Курт гедель теорема о неполноте кратко

Обновлено: 07.07.2024

Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом — базовых утверждений, принимаемых в математике за основу без доказательств, — совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность — исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный — никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.

Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?

Курт ГЁДЕЛЬ

Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года — профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить.


Несколько упрощая, ТГН утверждает, что в достаточно сложных языках существуют недоказуемые высказывания. Но в этой фразе почти каждое слово нуждается в пояснении.

Переход от одной формулы к другой происходит по некоторым известным правилам. Переход от 4-й формулы к 5-й произошёл, скажем, потому, что всякое число равно самому себе — такова аксиома арифметики. А вся процедура доказывания, таким образом, переводит формулу в булево значение ИСТИНА . Результатом могла быть и ЛОЖЬ — если бы мы опровергали какую-то формулу. В таком случае мы бы доказали её отрицание. Можно себе представить программу (и такие программы действительно написаны), которые бы доказывали подобные (и более сложные) высказывания без участия человека.

Изложим то же самое чуть более формально. Пусть у нас есть множество, состоящее из строк символов какого-то алфавита, и существуют правила, по которым из этих строк можно выделить подмножество так называемых высказываний — то есть грамматически осмысленных фраз, каждая из которых истинна или ложна. Можно сказать, что существует функция , сопоставляющая высказываниям из одно из двух значений: ИСТИНА или ЛОЖЬ (то есть отображающая их в булево множество из двух элементов).

доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Примеры высказываний формальной арифметики:

и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними — двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:

  1. Находим -ю формулу в списке .
  2. Подставляем в неё число в качестве аргумента.
  3. Применяем к полученному высказыванию наш доказывающий алгоритм (по нашему предположению, он существует), который переводит его в ИСТИНУ или ЛОЖЬ .
  4. Применяем логическое отрицание к полученному результату.

Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:

  • Лемма: Любому алгоритму, переводящему натуральное число в булево значение, соответствует какая-то ФСП из множества .

Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck, состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее — хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке — скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА . Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию — ЛОЖЬ . Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА . Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство, которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа. А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

Теоремы о неполноте Геделя: Дырка в математике

— Можно как-то популярно объяснить теоремы о неполноте Геделя? Брадобрей бреет только тех, кто не бреется сам. Бреет ли себя брадобрей? Этот знаменитый парадокс имеет к ним отношение?

godel3

Главный тезис логического доказательства существования Бога, выдвинутый Куртом Геделем: "Бог существует в мышлении. Но существование в реальности больше, нежели существование только в мысли. Следовательно, Бог должен существовать". На фото: автор теоремы о неполноте Курт Гедель со своим другом, автором теории относительности Альбертом Эйнштейном. Пристон. Америка. 1950

Прежде всего это указывает на ограниченность претензий человеческого разума в познании реальности. То есть мы не можем говорить о том, что мы построим какую-то всеобъемлющую теорию мироздания, которая все объяснит, — такая теория не может быть научной.

— Как математики сейчас относится к теоремам Геделя? Никто не пытается их опровергнуть, как-то обойти?

— Это все равно что пытаться опровергнуть теорему Пифагора. Теоремы имеют строгое логическое доказательство. В то же время предпринимаются попытки найти ограничения применимости теорем Геделя. Но главным образом споры идут вокруг философских следствий теорем Геделя.

— Насколько проработано геделево доказательство существования Бога? Оно закончено?

Разумеется, логическая безупречность выводов Геделя не принуждает человека становиться верующим под давлением силы доказательств. Не следует быть наивными и полагать, что мы можем убедить любого разумно мыслящего человека уверовать в Бога с помощью онтологического аргумента или других доказательств. Вера рождается тогда, когда человек становится лицом к лицу перед очевидным присутствием высшей трансцендентной Реальности Бога. Но можно назвать по крайней мере одного человека, которого онтологическое доказательство привело к религиозной вере, — это писатель Клайв Стейплз Льюис, он сам признавался в этом.

Отдаленное будущее — это отдаленное прошлое

— Как относились к Геделю современники? Он дружил с кем-то из больших ученых?

— Как Гедель оказался в Америке? Бежал от нацистов?

— Не использовали ли Гедель и Эйнштейн идей друг друга в научной работе?

Вера и интуиция

— Вы можете дать исторические примеры: каким путем разные ученые приходят к вере в Бога? Вот генетика Фрэнсиса Коллинза, по его признаниям, к вере в Бога привело исследование структуры ДНК…

Вопрос о приходе человека к вере — это всегда вопрос, который выходит за рамки просто логического рассуждения. Как объяснить, что тебя привело к вере? Человек отвечает: я ходил в храм, размышлял, читал то-то, увидел гармонию мироздания; но самый главный, самый исключительный момент, в который человек вдруг познает, что он столкнулся с присутствием Бога, не может быть выражен. Это всегда тайна.

— Можно обозначить проблемы, которые не в силах разрешить современная наука?

— Все-таки наука — достаточно уверенное, самостоятельное и хорошо идущее предприятие, чтобы так резко высказываться. Она является хорошим и весьма полезным инструментом в руках человека. Со времени Фрэнсиса Бэкона знание действительно стало силой, изменившей мир. Наука развивается в соответствии со своими внутренними закономерностями: ученый стремится постичь законы мироздания, и можно не сомневаться в том, что этот поиск приведет к успеху. Но в то же время необходимо осознавать и границы науки. Не следует смешивать науку и те мировоззренческие вопросы, которые могут быть поставлены в связи с наукой. Ключевые проблемы сегодня связаны не столько с научным методом, сколько с ценностными ориентациями. Наука в течение долгого ХХ века воспринималась людьми как абсолютное благо, которое способствует прогрессу человечества; а мы видим, что ХХ век стал самым жестоким по человеческим жертвам. И тут возникает вопрос о ценностях научного прогресса, вообще познания. Этические ценности не следуют из самой науки. Гениальный ученый может изобрести оружие для уничтожения всего человечества, и здесь возникает вопрос о нравственной ответственности ученого, на который наука не может ответить. Наука не может указать человеку смысл и предназначение его существования. Наука никогда не сможет ответить на вопрос, почему мы здесь? Почему существует Вселенная? Эти вопросы решаются на другом уровне познания, таком, как философия и религия.

— Кроме теорем Геделя, есть ли еще доказательства того, что научный метод имеет свои пределы? Сами ученые это признают?

Красота и гармония мироздания предполагает возможность его познания научными методами. Вместе с тем христиане всегда понимали и непостижимость тайны, стоящей за этой материальной вселенной. Вселенная не имеет основания в самой себе и указывает на совершенный источник бытия — Бога.

Теоремы Гёделя о неполноте — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой достаточно сильной [1] теории первого порядка.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой теории.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.

Содержание

Первая теорема Гёделя о неполноте

Утверждение первой теоремы Гёделя о неполноте можно сформулировать следующим образом:

Если формальная арифметика S непротиворечива, то в ней существует такая замкнутая формула G, что ни G, ни её отрицание ¬G не являются выводимыми в S.

Теория, содержащая неразрешимое, то есть невыводимое и неопровержимое, предложение, называется неполной.

При доказательстве теоремы Гёдель построил формулу G в явном виде, иногда её называют гёделевой неразрешимой формулой. В стандартной интерпретации [2] предложение G утверждает свою собственную невыводимость в S. Следовательно, по теореме Гёделя, если теория S непротиворечива, то эта формула и в самом деле невыводима в S и потому истинна в стандартной интерпретации. Таким образом, для натуральных чисел, формула G верна, но в S невыводима.

Доказательство Гёделя можно провести и для любой теории, полученной из S добавлением новых аксиом, например, формулы G в качестве аксиомы. Поэтому любая непротиворечивая теория, являющаяся расширением формальной арифметики, будет неполна.

Для доказательства первой теоремы о неполноте Гёдель сопоставил каждому символу, выражению и последовательности выражений формальной арифметики определенный номер. Поскольку формулы и теоремы являются предложениями арифметики, а формальные выводы теорем являются последовательностями формул, то стало возможным говорить о теоремах и доказательствах в терминах натуральных чисел. Например, пусть гёделева неразрешимая формула G имеет номер m, тогда она эквивалентна следующему утверждению на языке арифметики: "нет такого натурального числа n, что n есть номер вывода формулы с номером m". Подобное сопоставление формул и натуральных чисел называется арифметизацией математики и было осуществлено Гёделем впервые. Эта идея впоследствии стала ключом к решению многих важных задач математической логики.

Набросок доказательства [3]

Зафиксируем некоторую формальную систему PM, в которой можно представить элементарные математические понятия [4] .

Выражения формальной системы являются, если смотреть извне, конечными последовательностями примитивных символов (переменных, логических постоянных, и скобок или точек) и нетрудно строго уточнить какие последовательности примитивных символов являются формулами, а какие нет. Аналогично, с формальной точки зрения, доказательства есть ни что иное, как конечные последовательности формул (со строго заданными свойствами). Для математического рассмотрения не имеет значения, какие объекты взять в качестве примитивных символов, и мы решаем использовать для этих целей натуральные числа. Соответственно, формула является конечной последовательностью натуральных чисел, вывод формулы - конечной последовательностью конечных последовательностей натуральных чисел. Математические понятия (утверждения) таким образом становятся понятиями (утверждениями) о натуральных числах или их последовательностях, и, следовательно, сами могут быть выражены в символизме системы PM (по крайней мере частично). Может быть показано, в частности, что понятия "формула", "вывод", "выводимая формула" определимы внутри системы PM, то есть можно восстановить, например, формулу F(v) в PM с одной свободной переменной v (тип которой - числовая последовательность) такую, что F(v), в интуитивной интерпретации, означает: v - выводимая формула. Теперь построим неразрешимое предложение системы PM, то есть предложение A, для которого ни A, ни не-A невыводимы, следующим образом:

Формулу в PM с точно одной свободной переменной, тип которой натуральное число (класс классов), будем называть класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n-е через R(n), и заметим, что понятие "класс-выражение", также как и отношение упорядочения R можно определить в системе PM. Пусть α будет произвольным класс-выражением; через [α;n] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n. Тернарное отношение x = [y;z] тоже оказывается определимым в PM. Теперь мы определим класс K натуральных чисел следующим образом:

n ∈ K ≡ ¬Bew[R(n);n] (*)

(где Bew x означает: x - выводимая формула). Так как все понятия, встречающиеся в этом определении, можно выразить в PM, то это же верно и для понятия K, которое из них строится, то есть имеется такое класс-выражение S, что формула [S;n], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K. Как класс-выражение, S идентична некоторому определенному R(q) в нашей нумерации, то есть

S = R(q)

выполняется для некоторого определенного натурального числа q. Теперь покажем, что предложение [R(q);q] неразрешимо в PM. Так, если предложение [R(q);q] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответсвии со сказанным выше, q будет принадлежать K, то есть, в соответствии с (*), ¬Bew[R(q);q] будет выполняться, что противоречит нашему предположению. С другой стороны, если бы отрицание [R(q);q] было выводимым, то будет иметь место ¬ n ∈ K, то есть Bew[R(q);q] будет истинным. Следовательно, [R(q);q] вместе со своим отрицанием будет выводимо, что снова невозможно.

Полиномиальная форма

После того, как Юрий Матиясевич доказал диофантовость любого эффективно перечислимого множества, и были найдены примеры универсальных диофантовых уравнений, появилась возможность сформулировать теорему о неполноте в полиномиальной (или диофантовой) форме [5] [6] [7] :

(elg^2 + \alpha - bq^2)^2 + (q - b^<5^<60></p>
<p><i>Для каждой непротиворечивой теории</i> T <i>можно указать такое целое значение параметра K, что уравнение</i> >)^2 + (\lambda + q^4 - 1 - \lambda b^5)^2 +
(θ + 2zb 5 ) 2 + (u + tθ − l) 2 + (y + mθ − e) 2 + (nq 16 ) 2 + ((g + eq 3 + lq 5 + (2(ezλ)(1 + g) 4 + λb 5 + λb 5 q 4 )q 4 )(n 2 − n) + (q 3 − bl + l + θλq 3 + (b 5 − 2)q 5 )(n 2 − 1) − r) 2 + (p − 2ws 2 r 2 n 2 ) 2 + (p 2 k 2 − k 2 + 1 − τ 2 ) 2 + (4(cksn 2 ) 2 + η − k 2 ) 2 + (r + 1 + hphk) 2 + (a − (wn 2 + 1)rsn 2 ) 2 + (2r + 1 + φ − c) 2 + (bw + ca − 2c + 4αγ − 5γ − d) 2 + ((a 2 − 1)c 2 + 1 − d 2 ) 2 + ((a 2 − 1)i 2 c 4 + 1 − f 2 ) 2 + (((a + f 2 (d 2 − a)) 2 − 1)(2r + 1 + jc) 2 + 1 − (d + of) 2 ) 2 + (((z + u + y) 2 + u) 2 + yK) 2 = 0 не имеет решений в неотрицательных целых числах, но этот факт не может быть доказан в теории T. Более того, для каждой непротиворечивой теории множество значений параметра K, обладающих таким свойством, бесконечно и алгоритмически неперечислимо.

Вторая теорема Гёделя о неполноте

В формальной арифметике S можно построить такую формулу, которая в стандартной интерпретации [2] является истинной в том и только в том случае, когда теория S непротиворечива. Для этой формулы справеливо утверждение второй теоремы Гёделя:

Если формальная арифметика S непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость S.

Иными словами, непротиворечивость формальной арифметики не может быть доказана средствами этой теории. Однако существуют доказательства непротиворечивости формальной арифметики, использующие средства, невыразимые в ней.

Набросок доказательства

Сначала строится формула Con, содержательно выражающая невозможность вывода в теории S какой-либо формулы вместе с ее отрицанием. Тогда утверждение первой теоремы Гёделя выражается формулой ConG, где G — Гёделева неразрешимая формула. Все рассуждения для доказательства первой теоремы могут быть выражены и проведены средствами S, то есть в S выводима формула ConG. Отсюда, если в S выводима Con, то в ней выводима и G. Однако, согласно первой теореме Гёделя, если S непротиворечива, то G в ней невыводима. Следовательно, если S непротиворечива, то в ней невыводима и формула Con.

Читайте также: