Курт гедель вклад в информатику кратко

Обновлено: 02.07.2024

Курт Гёдель

Курт Гёдель, Kurt Gödel - 1906 - 1978, немецкий логик и математик, автор фундаментального открытия, показавшего ограниченность аксиоматического метода. Родился 28 апреля 1906 в немецко-чешском городе Брюнн, Моравия (ныне Брно, Чехия).

Его отец, австрийский немец Рудольф Гёдель, был владельцем крупнейшей текстильной фабрики в городе Брюнн (Брно). Мать Курта - Марианна Хандшу училась во Франции и получила гуманитарное образование.

Окончив школу в 1923 году, Курт поступил в Венский университет. Однако к тому времени он так и не решил, в какой области будет специализироваться, – в математике или теоретической физике. В университете он слушал лекции таких выдающихся профессоров математики, как Филипп Фуртвенглер, Ханс Хан, Вильгельм Виртингер, Карл Менгер и других. Особое влияние на юного Геделя оказали лекции Фуртвенглера, и он выбрал математику в качестве специализации. Тому было две причины: во-первых, Фуртвенглер был выдающимся математиком и преподавателем; во-вторых, он был парализован и читал лекции сидя на инвалидном кресле, в то время как его ассистент делал записи на доске. Это произвело на Геделя особенно сильное впечатление.

В 1929 Курт Гёдель защитил докторскую диссертацию по математике, в которой доказал полноту исчисления предикатов первой ступени. В этом же году умер отец Гёделя. У него был хороший бизнес, поэтому после его смерти семья осталась финансово обеспечена. После смерти мужа мать Гёделя купила большую квартиру в Вене, где поселилась с двумя сыновьями. В 1930 году Гёдель стал преподавать в Венском университете, где принадлежал к школе логического позитивизма до 1938 года. Он был одним из главных участников Венского кружка – философского объединения, где были разработаны основы логического позитивизма. Кружок сложился еще в 1922 году вокруг австрийского физика М. Шлика – профессора Венского университета Шлика, семинары которого вызвали интерес Геделя к логике.

В 1933-1938 - приват-доцент Венского университета. Приход к власти Гитлера в Германии поначалу мало повлиял на жизнь Геделя. Его никогда не интересовала политика. В 1934 году Гедель прочел курс лекций “О неразрешимых теоремах формальных математических систем” в Принстоне, США. Впоследствии тезисы этих лекций были опубликованы. По возвращении в Европу вследствие интенсивной интеллектуальной деятельности Курт Гёдель начал страдать нервным расстройством. Несмотря на проблемы со здоровьем, Гедель продолжал свои исследования, в которых доказывал согласованность аксиомы выбора с другими аксиомами теории набора. Однако вскоре его ждал новый удар. Он был связан с внезапным убийством профессора Шлика.

“Это происшествие, несомненно, послужило причиной серьезного нервного расстройства брата, что вызвало беспокойство матери. Вскоре после выздоровления его пригласили работать в США”, – писал его брат Рудольф.

В марте 1938 года Австрия была присоединена к Германии, но Гёделя это не интересовало. Он во второй раз побывал в Принстоне, где работал в Институте высших исследований (the Institute for Advanced Study), а вторую часть учебного года провел во Франции, где прочел курс лекций. После присоединения Австрии к Германии большинство ученых, носивших степень приват-доцента, стали получать жалование за лекции. Гедель такого жалования не получал, так как многие полагали, что он еврей. Это было неправдой, хотя у Геделя действительно было много друзей евреев.

Летом 1938 года Гедель отправился в Геттинген, где читал лекции о своих исследованиях в области теории набора. Осенью того же года он вернулся в Вену и женился на Адель Поркерт, с которой познакомился еще в 1927 году в одном из венских ночных клубов. Она была на шесть лет старше и разведена с первым мужем. Родители Геделя, и особенно его отец, всегда были против этой свадьбы.

Когда началась война, Гедель боялся, что его призовут в армию. Конечно, он был убежден, что слишком слаб здоровьем, чтобы служить, но если его по ошибке принимали за еврея, его также могли по ошибке принять за здорового человека. Он не хотел рисковать и после длительных переговоров о получении американской визы в 1940 году выехал в США вместе с женой.

Переехав в США, Гедель продолжил свою научную работу в области теории набора, которая имела огромное значение. Его шедевр “Согласованность аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории набора” (1940) стал классикой современной математики. В этой работе он доказал, что если аксиоматическая система теории набора, построенная по типу, предложенному Расселом и Уайтхедом в “Principia Ma t hematicа”, последовательна, то она останется таковой в случае если аксиома выбора и обобщенная континуум-гипотеза будут добавлены к системе.

С 1953 и до конца жизни - профессор Принстонского института перспективных исследований. Умер Гедель в Принстоне 14 января 1978.

Науное значение трудов Гёделя

Диссертация Геделя была посвящена проблеме полноты. Полнота системы аксиом, служащих основанием какой-либо области математики, означает адекватность этой аксиоматики той области, которая с их помощью задается, т.е. означает возможность доказать истинность или ложность любого осмысленного утверждения, содержащего понятия рассматриваемой области математики. В 1930-м годам были получены некоторые результаты о полноте различных аксиоматических систем. Так, Гильберт построил искусственную систему, охватывающую часть арифметики, и доказал ее полноту и непротиворечивость. Гедель в своей диссертации доказал полноту исчисления предикатов первой ступени, и это дало надежду математикам на то, что им удастся доказать непротиворечивость и полноту всей математики. Однако уже в 1931 тот же Гедель доказал теорему о неполноте, нанесшую сокрушительный удар по этим надеждам. Согласно этой теореме, любая процедура доказательства истинных утверждений элементарной теории чисел обречена на неполноту. Элементарная теория чисел - это раздел математики, занимающийся сложением и умножением целых чисел, и, как показал Гедель, при любых осмысленных и практически применимых системах доказательств некоторые истины даже в такой весьма скромной области математики останутся недоказуемыми. Как следствие он получил, что внутренняя непротиворечивость любой математической теории не может быть доказана иначе, как с помощью обращения к другой теории, использующей более сильные допущения, а значит, менее надежной. Методы, использованные Геделем при доказательстве теоремы о неполноте, сыграли в дальнейшем важную роль в теории вычислительных машин. Гедель внес важный вклад в теорию множеств. Два принципа - аксиома выбора и континуум-гипотеза - на протяжении десятилетий не поддавались доказательству, но интерес к ним не ослабевал: слишком привлекательны были их логические следствия. Гедель доказал (1938), что присоединение этих принципов к обычным аксиомам теории множеств не приводит к противоречию. Его рассуждения ценны не только теми результатами, которые они позволяют получить; Гедель разработал конструкцию, которая улучшает понимание внутренних механизмов самой теории множеств.

Теорема Геделя о неполноте

В 1931 году в одном из немецких научных журналов появилась статья двадцатипятилетнего Геделя, которая называлась “Über formal unentscheidbare Sätze der Principia Mathematicа und verwandter Systeme” (“О формально неразрешимых предложениях Principia Mathematicа и родственных систем”). Эта работа сыграла решающую роль в истории логики и математики. В решении Гарвардского университета о присуждении Геделю почетной докторской степени (1952 год) она была охарактеризована как одно из величайших достижений современной логики.

Однако в момент опубликования ни название, ни содержание геделевской работы ничего не говорили большинству математиков. Упомянутые в ее названии “Principia Mathematicа” – это монументальный трехтомный трактат Альфреда Норта Уайтхеда и Бертрана Рассела, посвященный математической логике и основаниям математики. Интерес к разбираемым в работе Геделя вопросам всегда был уделом весьма немногочисленной группы ученых. В то же время рассуждения, приведенные Геделем в его доказательствах, были для своего времени столь необычными, что для полного их понимания требовалось исключительное владение предметом и знакомство с литературой, посвященной этим весьма специфическим проблемам.

При этом подлинно революционный характер выводов, к которым пришел Гедель, и их важнейшее философское значение в настоящее время общепризнанны.

Знаменитая работа Геделя посвящена центральной проблеме оснований математики.

Литература

Нагель Э., Ньюмен Д.Р. Теорема Геделя. М., 1970 Клайн М. Математика. Утрата определенности. М., 1984

Знаете ли Вы, что математическое программирование - это (1) раздел математики, исследующий методы решения задач отыскания экстремума на заданном множестве допустимых значений переменных; (2) формализм, используемый для представления знаний о структуре моделируемых объектов в форме задачи отыскания экстремума на заданном множестве допустимых значений переменных.

Курт Гёдель — известный математик и философ родом из Австрии.

Детство

Карьера

Работа и достижения

Когда Гитлер упразднил его должность внештатного преподавателя, Гёделю пришлось устраиваться на работу в Венский университет заново. Но ему отказали, а поводом для отказа послужило у него наличие друзей-евреев. В 1939 году Гёдель уехал из Вены из-за беспорядков связанных с началом Второй мировой войны. Гёдель с супругой переехали в США, где в Институте перспективных исследований Гёделю предложили место преподавателя.

Личная жизнь

Отец Гёделя, Рудольф Гёдель, умер в 1929 году, в том же году, когда его сын подал на рассмотрение свою докторскую диссертацию по аксиомам. Его мать купила новую виллу в Вене и переехала туда жить с двумя сыновьями. Именно в Вене Гёдель полюбил оперу. Гёделя считали евреем из-за большого количества умных друзей-евреев, с которыми он проводил своё время.
Однажды на улице, когда он шёл со своей женой Аделью, на него напала группа молодёжи посчитав его евреем.

Поздние годы и смерть

В 1933 году Гёдель переехал в США из-за усилившихся гонений нацистов в Германии. Он испытал шок, когда его близкого друга Морица Шлика убил студент-нацист. В США Гёдель познакомился с Альбертом Эйнштейном, с которым они стали хорошими друзьями. Во время пребывания в США Гёдель заинтересовался изучением рекурсивных функций, и даже прочёл по ним доклад на ежегодном собрании Американского математического общества. А во время преподавания в Институте перспективных исследований, после прочтения книг Готфрида Лейбница, он также заинтересовался философией и физикой.



Компьютер история начинается в 1623 году, когда Wilhelm Schickard построен человечества, первый автоматический калькулятор.

Schickard игровая машина может выполнять базовые арифметические операции над целочисленными входы. Его письма Кеплер, открывший законы движения планет, объяснить применение его "расчет часов" для расчета астрономических таблиц.

Non - programmable Schickard машина была основана на традиционной десятичной системе счисления. Лейбниц впоследствии обнаружил более удобный двоичной системе (1679 г.), важным элементом первой в мире рабочей программы - контролируемым компьютером, из-за Zuse


Лейбниц, который иногда называют последний универсальный гений, изобрел, по крайней мере, две вещи, которые важны для современного мира: исчисление и двоичная арифметика на основе биты.

Современные физики, математики, инженерии, было бы немыслимо без бывших: фундаментальный метод работы с бесконечно малыми числами. Лейбниц был первым, чтобы издать его. Он разработал его вокруг 1673. В 1679 году он усовершенствовал нотацию для интеграции и дифференциации, которые все еще используют сегодня.

Двоичная арифметика на основе дуальной системы он изобретен около 1679 г., и опубликована в 1701 году. Это и стало основой практически всех современных компьютеров.



Алан Матисон Тьюринг переформулировать Kurt Goedel s unprovability результаты в терминах машин Тьюринга (ТМС). Тесно связанные с ранее работа была проделана Тьюринга советник Алонсо церкви. TMs впоследствии стал наиболее широко используются абстрактные модели вычислений. Универсальный TMs может эмулировать любой другой ТМ, или любым другим известным компьютера.

Во время Второй мировой войны Тьюринг помог (с Welchman) расшифровать нацистской код. Некоторые источники говорят, что эта работа была решающей для победы над третьим Рейхом.

Позже Тьюринг предложил свой знаменитый тест оценки, является ли компьютер разумного (больше на Истории искусственного интеллекта). Информатика самых востребованных премия носит его имя: премию Тьюринга.


В 1931 году, всего через несколько лет после Юлиус Лилиенфельд запатентовал транзистор Курт Гедель (или " Goedel", а не " Godel') заложил основы теоретической информатики с его работы на универсальных формальных языков и лимиты на доказательство и вычисление. Он построен формальных систем, позволяющих самореферентную заявления, которые говорят о себе, в частности, о том, могут ли они быть получены из enumerable заданного набора аксиом с помощью вычислительной процедуры доказательства теорем. Гедель пошли дальше построить отчетности, которые утверждают, что их собственные unprovability, чтобы продемонстрировать, что традиционная математика либо недостатки в определенной алгоритмической смысле или содержит недоказуемые, но истинные утверждения.

Неполноты Геделя результате широко рассматривается как наиболее замечательным достижением 20-го века математики, хотя некоторые математики говорят, что это логика, а не математика, и другие называют это фундаментальный результат теоретической информатики (переформулировать церкви & Post & Тьюринга вокруг 1936), дисциплина, которая еще не официально существование еще тогда, но был фактически создан через Геделя работы. Он имел огромное влияние не только на информатике, но и по философии и других областях.

Американский математик, член Национальной АН США (1937). В 1926 окончил Будапештский университет. С 1927 преподавал в Берлинском университете, в 1930—33 — в Принстонском университете (США), с 1933 профессор Принстонского института перспективных исследований. С 1940 консультант различных армейских и морских учреждений (Н. принимал, в частности, участие в работах по созданию первой атомной бомбы). С 1954 член комиссии по атомной энергии.

Основные научные работы посвящены функциональному анализу и его приложениям к вопросам классической и квантовой механики. Н. принадлежат также исследования по математической логике и по теории топологических групп. В последние годы жизни занимался главным образом разработкой вопросов, связанных с теорией игр, теорией автоматов; внёс большой вклад в создание первых ЭВМ и разработку методов их применения. Наиболее известен как человек, с именем которого связывают архитектуру большинства современных компьютеров (так называемая архитектура фон Неймана )


Немецкий инженер, пионер компьютеростроения. Наиболее известен как создатель первого действительно работающего программируемого компьютера (1941) и первого языка программирования высокого уровня (1945).

1935-1938: Konrad Zuse строит Z1, первый в мире программно-управляемый компьютер. Несмотря на ряд проблем машиностроения нем были все основные составляющие современных станках, с использованием двоичной системы счисления и сегодня стандартное разделение хранения и управления. Цузе в 1936 году заявки на патент (Z23139/GMD Nr. 005/021), также свидетельствует о фон Нейман архитектура (повторно изобретена в 1945 году) с программы и данные, изменяемые в процессе хранения.

1945: Zuse описывает Plankalkuel, первый в мире программирования высокого уровня язык, содержащий в себе множество стандартных функций современных языков программирования. FORTRAN пришел почти десять лет спустя. Цузе также используется Plankalkuel к проектированию первой в мире шахматной программы.

1946: Zuse основывает первый в мире запуск компьютера компании: Zuse-Ingenieurbüro Хопферау. Венчурного капитала, привлеченного через ETH Zürich и IBM-вариант на Цузе патенты.

Кроме вычислительных машин общего назначения, Цузе построил несколько специализированных вычислителей. Так, вычислители S1 и S2 использовались для определения точных размеров деталей в авиационной технике. Машина S2, помимо вычислителя, включала ещё и измерительные устройства для выполнения обмеров самолетов. Компьютер L1, так и оставшийся в виде экспериментального образца, предназначался Цузе для решения логических проблем.

http://mtdinfo.16mb.com/ris1/ris13/uheninf/uc8.jpg

Математик, профессор Дартмутского колледжа (США). Вместе с Томасом Курцем разработал язык программирования ВАSIС и сетевую систему пользования несколькими компьютерами одновременно ("time sharing"). Вместе с родителями эмигрировал в США из Венгрии в 1940 году. Окончил Принстонский университет, где изучал математику и философию. В 1949 году защитил диссертацию, а в 1953 году был приглашен в Дартмут. Будучи деканом Математического факультета Дартмутского колледжа с 1955 по 1967 год и даже находясь на посту президента колледжа (1970-1981), не оставлял преподавательской деятельности. Явился одним из пионеров преподавания основ программирования: считал, что этот предмет должен быть доступен всем студентам, вне зависимости от их специализации.


Выдающийся специалист в области теоретического программирования, автор ряда книг, в том числе классической монографии "Дисциплина программирования". Вся его научная деятельность была посвящена разработке методов создания "правильных" программ, корректность которых может быть доказана формальными методами. Будучи одним из авторов концепции структурного программирования , Дийкстра проповедовал отказ от использования инструкции GOTO. В 1972 году его научные заслуги были отмечены премией Тьюринга. При вручении премии один из выступающих так охарактеризовал деятельность Дийкстры: "Это образец ученого, который программирует, не прикасаясь к компьютеру, и делает все возможное, чтобы его студенты поступали также и представляли информатику, как раздел математики".


Американский изобретатель Дуглас Энгельбарт из Стэнфордского исследовательского института представил первую мире компьютерную мышь в 1968 году 9 декабря.

Изобретение Дугласа Энгельбарта представляло собой деревянный куб на колесиках с одной кнопкой. Своим именем компьютерная мышь обязана проводу – он напоминал изобретателю хвост настоящей мыши.

Позже идеей Энгельбарта заинтересовалась компания Xerox. Ее исследователи изменили конструкцию мыши, и она стала похожа на современную. В начале 1970-х компания Xerox впервые представила мышь как часть персонального компьютера. Она имела три кнопки, вместо дисков шарик и ролики, а стоила 400 долларов!

Сегодня существует два вида компьютерных мышей: механические и оптические. Последние лишены механических элементов, а для отслеживания передвижения манипулятора относительно поверхности используют оптические датчики. Последней новинкой техники стали беспроводные мыши.


Американский предприниматель, соучредитель Корпорации Майкрософт ,

В 1975 году впервые Аллен и Гейтс использовали название "Micro-Soft". В исходный код интерпретатора языка BASIC, созданного ими по заказу MITS.


Российский программист, автор известного файлового менеджера FAR Manager, формата сжатия RAR, архиваторов RAR и WinRAR , особенно популярных в России и странах бывшего СССР.

Осенью 1993 года выпустил первую публичную версию архиватора RAR 1.3, осенью 1996 года — FAR Manager. Позднее, с ростом популярности Microsoft Windows, выпустил архиватор для Windows WinRAR. Название RAR означает Roshal ARchiver.


Сергей Михайлович Брин родился в Москве в еврейской семье математиков, переехавшей на постоянное место жительства в США в 1979 году, когда ему было 6 лет.

В 1993 году поступил в Стэнфордский университет в Калифорнии, где получил диплом магистра и начал работать над диссертацией. Уже во время учёбы он стал интересоваться Интернет-технологиями и поисковыми машинами, стал автором нескольких исследований на тему извлечения информации из больших массивов текстовых и научных данных, написал программу по обработке научных текстов.

Совместное дело росло, приносило прибыль и даже продемонстрировало завидную устойчивость в момент краха доткомов, когда разорились сотни других компаний. В 2004 году имена основателей были названы журналом Forbes в списке миллиардеров.


Эндрю Таненбаум родился в Нью-Йорке и вырос в Уайт Плэйнс, штата Нью-Йорк. Получил учёную степень бакалавра по физике в MIT в 1965 году, также получил степень доктора физики в Калифорнийском университете Беркли в 1971 году.

Позже переехал с семьёй в Нидерланды, сохранив при этом гражданство США. Эндрю Таненбаум преподаёт курсы по организации компьютеров и операционных систем, также получил Ph. D. В 2009 году получил грант в размере 2,5 миллиона евро от Европейского исследовательского совета на развитие MINIX.

Эндрю Таненбаум также признан как автор учебников для высшей школы по некоторым областям информатики и вычислительной техники, в своих областях книги считаются избранными как стандарт



Окончил Орхусский университет (Дания, 1975) по математике и информатике, защитил диссертацию (Ph. D.) по информатике в Кембридже (1979).

До 2002 возглавлял отдел исследований в области крупномасштабного программирования в компании AT&T (Computer Science Research Center of Bell Telephone Laboratories). Ныне профессор Техасского университета, А&М.

Бьёрн Страуструп получил степень доктора философии, когда работал над конструированием распределённой системы в Компьютерной Лаборатории Кэмбриджского Университета (Англия).


Автор ряда книг и статей об архитектуре ПО, объектно-ориентированному анализу и разработке, языку UML, рефакторингу, экстремальному программированию.

Родился в Англии, жил в Лондоне до переезда в Америку в 1994 г. В настоящее время живёт в Бостоне, штат Массачусетс.

Одна из книг "Рефакторинг. Улучшение существующего кода": Мартин Фаулер с соавторами пролили свет на процесс рефакторинга, описав принципы и лучшие приемы его осуществления, а также указав, где и когда следует начинать углубленное изучение кода с целью его улучшения.

Основу книги составляет подробный перечень более 70 методов рефакторинга, для каждого из которых описываются мотивация и техника испытанного на практике преобразования кода с примерами на Java .

Рассмотренные в книге методы позволяют поэтапно модифицировать код, внося каждый раз небольшие изменения, благодаря чему снижается риск, связанный с развитием проекта.



Американский разработчик компьютерных игр. Выпускник Университета штата Мичиган (Michigan State University). В 2002 году его имя вписали в Зал Славы Компьютерного музея Америки (Computer Museum of America’s Hall of Fame).

В 1991 году MicroProse приступила к продажам игровой энциклопедии исторически узнаваемых образов Civilization. В 1993 году крупная вертикально интегрированная компания Spectrum HoloByte, Inc. предпринимает усилия по поглощению MicroProse.

По завершении юридических процедур к 1994 году у Мейера и нового CEO фирмы Луи Гилмана (Gilman Louie) наметились некоторые расхождения в вопросах относительно того, куда, как и зачем развивать совместный игровой бизнес.


Американский учёный, почётный профессор Стэнфордского университета и нескольких других университетов в разных странах, иностранный член Российской академии наук, преподаватель и идеолог программирования, автор 19 монографий (в том числе ряда классических книг по программированию) и более 160 статей, разработчик нескольких известных программных технологий.

Автор всемирно известной серии книг, посвящённой основным алгоритмам и методам вычислительной математики, а также создатель настольных издательских систем TEX и METAFONT , предназначенных для набора и вёрстки книг, посвящённых технической тематике (в первую очередь — физико-математических).

Большее влияние на юного Дональда Кнута оказали работы Андрея Петровича Ершова, впоследствии его друга.

Профессор Кнут удостоен многочисленных премий и наград в области программирования и вычислительной математики, среди которых премия Тьюринга (1974), Национальная научная медаль США (1979) и AMS Steele Prize за серию научно-популярных статей, премия Харви (1995 год), премия Киото (1996) за достижения в области передовых технологий, премия имени Грейс Мюррей Хоппер (1971).

В конце февраля 2009 года Кнут занимал 20 место в списке самых цитируемых авторов в проекте CiteSeer.



В инте рвью «Japan Inc." он говорил, что сам учился программировать ещё до окончания школы. Он окончил университет города Цукуба, где он занимался исследованиями языков программирования и компиляторов.

С 2006 года возглавляет отдел исследований и разработок Network Applied Communication Laboratory, японский системный интегратор свободного ПО.

Родился в 1965 в префектуре Осака, но в возрасте четырёх лет переехал в город Ёнаго префектуры Тоттори, поэтому часто представляется как уроженец Ёнаго. В настоящее время проживает в городе Мацуэ префектуры Симанэ.

Юкихиро является членом Церкви Иисуса Христа Святых последних дней и занимается миссионерской деятельностью. Он женат и имеет четырёх детей.


Американский предприниматель, получивший широкое признание в качестве пионера эры IT-технологий. Один из основателей, председатель совета директоров и CEO корпорации Apple . Один из основателей и CEOкиностудии Pixar.

В конце 1970-х годов Стив и его друг Стив Возняк разработали один из первых персональных компьютеров, обладавший большим коммерческим потенциалом. Компьютер Apple II стал первым массовым продуктом компании Apple, созданной по инициативе Стива Джобса. Позже Джобс увидел коммерческий потенциал графического интерфейса, управляемого мышью, что привело к появлению компьютеров Apple Lisa и, год спустя, Macintosh (Mac).

Проиграв борьбу за власть с советом директоров в 1985 году, Джобс покинул Apple и основал NeXT — компанию, разрабатывавшую компьютерную платформу для вузов и бизнеса. В 1986 году он приобрёл подразделение компьютерной графики кинокомпании Lucasfilm, превратив его в студию Pixar. Он оставался CEO Pixar и основным акционером, пока студия не была приобретена The Walt Disney Company в 2006 году, что сделало Джобса крупнейшим частным акционером и членом совета директоров Disney.

Трудности с разработкой новой операционной системы для Mac привели к покупке NeXT компанией Apple в 1996 году, для использования ОС NeXTSTEP в качестве основы для Mac OS X. В рамках сделки Джобс получил должность советника Apple. Сделка была спланирована Джобсом. К 1997 году Джобс вернул контроль над Apple, возглавив корпорацию. Под его руководством компания была спасена от банкротства и через год стала приносить прибыль. В течение следующего десятилетия Джобс руководил разработкой iMac, iTunes, iPod, iPhone и iPad , а также развитием Apple Store, iTunes Store, App Store иiBookstore . Успех этих продуктов и услуг, обеспечивший несколько лет стабильной финансовой прибыли, позволил Apple стать в 2011 году самой дорогой публичной компанией в мире. Многие комментаторы называют возрождение Apple одним из величайших свершений в истории бизнеса. В то же время Джобса критиковали за авторитарный стиль управления, агрессивные действия по отношению к конкурентам, стремление к тотальному контролю за продукцией даже после её реализации покупателю.


Теорема о неполноте Геделя, доказанная им в 1931 году, когда ему было 25 лет, перечеркнула основные правила современной науки точно так же, как это сделала общая теория относительности Эйнштейна пятнадцатью годами раньше. Гедель продемонстрировал, что элементарная арифметика неполна и будет оставаться таковой.

Курт Фридрих Гёдель (28 апреля 1906 – 14 января 1978) – австрийский логик, математик и философ математики, наиболее известный сформулированной и доказанной им теоремой о неполноте.

Курт Гёдель родился в австро-венгерском (моравском) городе Брюнн (ныне Брно, Чехия), в немецкой семье. Отец Курта, Рудольф Гёдель, был управляющим текстильной фабрики.

В 18 лет Гёдель поступил в Венский университет. Там он два года изучал физику, но затем переключился на математику.

Обычно Гёделя считают австрийцем, но за свою жизнь он неоднократно менял гражданство. Рождённый подданным Австро-Венгрии, он в 12 лет принял гражданство Чехословакии после того, как Австро-Венгерская империя прекратила своё существование. В 23 года Гёдель стал гражданином Австрии, а в 32 года, после захвата Австрии Гитлером автоматически стал гражданином германского Рейха. В 1940 году он уехал в США, причём из-за опасности пути через Атлантику во время войны поехал через СССР и Японию. В США он получил работу в знаменитом Институте перспективных исследований (Принстонский университет).

Ещё с 30-х годов у Гёделя обнаруживались признаки психических проблем, которые обычно носили скрытый характер, проявляясь в частных беспокойствах и излишней подозрительности, но в периоды обострений принимали более явные, навязчивые формы. Так в 1936 году у него развился параноидальный страх отравления. Опорой Гёделя в нелёгкое время была его жена Адель, кормившая его с ложки и буквально выходившая мужа. Из сохранившихся записей библиотечных запросов этого периода известно, что он изучал литературу по душевным расстройствам, фармакологии и токсикологии (особенно характерно неоднократное обращение к техническому справочнику по отравлениям угарным газом), что лишь осложняло впоследствии его лечение.

Позже, в Принстоне (1941), несмотря на улучшение общего состояния, Гёдель по-прежнему испытывал дискомфорт от присутствия агрегатов, способных, по его мнению, испускать отравляющие газы. По этой причине он даже распорядился вынести из их с Аделью квартиры холодильник и радиатор. Его одержимость свежим воздухом и подозрения по поводу холодильника сохранялись до конца жизни, а периоды умеренного оздоровления и ухудшения душевного состояния сменяли друг друга. Последние, впрочем, происходили всё чаще и были тяжелее. Так, кризис 1970-го года оказался гораздо хуже такового в 1936-м и сопровождался галлюцинациями, параноидальным поведением по отношению к докторам и коллегам. Стремительно ухудшалось и состояние здоровья Адель, теперь она не могла ухаживать за ним так, как раньше, а он, в свою очередь, – за ней. Огромную поддержку оказывал друг Гёделя Оскар Моргенштерн.

В феврале 1976 года паранойя Гёделя опять обострилась, начал снижаться вес и его уговорили на госпитализацию. Однако уже через неделю, даже не выписавшись, он вернулся домой. Подозрения касались теперь и жены – Моргенштерну и другим людям он рассказывал, что та якобы раздала в его отсутствие все его деньги. В июне Адель была госпитализирована (до августа). Гёдель проводил с ней, по-видимому, достаточно много времени и плохо питался. Осенью он ненадолго снова попал в больницу, где, как он сообщил, его якобы пытались убить. После возвращения домой состояние не улучшалось. Несмотря на уговоры друзей, от очередной госпитализации он отказывался.

Гёдель был логиком и философом науки. Наиболее известное достижение Гёделя – это сформулированные и доказанные им теоремы о неполноте, опубликованные в 1931 году и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

И вот в чём дело.

Итальянский математик Джузеппе Пеано впервые сформулировал арифметику языком аксиом. Эти положения казались до смешного очевидны – существует ноль, за каждым числом следует еще число, – но на самом деле были удивительно исчерпывающими.

Работу Пеано продолжили выдающийся немецкий математик Давид Гильберт и его ученики. Гильберт пытался свести к системе аксиом всю математику. Он считал, что в таком виде ее можно будет ввести в вычислительную машину, запрограммированную таким образом, чтобы она по приказу оператора выдавала любые утверждения, следующие из этих аксиом. Таким образом, все возможные теоремы выдавались бы машиной, что обессмыслило бы работу, математика вообще, сведя ее к роли оператора вычислительного центра. Был бы создан математический робот, люди достигли бы вершин логики и получили электронного оракула, способного ответить на любой вопрос. Но надеждам Гильберта не суждено было сбыться.

Работа Геделя произвела эффект разорвавшейся бомбы. Она заставила фон Неймана прервать курс лекций в Геттингене, а Гильберта – прекратить работу над своей программой, которая казалась ему такой многообещающей.

Машина, работа которой основана на аксиомах Пеано, как утверждал Гедель, будет неспособна ответить на вполне определенную последовательность вопросов. Каковы эти вопросы, Гедель не сообщил. Но можно предположить, что в геделевском смысле приведенная ниже головоломка окажется неразрешимой. Построим последовательность целых чисел, начинающуюся с любого целого числа, причем каждое последующее число должно быть равно половине предыдущего, если оно четное, или предыдущему, умноженному на три и сложенному затем с единицей, если оно нечетное. Повторяя процедуру вычисления последующих чисел, мы в конце концов построим всю последовательность: 5, 16, 8, 4, 2, 1. Итак, мы пришли к единице. Оказывается, что, независимо от числа, с которого начинается последовательность, мы всегда приходим к единице, хотя доказательства этого факта не существует. Возможно, это связано с нашей неспособностью найти его, но может быть, это указывает и на недостатки, присущие самим фундаментальным основам арифметики.

Результат, полученный Геделем, выходит за пределы узких рамок арифметики, оказывая влияние также на кибернетику. Через некоторое время после открытия Геделя математик Тьюринг заметил, что все вычислительные машины могут быть заменены всего одним простейшим и даже очень медленным калькулятором, так как, если не ограничивать используемую память, такой калькулятор воспринимает программы произвольной длины и сложности. В принципе можно составить бесчисленное множество таких программ, но, к счастью, их можно объединить и хранить вместе, составив их полный перечень. Не все программы будут полезны, а из-за некоторых машина может даже входить в режим непрерывно и безостановочно повторяющихся вычислений. Если же все работает нормально, то в соответствии с приказами в программе машина в ответ на введенное в нее число печатает другое, т. е. производит вычисления: например, может напечатать квадрат какого-нибудь числа, удвоить его или вывести число, следующее за числом, введенным первоначально. Вообще эта машина может вычислять невероятно сложные функции введенного в нее исходного числа.

Это не абстрактный вопрос: было бы очень удобно заранее знать, работает программа или нет, прежде чем запускать ее в машину. Результат Тьюринга подтвердил то, что пользователи машин уже чувствовали интуитивно: а именно, что не существует способа с уверенностью определить, как работает программа, кроме как испытать ее на практике.

Всегда ли остается неизвестной функция, не поддающаяся вычислению? Гедель ответил просто: даже если вычислены первые сто или тысяча значений этой функции, мы все равно ничего не узнаем о том, как вычислить последующее значение, так что требуются человеческий разум и творческие усилия, чтобы выйти из жестких рамок программирования для вычислительной машины. Снова и снова человек убеждается в том, что вычислительная машина удивительно прилежна и вместе с тем столь же глупа: она выполняет вычисления не думая, только по предварительно составленной подробной инструкции.

Геделю пришлось выслушать немало упреков в разрушении целостности фундамента математики. Он неизменно отвечал, что, по существу, основы остались столь же незыблемыми, как и прежде, а его теорема привела к переоценке роли интуиции и личной инициативы в одной из областей науки, в той, которой управляют железные законы логики, оставляющие, казалось бы, мало места для указанных достоинств.

Несмотря на уверения идеалистов, математика оказалась настоящим искусством, где есть место импровизации, и достойный пример творческого служения музе Математики дал сам Гедель в своих работах, написанных суховатым языком и касающихся, на первый взгляд, лишь существа проблемы.

Кроме того, Гёделю принадлежат работы в области дифференциальной геометрии и теоретической физики. В частности, он написал работу по общей теории относительности. В ней Гёдель предложил вариант решения уравнений Эйнштейна, из которого следует, что строение вселенной может иметь такое устройство, в котором течение времени является закольцованным (метрика Гёделя), что теоретически допускает путешествия во времени. Большинство современных физиков считают это решение верным лишь математически и не имеющим физического смысла.

Вклад Курта Гёделя в сами основы математики считается революционным, раздвинувшим границы этой дисциплины и оказавшим существенное влияние на общее мировоззрение и культуру XX века.

С 1993 года существует премия в области теории вычислительных систем имени Курта Гёделя, вручаемая ежегодно организациями ACM SIGACT (Special Interest Group on Algorithms and Computation Theory) и EATCS (European Association for Theoretical Computer Science) за выдающиеся труды по логике и теоретической информатике.

Читайте также: