состояния), находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.

Предложенная Бором модель атома, которая возникла в результате развития исследований радиоактивного излучения и квантовой теории, фактически явилась дополненным и исправленным вариантом планетарной модели Резерфорда. Поэтому в истории атомной физики говорят о квантовой модели атома Резерфорда—Бора.

Как тут не вспомнить крушение стремлений и надежд многих поколений алхимиков получать одни химические элементы (чаще всего — золото) из других в связи с открытием во второй половине XVIII в. Лавуазье закона неизменности химических элементов. И вдруг, в начале XX в., оказалось, что в результате радиоактивного распада некоторые элементы самопроизвольно превращаются в другие. Это было поистине научной сенсацией.

Впрочем, наука XX века принесла немало сенсационных открытий, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером этого может служить теория относительности, созданная в начале нашего столетия мало кому известным тогда мыслителем Альбертом Эйнштейном (1879—1955).

В 1905г. им была создана так называемая специальная теория относительности. В этой теории было установлено; что пространственно-временные свойства тел меняются с изменением скорости их движения. По мере приближения скорости движе­ния тела к скорости света его линейные размеры сокращаются в направлении движения, а ход времени замедляется. Эти выводы специальной теории относительности нашли экспериментальное подтверждение.

Новые аспекты зависимости пространственно-временных характеристик от материальных процессов раскрыла общая теория относительности (1916 г.). Согласно этой теории пространство в разных частях Вселенной имеет различную кривизну и описывается неевклидовой геометрией. Кривизна пространства обусловлена действием гравитационных полей, создаваемых огромными массами космических тел. Эти поля вызывают и замедление хода протекания материальных процессов. Выводы общей теории относительности также были подтверждены экспериментами (например, было обнаружено искривление световых лучей под влиянием полей тяготения, близкое к значению, предсказываемому общей теорией относительности).

Теория Эйнштейна получила признание далеко не сразу. Специальная теория относительности была быстро принята лишь узким кругом известных физиков-теоретиков. Но в 20-х годах, после появления общей теории относительности, этот круг существенно расширился. Эйнштейн получил полную поддержку многих выдающихся ученых, работавших в других областях физики, но обладавших широкой культурой физического мышления.

Хотя имя А. Эйнштейна по сей день в массовом сознании связывается с теорией относительности, эта теория была далеко не единственным его научным достижением. Опираясь на пред­ставление Планка о квантах, Эйнштейн еще в 1905 г. сумел обосновать природу фотоэффекта. Каждый электрон выбивается из металла под действием отдельного светового кванта, или фотона, который при этом теряет свою энергию. Часть этой энергии уходит на разрыв связи электрона с металлом. Эйнштейн показал зависимость энергии электрона от частоты светового кванта и энергии связи электрона с металлом.

Казалось, что корпускулярная теория материи торжествует. Фотон, например, явно имеет корпускулярные свойства (русский физик П. Н. Лебедев экспериментально доказал в 1899 г. существование светового давления). Но вскоре выяснилось, что определить энергию фотона (частицы света, не обладающей массой покоя) можно было, только представляя его себе в виде волны с соответствующей длиной и частотой. Получалось, что фотон—это одновременно и волна и частица. Распространяется он как волна, излучается и поглощается—как частица.

Наиболее убедительное подтверждение существования волновых свойств материи было получено в результате открытия (наблюдений) дифракции электронов в эксперименте, поставленном в 1927 г. американскими физиками Клинтоном Дэвиссоном (1881-1958) и Лестером Джермером (1896-1971). Быстрые электроны, проходя сквозь очень тонкие пластинки металла, вели себя подобно свету, проходящему мимо малых отверстий или узких щелей. Другими словами, распределение электронов, отражавшихся от пластинки и летевших лишь по некоторым избранным направлениям, было таким же, как если бы на пластинку падал пучок света с длиной волны, равной длине волны электрона, вычисленной по формуле де Бройля.

Экспериментально подтвержденная гипотеза де Бройля превратилась в принципиальную основу, пожалуй, наиболее широкой физической теории — квантовой механики. У объектов микромира, рассматриваемых с ее позиций, обнаружились такие свойства, которые совершенно не имеют аналогий в привычном нам мире. Прежде всего — это корпускулярно-волновая двойственность, или дуализм элементарных частиц (это и корпускулы и волны одновременно, а точнее — диалектическое единство свойств тех и других). Движение микрочастиц в пространстве и времени нельзя отождествлять с механическим движением макрообъекта. Например ,положение элементарной частицы в пространстве в каждый момент времени не может быть определено с помощью системы координат, как для привычных нам тел окружающего мира. Движение микрочастиц подчиняется законам квантовой механики.

Об абсолютной непригодности законов классической механики в микромире свидетельствует, например, установленное видным немецким физиком Вернером Гейзенбергом(1901—1976) соотношение неопределенностей: если известно место положения частицы в пространстве, то остается неизвестным импульс (количество движения), и наоборот. Это одно из фундаментальных положений квантовой механики.

Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений. Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира.[174]

Вместе с этим закончился прежний, так называемый классический период в развитии естествознания, характерный для эпохи Нового времени. Наступил новый этап неклассического естествознания XX века, характеризующийся, в частности, новыми, квантово-релятивистскими представлениями о физической реальности.

В современной физике в основе объяснения мира лежат две фундаментальные теории - квантовая теория и теория относительности Эйнштейна. Хотя они и пересекаются, но относятся к разным уровням наблюдения. Квантовая теория необходима для изучения явлений на микроуровне (атомы, ядерные и субъядерные феномены), теория относительности относится к астрономическим скоростям и расстояниям.

Характерные черты КРКМ:

- Корпускулярно-волновой дуализм.

- Основным материальным объектом является квантовое поле, переход которого из одного состояния в другое меняет число частиц. Основная особенность элементарных частиц – универсальная взаимозависимость и взаимопревращаемость.

- Движение – частный случай физического взаимодействия. Известны 4 вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Они описываются на основе принципа близкодействия: взаимодействия передаются соответствующими полями от точки к точке, скорость передачи всегда конечна и не может превышать скорость света в вакууме (300 тыс. км/сек).

- Окончательно утверждается принцип относительности пространства и времени, зависимость их от материи. Пространство-время образуют единый четырехмерный континуум.

- Закономерность и причинность выступают в вероятностной форме, так называемых, статистических законов.

- В картину мира включается наблюдатель, от присутствия которого зависят исследуемые свойства объектов. Мир предстает как мыслеобраз.

К концу ХХ в. облик естествознания существенно изменился. Изменения в фундаментальных науках определяют общие контуры новой научной картины мира. Для нее характерны:

-глобальный эволюционизм– применение идеи развития ко всей материи, в том числе и Вселенной в целом. Эволюционная концепция проникла во все естественные науки – от физики до геологии. Возникающие в результате процессов дифференциации и интеграции новые научные дисциплины изначально эволюционны (экология, биогеохимия, антропология).

- рассмотрение всех процессов природы с точки зрениясамоорганизации (теория самоорганизации– синергетика). Синергетика пытается открыть универсальный механизм, осуществляющий самоорганизацию как живой, так и неживой природы. Самоорганизация понимается как спонтанный (самопроизвольный) переход открытой неравновесной системы от менее сложных и упорядоченных форм организации к более сложным и упорядоченным. Открытыесистемы – это системы, которые обмениваются веществом, энергией с внешней средой. Неравновесные– это системы, которые находятся в состоянии, далеком от термодинамического равновесия (= максимальная энтропия, т.е. хаос).

- системность – принцип, согласно которому все в мире, в том числе и сама Вселенная, имеет системную организацию, т.е. образовано из множества элементов разного уровня сложности и упорядоченности. Для системы характерны: интегративность, иерархичность, субординация элементов.

- историчность означает принципиальную незавершенность научной картины мира.

Развитие естествознания вело к смене картин мира, а значит, к смене основных принципов и законов объяснения природы. Этот период развития естествознания принято называть революционным. Научная революция – это интенсивный период развития науки, ведущий к радикальным изменениям в системе знаний, в принципах и методах научного познания. Для научной революции всегда характерно возникновение кризисных ситуаций, связанных с коренной ломкой устоявшихся господствующих представлений о природе. В истории науки выделяют несколько типов научных революций:

частная – затрагивает одну область знания;

комплексная – затрагивает ряд областей знания;

глобальная – радикально меняет основания науки.

В истории науки глобальных революций было три: В VI – IV вв. до н.э. возникла наука как рациональный способ познания мира; ХVI-ХVII вв. – революция привела к созданию классического естествознания; ХХ в. – научно-техническая революция – вела не только к радикальным изменениям в науке и технике, но и к масштабным социально-экономическим преобразованиям, в том числе качественным изменениям в производительных силах общества.

В VI – IV вв. до н.э. возникла наука как рациональный способ познания мира. Аристотель создал формальную логику – науку о доказательстве, главный инструмент выведения и систематизации знания. Аристотель впервые предметно дифференцировал научное знание: отделил науки о природе от метафизики (философии) и математики. Аристотелевские нормы научности знания, способы обоснования в науке успешно использовались в течение 1000 лет, а законы формальной логики действуют и поныне.

Революция в естествознании, начавшаяся в 90-х гг. ХIХ в. и продолжавшаяся до середины ХХ в. также носила глобальный характер. Она началась в физике, а затем распространилась на все остальные науки.

I этап (90-е гг. ХIХ в. – 20-е гг. ХХ в.): были сделаны открытия, в корне изменившие научные представления о мире,-

электромагнитных волн (Герц);

коротковолнового электромагнитного излучения (Рентген);

радиоактивности (Беккерель);

электрона (Томсон);

светового давления (Лебедев);

идеи кванта (М. Планк);

создание теории относительности (Эйнштейн) и др.

II этап (сер. 20-х гг. – 40-е гг. ХХ в.) – создание квантовой механики и соединение ее с теорией относительности в новой квантово-релятивистской картине мира.

III этап (40-е – 70-е гг. ХХ в.) - овладение атомной энергией, создание ЭВМ и кибернетики, начало освоения космоса и развитие космонавтики и др. Научная революция соединяется с технической, что приводит к НТР.

В настоящее время происходит очередная глобальная революция, в результате которой рождается новая наука – постнеклассическая, в которой сосуществуют несколько парадигм.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.003)

В теории относительности, созданной А. Эйнштейном, было впервые введено понятие относительности пространства и времени, а также понятие о кривизне единого четырехмерного пространственно-временного континуума. Это была последняя крупная теория в рамках электромагнитной картины мира. Начиная с конца 19 века между электромагнитной теорией и эмпирическими фактами выявлялась все больше и больше противоречий. А после открытия явления радиоактивности и выявления того, что оно связано с превращением одних элементов в другие и сопровождается испусканием альфа- и бета-лучей, появились новые модели атома, которые не соответствовали электромагнитной картине мира. А позднее, М. Планк, в ходе попыток построения теории излучения, высказал мнение, что процессы излучения не являются непрерывными. Таким образом, в начале 20 века появилось два представления о материи:

  • Либо материя состоит из дискретных частиц
  • Либо материя является абсолютно непрерывной.

Эти два представления являются несовместимыми, и попытки, предпринимаемые учеными-физиками их как-то совместить терпели неудачу. Это подтолкнуло к мнению, что наука находится в тупике, выхода из которого не существует. Ситуация ухудшилась, когда Н. Бор предложил новую модель атома, согласно которой, электрон, вращающийся вокруг ядра, не излучает энергии. Это предположение противоречило законам электродинамики. По мнению Бора, электрон излучает энергию порциями тогда, когда переходит с одной орбиты на другую. Это предположение казалось странным, однако именно оно способствовало выходу из тупика и формированию новых представлений о материи.

Позже Луи де Бойль предложил гипотезу, согласно которой материи присущи и непрерывность, и квантовость, то есть каждой частице соответствует определенная волна. Исследования Э. Шредингера и В. Гейзенберга в 1925-1927 гг. подтвердили эту гипотезу, а позднее М. Борн доказал тождественность квантовой механики Гейзенберга и волновой механики Шредингера.

Готовые работы на аналогичную тему

Таким образом, представления о неизменности материи остались в прошлом, а вновь сложившиеся квантово-полевые представления о природе материи определяются как корпускулярно-волновой дуализм, подразумевающий, что у каждого элемента материи есть свойства частицы и волны.

Квантовая механика

Основой новой современной картины мира, получившей название квантово-полевой, лежит квантовая механика. Это новая теория, которая описывает состояние и движение микрообъектов материального мира. Она устанавливает метод описания и законы движения микрочастиц, к которым относятся элементарные частицы, атомы, атомные ядра, молекулы. Квантовая механика также занимается изучением связи величин, характеризующих частицы, с физическими величинами, измеряемыми экспериментальным путем. Законы квантовой механики дают возможность изучить строение атомов, а также установить природу химической связи и объяснить периодическую систему элементов, исследовать свойства элементарных частиц.

Квантовая механика способствовала изучению строения и свойств многих твердых тел, что до этого не представлялось возможным. Квантовая механика позволила изучить такие явления, как сверхпроводимость, ферромагнетизм, сверхтекучесть, а также исследовать природу нейтронных звезд и белых карликов. Кроме того, благодаря квантовой механике появилась возможность выявить механизм протекания термоядерных реакций, происходящих на Солнце и звездах.

Идеи квантово-полевой картины мира

С появлением новой картины мира было установлено, что элементарным частицам присуща такая особенность, как взаимопревращаемость и взаимозаменяемость. В квантово-полевой картине мира материальным объектом принимается квантовое поле, а при переходе его из одного состояния в другое число частиц меняется.

Движение в квантово-полевой картине мира определяется лишь как частный случай физического взаимодействия. Выделяются четыре основополагающих физических взаимодействия:

  • Электромагнитное
  • гравитационное
  • Сильное
  • Слабое.

В основе их описания лежит принцип близкодействия. Он означает, что взаимодействия передаются соответствующими полями от точки к точке, скорость передачи взаимодействия всегда является конечной и не превышает скорость света в вакууме, которая равна 300 000 км/с.

Предположения об относительности пространства и времени, а также их зависимости от материи, основы которой были заложены еще в электромагнитной картине мира, в новой, квантово-полевой картине мира утверждаются. Согласно теории относительности, время и пространство не являются независимыми друг от друга и соединяются в четырехмерном пространственно-временном континууме.

Закономерность и причинность в квантово-полевой картине мира принимают вероятностную форму, то есть выступают в виде статистических законов. Это свидетельствует о более глубоком уровне исследования природных закономерностей.

Еще одним принципиальным отличием квантово-полевой картины от предыдущих механической и электромагнитной является определение места и роли человека во Вселенной. Человек перестает быть лишь одним из объектов природы. Квантово-полевая картина мира рассматривает человека как наблюдателя, который определяет получаемую картину мира. Помимо этого, в современной, квантово-полевой, картине мира считается, что существование человека определяет то, каким является современный мир, а появление человека является закономерным результатом эволюции Вселенной.

Однако, как механическая и электромагнитная, современная картина мира тоже не лишена недостатков. К ним относятся:

Квантово-полевая, или как ее называют иначе, квантово-релятивистская, картина мира сейчас лишь проходит стадию становления. С развитием науки к ней добавляются новые теории, новые гипотезы, и возможно, указанные недостатки будут устранены и появятся ответы на существующие вопросы.

Началом новейшей революции в естествознании, приведшей к появлению современной науки, был ряд открытий в физике, разрушивших всю картезианско-ньютоновскую космологию. Это открытие электромагнитных волн Г. Герцем, коротковолнового электромагнитного излучения К. Рентгеном, радиоактивности А. Беккерелем, электрона Дж. Томсоном, светового давления П.Лебедевым, введение идеи кванта М. Планком, создание теории относительности А. Эйнштейном, описание процесса радиоактивного распада Э.Резерфордом. В 1913 - 1921 гг. на основе представлений об атомном ядре, электронах и квантах Н. Бор создал модель атома, разработка которой велась в соответствии с периодической системой элементов Д.Менделеева. Это был первый этап новейшей революции в физике и во всем естествознании. Он сопровождается крушением прежних представлений о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени. Это привело к кризису физики и всего естествознания, являвшегося симптомом более глубокого кризиса метафизических философских оснований классической науки. Второй этап революции начался в середине 20-х гг. XX в. и связан с созданием квантовой механики и сочетанием ее с теорией относительности в новой квантово-релятивистской физической картине мира. На исходе третьего десятилетия XX в. практически все главнейшие постулаты, ранее выдвинутые наукой, оказались опровергнутыми. В их число входили представления об атомах как твердых, неделимых и раздельных элементах материи, о времени и пространстве как независимых абсолютах, о строгой причинной обусловленности всех явлений, о возможности объективного наблюдения природы.

Предшествующие научные представления были всецело оспорены. Например, твердое вещество больше не являлось важнейшей природной субстанцией. Трехмерное пространство и одномерное время превратились в относительные проявления четырехмерного пространственно-временного континуума. Время течет по-разному для тех, кто движется с разной скоростью. Вблизи тяжелых объектов время замедляется, а при определенных обстоятельно может и совсем остановиться. Законы Евклидовой геометрии более не являлись обязательными для природоустройства в масштабах Вселенной. Планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, действующая на расстоянии, но потому, что само пространство в котором они движутся, искривлено. Субатомные феномены обнаруживают себя и как частицы, и как волны, демонстрируют свою двойственную природу. Стало невозможным одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подрывал и вытеснял собой старый лапласовский детерминизм. Научные данные и объяснения не могли развиваться дальше, не затронув природы наблюдаемого объекта. Физический мир, увиденный глазами физика XX в., напоминал не столько огромную машину, сколько необъятную мысль. Началом третьего этапа революции были овладение атомной энергией в 40-е годы XX в. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период наряду с физикой стали лидировать химия, биология и цикл наук о Земле.

С середины XX в. наука окончательно слилась с техникой, приведя к современной научно-технической революции. Квантово-релятивистская научная картина мира стала первым результатом новейшей революции в естествознании. Другим результатом научной революции стало утверждение неклассического стиля мышления. Новейшая революция в науке привела к замене созерцательного стиля мышления деятельностным

16. Движение – способ существования материи. Основные формы движения материи и их взаимосвязь.

Движение есть неотъемлемое, необходимое и существенное свойство, способ существования материи. "Материя без движения, – писал Ф. Энгельс, – так же немыслима, как и движение без материи".

Во-вторых, движение определяется как любое изменение. "Движение, в применении к материи, – утверждал Ф. Энгельс, – это изменение вообще".

В-третьих, движение представляет собой противоречие, а его источником взаимодействие противоположностей. "Движение есть противоречие, – отмечал В. И. Ленин, – есть единство противоречий".

Итак, движение представляет собой необходимое, неотъемлемое свойство материи, без которого она не может существовать. Иными словами, движение есть атрибут материи. Нигде, никогда, ни при каких условиях не было ни одного материального объекта, ни одного явления, которые были бы лишены движения.

Движение включает в себя и изменчивость, и устойчивость одновременно. Наличие изменчивости в движении очевидно. Но и устойчивость обязательно включается в движение. В реальном мире нет ни "чистой изменчивости", ни "чистой устойчивости", а есть движение, в котором изменчивость и устойчивость взаимодействуют и взаимопереплетаются. Поэтому понятия изменчивости и устойчивости являются результатом идеализации.

Любой вид движения, каждый совершающийся процесс подчиняются действию тех или иных законов. Можно сделать вывод, что формой "движения вообще" являются законы движения. Очевидно, что познание движения невозможно без изучения его специфических форм, поскольку общее, не существует наряду с единичным.

Диалектико-материалистическое учение о формах движения материи было разработано Ф. Энгельсом. Его идеи по данному вопросу отнюдь не устарели. Ф. Энгельс выделял пять основных форм движения материи. Критерием выделения этих форм движения является связь каждой из них с определенными материальными носителями.

Механическое движение – пространственное перемещение объектов, но, нужно отметить сегодня, – не любое, а лишь характеризующееся наличием траектории, - распространение в пространстве полей, например, - это не механический процесс.

Физическое движение - теплота, электромагнетизм, гравитация.

Химическое движение - превращение атомов и молекул, связанное с перестройкой электронных оболочек атомов (но не их ядер). Химическая форма движения материи имеет дело с образованием и разрушением молекул вещества.

Биологическое движение - специфические для живого процессы. Последнее можно охарактеризовать так: "Жизнь представляет собой способ существования белковых тел и нуклеиновых кислот, содержанием которого является непрерывный обмен веществ между организмом и окружающей средой, процессы отражения и саморегуляции, направленные на самосохранение ивоспроизводство организмов.

Социальное движение (с которым связано и мышление).

Формы движения расположены именно в этом порядке не случайно: каждая последующая включает в себя предыдущие.

Читайте также: