Крупномасштабная структура вселенной кратко

Обновлено: 05.07.2024

КРУПНОМАСШТАБНАЯ СТРУКТУРА ВСЕЛЕННОЙ – структура, образуемая гигантскими звездными островами – галактиками и их системами на различных пространственных масштабах. Современные представления о к.с.в. базируются как на изучении отдельных систем галактик, так и на статистическом исследовании распределения по небу галактик, находящихся на различном расстоянии от нас. Само существование к.с.в. отражает неоднородный характер распределения вещества во Вселенной вплоть до масштабов в cотни миллионов световых лет. Изучение к.с.в. необходимо для понимания процессов образования галактик и скоплений галактик в расширяющейся Вселенной и их последующей эволюции.

Даже поверхностное знакомство с астрономическим объектами и их положением на небе и в пространстве показывает, что космические тела входят в состав систем различного масштаба.

Основные элементы наблюдаемых космических структур.

Все планеты (кроме двух самых близких к Солнцу) окружены спутниками и вместе с ними обращаются вокруг Солнца, образуя Солнечную систему. Обнаружены планетные системы и вокруг многих других звезд. Более половины наблюдаемых звезд входит в состав звездных пар или кратных звездных систем (Солнце в этом отношении – нетипичная звезда, поскольку она одиночная). Звезды также образуют скопления. Внимательный наблюдатель может найти их на небе даже невооруженным глазом или с помощью бинокля, а телескопы позволяют запечатлеть многие сотни звездных скоплений, находящихся на различном расстоянии от нас.

Вся совокупность наблюдаемых на небе звезд образует обширную систему - Галактику, К пониманию этого астрономы пришли не сразу. Чем звезды слабее, а, значит, чем больше среднее расстояние до них, тем больше они концентрируются к плоскости Млечного Пути, сливаясь вдали с его бесчисленными звездами, не различимыми по отдельности. Поэтому представление о том, что совокупность звезд образует сплюснутую систему, выглядело вполне убедительным. Но какова форма Галактики, протянулась ли она в бесконечность или имеет свои размеры, и каково место Солнца в ней? Первую научную попытку решения этого вопроса предпринял в 18 в. английский астроном Вильям Гершель, вошедший в историю как автор многих фундаментальных открытий. Например, он открыл планету Уран, первым доказал движение Солнечной системы в пространстве, первым обнаружил существование невидимых (инфракрасных) лучей. Для изучения структуры звездного мира он предложил оригинальный метод (метод звездной статистики), основанный на скрупулезных подсчетах звезд различной яркости в избранных областях неба, и реализовал его с помощью собственноручно построенных телескопов. Гершель пришел к выводу об ограниченности в пространстве нашего звездного мира и очень грубо оценил размеры нашей звездной системы. Стоит заметить, что во времена Гершеля не были известными даже расстояния до ближайших звезд. При этом Гершель был убежден в существовании множественности звездных островов – галактик во Вселенной, хотя это предположение удалось окончательно доказать только в 1920-х, когда были измерены расстояния до нескольких ближайших к нам галактик.

Структуры, образуемые галактиками и их системами, называют крупномасштабными структурами. Вопрос об их существовании и их свойствах оказался тесно связанным с фундаментальной научной проблемой возникновения и эволюции всей наблюдаемой Вселенной.

Пары, группы и скопления галактик как физически связанные системы.

Поскольку многие звезды нашей Галактики образуют парные и кратные системы, и даже целые звездные скопления, неудивительно, что это же относится и к галактикам. Со временем астрономы убедились, что найти одиночную галактику даже труднее, чем одиночную звезду. Были обнаружены обособленные системы галактик с самым различным количеством членов, с размером от нескольких десятков тысяч до нескольких десятков миллионов световых лет.

Самые маленькие системы, образуемые галактиками – это двойные и кратные системы, содержащие всего несколько сравнимых по яркости членов, за ними идут группы галактик из несколько десятков членов и, наконец, скопления галактик, объединяющие сотни и тысячи отдельных звездных островов. Вместе с галактиками концентрируется также и разреженная газовая среда. Она играет важную роль в формировании и эволюции этих систем. Газ между галактиками в группах или скоплениях, как правило, очень сильно нагрет, его температура – миллионы или десятки миллионов градусов. Из-за низкой плотности он практически не испускает видимые лучи, но его свечение, тем не менее, улавливается космическими телескопами, принимающими потоки рентгеновских квантов, которые излучаются газом при такой температуре. Несмотря на высокую разреженность (плотность в сотни и тысячи раз меньше, чем плотность межзвездной среды в окрестности Солнца), межгалактический газ может заключать в себе очень большую массу. В некоторых скоплениях масса газа существенно превышает суммарную массу звезд всей совокупности галактик.

Первый каталог двойных и кратных галактик, насчитывающий более 8 сотен систем, составил шведский астроном Эрик Хольмберг в 1937, тщательно изучив положение галактик примерно на 6000 снимках неба, полученных на Гейдельбергской обсерватории. Во время составления этого каталога лучевые скорости были измерены лишь у немногих галактик, поэтому Хольмберг исходил только из близости галактик друг к другу на небе. По его данным, около четверти всех галактик относится к двойным системам. Впоследствии, правда, оказалось, что ощутимая доля систем Хольмберга фиктивна, что связано, в основном, с недостатком фотографических изображений. Однако общая доля галактик в кратных системах была оценена более или менее верно, а некоторые статистические закономерности, найденные Хольмбергом, сохранили свою важность и в наше время. Оценка большой доли галактик, находящихся в двойных системах, была в 1970-х подтверждена советским астрономом Игорем Караченцевым. Он составил современный каталог изолированных пар галактик, включающий информацию о более чем 600 парах северного неба. Многие из этих парных галактик после составления каталога были включены в программы исследования на крупнейших телескопах мира. В несколько раз больше галактик, чем образующих пары, входит в состав систем, содержащих три (триплеты), четыре (квартеты), пять (квинтеты), шесть (секстеты) или большее число членов. Такие образования обычно называют кратными системами или небольшими группами галактик. Их изучение дает ключ к пониманию того, как формировались галактики и как они влияют на эволюцию друг друга.

 NASA

В целом, к двойным и кратным системам, группам и скоплениям принадлежит абсолютное большинство существующих галактик.

Между кратными системами и группами галактик, как и между группами и скоплениями, нет четкой границы по размерам или числу галактик. Определить полное число членов в системе вообще можно лишь приблизительно. Дело не только в том, что для этого надо иметь оценки расстояния до каждой галактики, предположительно относящейся к данной системе. Многие слабые галактики, принадлежащие системе, могут быть просто пропущены. Число членов, как правило, возрастает при более тщательных исследованиях, когда удается выявить трудно наблюдаемые карликовые галактики низкой яркости, часто встречающиеся вблизи гигантских галактик.

Некоторые сравнительно близкие галактики (например, спиральная галактика М81 в Большой Медведице) являются ярчайшими членами групп. Наша Галактика также принадлежит к довольно большой группе, получившей название Местная группа. Общее число членов в Местной группе – более сорока, и они разбросаны в области диаметром более 5 миллионов световых лет. Среди них выделяются две гигантских спиральных галактики – туманность Андромеды (М 31) и наша Галактика. Третья спиральная галактика – туманность в Треугольнике (М33) – значительно уступает этим двум по светимости. Найдена и одна большая эллиптическая галактика, по-видимому, принадлежащая Местной группе (хотя это еще нуждается в подтверждении), но находящаяся на ее периферии. Она по чистой случайности расположена на небе в направлении полосы Млечного Пути, в созвездии Кассиопеи, где межзвездная пыль очень сильно ослабляет свет далеких источников, поэтому несмотря на сравнительно небольшое расстояние эта галактика была открыта довольно поздно (в 1968), причем в инфракрасных лучах, для которых поглощение не столь сильное. Названная именем первооткрывателя, итальянского астронома Паоло Маффея, она известна как объект Маффей-1. Недалеко от нее находится спиральная галактика, получившая обозначение Маффей-2. Пока еще не выяснено, удерживаются ли эти галактики в Местной группе или движутся независимо от нее. Есть в Местной группе несколько неправильных галактик, самые большие из которых являются спутниками нашей Галактики, и хорошо видны на небе невооруженным глазом, но… только к югу от экватора. Это – Большое и Малое Магеллановы Облака. Остальные галактики Местной группы – карликовые галактики очень низкой поверхностной яркости. Часть из них тяготеет к нашей Галактике, часть – к туманности Андромеды, а часть образует подгруппу вблизи Маффей-1. Таким образом, группы галактик могут иметь свою структуру, в них нередко наблюдаются отдельные подгруппы, члены которых не отходят далеко друг от друга.

 NASA

Причиной возникновения наблюдаемых особенностей взаимодействующих галактик является гравитационное воздействие близких галактик друг на друга. Форма взаимодействующих галактик бывает настолько необычна и трудно объяснима, что долгое время обсуждалась возможность действия гипотетических сил отталкивания между галактиками, неизвестных физике, которые разрывают звездные системы на части. И хотя от этой идеи впоследствии отказались, в изучении взаимодействующих галактик и сейчас остается немало проблем.

Наша Галактика вместе со своими двумя соседями – Большим и Малым Магеллановым Облаком – также образует взаимодействующую систему: от этих двух небольших галактик в сторону нашей Галактики протянулся длинный газовый хвост, состоящий преимущественно из водорода, некогда окружавшего эти неправильные галактики или входившего в их состав. Этот газовый хвост получил название Магелланова Потока. Он не виден ни в один телескоп, и обнаруживается только по слабому радиоизлучению разреженного атомарного водорода на длине волны около 21 см. По крайней мере, часть этого газа со временем упадет на Галактику и смешается с ее межзвездным газом. А через несколько миллиардов лет и сами Магеллановы облака, потеряв энергию своего движения, также окажутся внутри нашей Галактики и постепенно растворятся в ней. Никакими катастрофами это, однако, не грозит. Возможна лишь некоторая активизация процесса образования новых молодых звезд в диске Галактики.

 NASA

На примере групп и скоплений видно, как элементы крупномасштабной структуры, образуемой галактиками, продолжают формироваться и видоизменяться и в нашу эпоху.

Характерная относительная скорость движения галактик в кратных системах и группах составляет 100–200 км/с, в богатых скоплениях – раз в десять выше. За сотни миллионов лет конфигурация галактик в этих системах должна неузнаваемо измениться, а за 1–2 миллиарда лет галактика может переместиться на расстояние, сопоставимое с размером системы. Однако суммарное гравитационное поле галактик и межгалактической среды обеспечивает ту силу взаимного притяжения, которая удерживает галактики, не давая им разлететься. По скорости движения галактик внутри системы можно измерить массу и плотность вещества, создающего требуемое гравитационное поле. Это, в свою очередь, позволяет от распределения числа галактик перейти к оценкам плотности вещества, связанного с галактиками, и сделать вывод, что распределение плотности вещества в пространстве неоднородно не только на малых, но и на больших масштабах.

Самые крупномасштабные структуры Вселенной.

Когда стало известно о существовании скоплений галактик, встал вопрос о том, не образуют ли они, в свою очередь, еще более масштабные системы? И не может ли такая иерархическая структурность распространяться до бесконечности, когда любая система входит в состав другой, а та – в состав еще более крупной, и так далее? Наука дала положительный ответ на первый вопрос и отрицательный – на второй.

Качественно новый уровень в изучении крупномасштабной структуры был достигнут при получении массовых оценок лучевых скоростей (красных смещений) галактик. Знание лучевых скоростей, характеризующих расстояния до галактик (см. ЗАКОН ХАББЛА), дало возможность построения (для некоторых выбранных областей неба) трехмерных карт пространственного распределения галактик, охватывающих масштабы более миллиарда световых лет.

В 2003 на Англо-Австралийском телескопе (в Австралии) была завершена программа массового измерения лучевых скоростей внегалактических объектов, в том числе очень слабых и далеких, в определенно выбранных областях неба. В результате выполнения программы были получены оценки расстояний для рекордно большого числа (ок. 250 тыс.) отдельных галактик. Анализ трехмерной картины распределения галактик, проведенный по этим измерениям в двух противоположных областях неба (вблизи Северного и Южного полюсов Галактики), показал, что описанная выше ячеистая структура прослеживается до расстояния более миллиарда световых лет в каждую сторону, и, по-видимому, продолжается еще дальше. Очевидно, такова структура всей нашей Вселенной.

Гравитация как причина возникновения структур.

 NASA

Действительно, сквозь некоторые скопления просвечивают искаженные дугообразные изображения более далеких галактик, увеличенные по размеру и усиленные по яркости гравитационной линзой. Измерения подтвердили, что одни галактики, без темной массы, не могут объяснить сильное гравитационное поле скоплений, и что масса, вызывающая эффект гравитационной линзы, достаточна для гравитационной устойчивости последних. Поэтому скопления галактик можно считать самыми крупными устойчивыми структурами в природе (это, конечно, не означает, что их размеры или внутренняя структура за миллиарды лет не меняются).

Природа темной массы еще выясняется (рассматривается несколько возможных вариантов элементарных частиц, из которых она состоит), но уже сейчас очевидно, что эта невидимая среда должна играть большую роль и в формировании крупномасштабных структур Вселенной.

Крупномасштабная структура Вселенной

Крупномасштабная структура Вселенной – космологический термин, обозначающий структуру распределения вещества во Вселенной на наибольших видимых масштабах.

Некоторые основные составляющие элементы Вселенной

Примером простейшей структуры в космическом пространстве является система планета-спутник. Кроме двух ближайших к Солнцу планет (Меркурий и Венера), все остальные имеют своего спутника, и в большинстве случаев даже не одного. Если Землю сопровождает лишь Луна, то вокруг Юпитера вращается целых 67 спутников, хотя некоторые из них довольно малы. Однако вместе со своими спутниками планеты Солнечной системы вращаются вокруг Солнца, образуя так называемую планетную систему.

Солнечная система

В результате наблюдений, астрономами было выявлено, что большинство других звезд также входят в состав планетных систем. Вместе с тем сами светила тоже зачастую образовывают системы и скопления, которые назвали звездными. Согласно имеющимся данным, преобладающая часть звезд составляют парные звездные системы, или с кратным количеством светил. В этом плане наше Солнце считается нетипичным, так как оно не имеет пары

Если же рассматривать околосолнечное пространство в более увеличенных масштабах, то становится очевидно, что все звездные скопления вместе со своим планетными системами образуют звездный остров, так называемую галактику Млечный Путь.

История изучения структуры Вселенной

Разнообразные галактики, открытые в рамках проекта SINGS

Разнообразные галактики, открытые в рамках проекта SINGS. Смотреть в полном размере.

Впервые об идее крупномасштабной структуры Вселенной задумался выдающийся астроном Уильям Гершель. Именно ему принадлежат такие открытия как обнаружение планеты Уран и двух ее спутников, двух спутников Сатурна, открытие инфракрасного излучения и идея о движении Солнечной системы сквозь космическое пространство. Самостоятельно сконструировав телескоп и проведя наблюдения, он выполнил объемные подсчеты светил различной яркости в определенных областях небосвода и пришел к выводу, что в космическом пространстве существует большое множество звездных островов.

Позже, в начале ХХ-го века американский космолог Эдвин Хаббл смог доказать принадлежность некоторых туманностей к структурам, отличным от Млечного Пути. То есть было достоверно известно, что за пределами нашей галактики также существуют различные звездные скопления. Исследования в этом направлении вскоре значительно расширили наше понимание Вселенной. Оказалось, что помимо Млечного Пути в космическом пространстве существуют десятки тысяч иных галактик. В попытке составить какую-нибудь упрощенную карту видимой Вселенной ученые наткнулись на тот примечательный факт, что галактики в пространстве распределены неравномерно и составляют собою иные структуры немыслимых размеров.

Скопление галактик в созвездии Гидра

Скопление галактик в созвездии Гидра

Крупномасштабная структура Вселенной

Со временем ученые обнаружили, что галактики-одиночки – достаточно редкое явление во Вселенной. Подавляющая же часть галактик образуют крупномасштабные скопления, которые могут быть различных форм и включать в себя две галактики или кратное число, вплоть до нескольких тысяч. Помимо огромных звездных островов эти массивные звездные структуры включают еще и скопления газа, разогретого до высоких температур. Несмотря на очень низкую плотность (в тысячи раз меньше, нежели в солнечной атмосфере), масса этого газа может значительно превышать суммарную массу всех звезд в некоторых совокупностях галактик.

Полученные результаты наблюдений и расчетов навели ученых на мысль о том, что скопления галактик также могут образовывать иные более крупные структуры. Вслед за этим стали два интригующих вопроса: если сама по себе галактика, сложная структура, является частью некой более масштабной конструкции, то может ли эта конструкция быть составной чего-нибудь еще большего? И, в конце концов, есть ли предел такой иерархичной структурности, когда каждая система входит в состав другой?

Галактические стены напоминают сплетения нейронов в коре головного мозга человека

Галактические стены напоминают сплетения нейронов в коре головного мозга человека

Положение Земли во Вселенной

Несколько отходя от темы, укажем положение нашей планеты в столь сложной структуре:

  1. Планетарная система: Солнечная
  2. Местное межзвёздное облако
  3. Галактический рукав Ориона
  4. Галактика: Млечный Путь
  5. Скопление галактик: Местная группа
  6. Сверхскопление галактик: Местное сверхскопление (Девы)
  7. Сверхскопление галактик: Ланиакея
  8. Стена: Комплекс сверхскоплений Рыб-Кита

Материалы по теме

Анализ сформированной учеными трехмерной модели распределения галактик говорит о том, что ячеистая структура наблюдается на расстоянии в более чем миллиард световых лет в любом направлении. Данная информация позволяет полагать, что в масштабе в несколько сотен миллионов световых лет любой фрагмент Вселенной будет иметь почти одинаковое количество вещества. А это доказывает, что в указанных масштабах Вселенная однородна.

Причины возникновения крупномасштабной структуры Вселенной

Крест Эйнштейна

Крест Эйнштейна — гравитационно-линзированный квазар

Опираясь на почти однородное реликтовое излучение, ученые убеждены в том, что и вещество во Вселенной должно распределяться равномерно. Но особенность гравитации в том, что она склонна стягивать любые физические частицы в плотные структуры, тем самым нарушая однородность. Таким образом, спустя какое-то время после Большого Взрыва незначительные неоднородности в распределении вещества в пространстве стали все более стягиваться в некоторые структуры. Их возрастающая гравитация (в силу возрастания массы на объем) постепенно замедляла расширение, пока не остановила его вовсе. Мало того, в некоторых частях расширение обернулось в сжатие, что и стало причиной образования галактик и галактических скоплений.

Подобная модель проверялась при помощи компьютерных расчетов. Учитывая совсем незначительные флуктуации (колебания, отклонения) в однородности реликтового излучения, компьютер просчитал, что такие же мелкие флуктуации в распределении вещества после Большого Взрыва при помощи гравитации вполне могли породить скопления галактик и ячеистую крупномасштабную структуру Вселенной.

Крупномасштабная структура Вселенной

Крупномасштабная структура Вселенной – космологический термин, обозначающий структуру распределения вещества во Вселенной на наибольших видимых масштабах.

  • 1 Некоторые основные составляющие элементы Вселенной
  • 2 История изучения структуры Вселенной
  • 3 Крупномасштабная структура Вселенной
    • 3.1 Положение Земли во Вселенной

    Некоторые основные составляющие элементы Вселенной

    Примером простейшей структуры в космическом пространстве является система планета-спутник. Кроме двух ближайших к Солнцу планет (Меркурий и Венера), все остальные имеют своего спутника, и в большинстве случаев даже не одного. Если Землю сопровождает лишь Луна, то вокруг Юпитера вращается целых 67 спутников, хотя некоторые из них довольно малы. Однако вместе со своими спутниками планеты Солнечной системы вращаются вокруг Солнца, образуя так называемую планетную систему.

    Солнечная система

    В результате наблюдений, астрономами было выявлено, что большинство других звезд также входят в состав планетных систем. Вместе с тем сами светила тоже зачастую образовывают системы и скопления, которые назвали звездными. Согласно имеющимся данным, преобладающая часть звезд составляют парные звездные системы, или с кратным количеством светил. В этом плане наше Солнце считается нетипичным, так как оно не имеет пары

    Если же рассматривать околосолнечное пространство в более увеличенных масштабах, то становится очевидно, что все звездные скопления вместе со своим планетными системами образуют звездный остров, так называемую галактику Млечный Путь.

    История изучения структуры Вселенной

    Разнообразные галактики, открытые в рамках проекта SINGS

    Разнообразные галактики, открытые в рамках проекта SINGS. Смотреть в полном размере.

    Впервые об идее крупномасштабной структуры Вселенной задумался выдающийся астроном Уильям Гершель. Именно ему принадлежат такие открытия как обнаружение планеты Уран и двух ее спутников, двух спутников Сатурна, открытие инфракрасного излучения и идея о движении Солнечной системы сквозь космическое пространство. Самостоятельно сконструировав телескоп и проведя наблюдения, он выполнил объемные подсчеты светил различной яркости в определенных областях небосвода и пришел к выводу, что в космическом пространстве существует большое множество звездных островов.

    Позже, в начале ХХ-го века американский космолог Эдвин Хаббл смог доказать принадлежность некоторых туманностей к структурам, отличным от Млечного Пути. То есть было достоверно известно, что за пределами нашей галактики также существуют различные звездные скопления. Исследования в этом направлении вскоре значительно расширили наше понимание Вселенной. Оказалось, что помимо Млечного Пути в космическом пространстве существуют десятки тысяч иных галактик. В попытке составить какую-нибудь упрощенную карту видимой Вселенной ученые наткнулись на тот примечательный факт, что галактики в пространстве распределены неравномерно и составляют собою иные структуры немыслимых размеров.

    Скопление галактик в созвездии Гидра

    Скопление галактик в созвездии Гидра

    Крупномасштабная структура Вселенной

    Со временем ученые обнаружили, что галактики-одиночки – достаточно редкое явление во Вселенной. Подавляющая же часть галактик образуют крупномасштабные скопления, которые могут быть различных форм и включать в себя две галактики или кратное число, вплоть до нескольких тысяч. Помимо огромных звездных островов эти массивные звездные структуры включают еще и скопления газа, разогретого до высоких температур. Несмотря на очень низкую плотность (в тысячи раз меньше, нежели в солнечной атмосфере), масса этого газа может значительно превышать суммарную массу всех звезд в некоторых совокупностях галактик.

    Полученные результаты наблюдений и расчетов навели ученых на мысль о том, что скопления галактик также могут образовывать иные более крупные структуры. Вслед за этим стали два интригующих вопроса: если сама по себе галактика, сложная структура, является частью некой более масштабной конструкции, то может ли эта конструкция быть составной чего-нибудь еще большего? И, в конце концов, есть ли предел такой иерархичной структурности, когда каждая система входит в состав другой?

    Галактические стены напоминают сплетения нейронов в коре головного мозга человека

    Галактические стены напоминают сплетения нейронов в коре головного мозга человека

    Положение Земли во Вселенной

    Несколько отходя от темы, укажем положение нашей планеты в столь сложной структуре:

    1. Планетарная система: Солнечная
    2. Местное межзвёздное облако
    3. Галактический рукав Ориона
    4. Галактика: Млечный Путь
    5. Скопление галактик: Местная группа
    6. Сверхскопление галактик: Местное сверхскопление (Девы)
    7. Сверхскопление галактик: Ланиакея
    8. Стена: Комплекс сверхскоплений Рыб-Кита

    Материалы по теме

    Крупномасштабная структура Вселенной

    Интерактивная шкала масштабов Вселенной

    Анализ сформированной учеными трехмерной модели распределения галактик говорит о том, что ячеистая структура наблюдается на расстоянии в более чем миллиард световых лет в любом направлении. Данная информация позволяет полагать, что в масштабе в несколько сотен миллионов световых лет любой фрагмент Вселенной будет иметь почти одинаковое количество вещества. А это доказывает, что в указанных масштабах Вселенная однородна.

    Причины возникновения крупномасштабной структуры Вселенной

    Крест Эйнштейна

    Крест Эйнштейна — гравитационно-линзированный квазар

    Опираясь на почти однородное реликтовое излучение, ученые убеждены в том, что и вещество во Вселенной должно распределяться равномерно. Но особенность гравитации в том, что она склонна стягивать любые физические частицы в плотные структуры, тем самым нарушая однородность. Таким образом, спустя какое-то время после Большого Взрыва незначительные неоднородности в распределении вещества в пространстве стали все более стягиваться в некоторые структуры. Их возрастающая гравитация (в силу возрастания массы на объем) постепенно замедляла расширение, пока не остановила его вовсе. Мало того, в некоторых частях расширение обернулось в сжатие, что и стало причиной образования галактик и галактических скоплений.

    Подобная модель проверялась при помощи компьютерных расчетов. Учитывая совсем незначительные флуктуации (колебания, отклонения) в однородности реликтового излучения, компьютер просчитал, что такие же мелкие флуктуации в распределении вещества после Большого Взрыва при помощи гравитации вполне могли породить скопления галактик и ячеистую крупномасштабную структуру Вселенной.


    Вселенная представляется человеку бесконечной, неизменной и вечной. Однако по современным представлениям это не так. Познакомимся с самыми важными фактами о строении Вселенной, кратко проследим ее эволюцию.

    Строение Вселенной

    Гипотезы о строении и эволюции Вселенной выдвигались еще в античности. Уже когда появилось учение Коперника многим интересующимся данной темой было ясно, что Земля — это лишь песчинка в огромном океане космоса. С развитием астрономии выяснили, что расстояние до максимально удаленных объектов Вселенной составляет приблизительно 45,7 млрд световых лет ($4.3×10^$м). И в таких масштабах Вселенная имеет однородную нитевидную структуру. Вещество во Вселенной распределено в нитевидных сверхскоплениях галактик, области между которыми составляют размеры порядка нескольких миллионов световых лет и не имеют светящегося вещества.

    Сверхскопление — это группа скоплений галактик, содержащая от двух до двадцати скоплений. Каждое скопление — это гравитационно-связанная система нескольких галактик, имеющая диаметр порядка десятков миллионов световых лет и массу порядка $10^-10^$ солнечных масс.

    Эволюция Вселенной

    Изучение Вселенной показывает, что ее размер со временем увеличивается — Вселенная расширяется. Процесс расширения Вселенной начался 14 млрд лет назад из плотного компактного состояния в результате события, называемого Большим взрывом.

    Планковская эпоха

    Схема эволюции Вселенной такова. В самые ранние моменты жизни (от нуля до $ ^ $с, планковская эпоха) вещество имело плотность порядка $ ^ $ кг на м³ и температуру порядка $ ^ $К. Квантовые эффекты преобладали над остальными, а все фундаментальные взаимодействия существовали в виде одного общего взаимодействия.

    Ранние этапы эволюции Вселенной

    Эта эпоха началась с отделения гравитации от общего электроядерного взаимодействия. Плотность вещества в эту эпоху упала до уровня $10^$ кг на м³, а температура — до $10^$К. Отделение гравитации привело к нарушению симметрии в молодой Вселенной и заложило основу для неоднородности в ней. Сама Вселенная в этот момент представляла кварк-глюонную плазму.

    Ко времени $10^$с температура во Вселенной упала настолько, что свободные кварки и глюоны начали объединяться в адроны, в том числе в протоны и нейтроны — основу вещества будущей Вселенной. Сильное взаимодействие отделилось от электрослабого. Адроны обрели стабильность, причем одновременно существовали как частицы, так и античастицы.

    Лишь ко времени $10^$с плазма охлаждается настолько, что частицы и античастицы начинают аннигилировать с образованием большого числа фотонов. Небольшое нарушение симметрии обусловило избыток вещества над антивеществом.

    Далее по мере уменьшения плотности и температуры возникает возможность нуклеосинтеза: протоны объединяются в ядра, электроны занимают места в электронных оболочках. Этот процесс начинается примерно через 300 тыс. лет после Большого взрыва.


    Рис. 2. Эволюция Вселенной.

    Современная эпоха

    Нуклеосинтез завершается образованием во Вселенной 75 % водорода, 25 % гелия и следов других элементов. Ко времени 800 млн лет после Большого взрыва начинается эра вещества. Газ, заполняющий Вселенную, начинает образовывать неоднородности и сгустки. Средняя температура в это время во Вселенной опустилась до тысяч кельвинов, что недостаточно для ядерных реакций.

    Что мы узнали?

    Вселенная образовалась 14 млрд лет назад в результате Большого взрыва. По мере расширения плотность и температура падали, что привело к образованию вещества, облаков газа, а впоследствии и звезд. В самом крупном масштабе Вселенная имеет волокнистую структуру сверхскоплений и областей без излучающего вещества.


    Наша Галактика быстро движется к массивной области космического пространства – Великому аттрактору.

    Вселенная в больших масштабах

    В самых больших масштабах Вселенная выглядит как огромная космическая паутина. Звезды соединяются в галактики, которые группируются в галактические группы. Многие группы, связанные вместе, приводят к скоплениям галактик, и иногда кластеры сливаются вместе, создавая еще более крупные кластеры. Многие скопления вместе, охватывающие сотни миллионов или даже миллиарды световых лет в поперечнике, по-видимому, образуют самые большие структуры из всех: сверхскопления.

    Наше собственное сверхскопление – Ланиакея – состоит примерно из 100 000 галактик, более чем в 10 раз богаче, чем самые крупные известные скопления. Однако эти сверхскопления только кажутся структурами. По мере старения Вселенной отдельные компоненты сверхскоплений раздвигаются, показывая, что они все-таки не являются истинными структурами.


    Горячее море материи и излучения, будучи плотным и расширяющимся, со временем остывает. В результате, в течение достаточно долгого времени будут формироваться атомные ядра, нейтральные атомы и, в конечном итоге, звезды, галактики и их скопления. Непреодолимая сила гравитации делает это неизбежным, благодаря ее воздействию как на обычную (атомную) материю, которую мы знаем, так и на темную материю, заполняющую нашу Вселенную, природа которой до сих пор неизвестна.

    Еще больше увлекательных статей о последних открытиях в области астрономии и астрофизики, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

    За пределами Млечного Пути

    Довольно часто в центре находятся сверхмассивные эллиптические галактики, причем самая массивная из обнаруженных на сегодня показана ниже: это IC 1101, она более чем в тысячу раз массивнее нашего собственного Млечного Пути.


    Самая массивная галактика из известных – IC 1101 – выглядит так.

    Так что же больше скопления галактик? Сверхскопления – это скопления скоплений, соединенных большими космическими нитями темной и нормальной материи, гравитация которых взаимно притягивает их к их общему центру масс. Вы не были бы одиноки, если бы думали, что это всего лишь вопрос времени – то есть времени и гравитации – когда все скопления, составляющие сверхскопление, сольются вместе. Когда это произойдет, мы, в конечном итоге, сможем наблюдать единую связанную космическую структуру беспрецедентной массы.

    Местная группа галактик

    В нашем собственном районе местная группа, состоящая из Андромеды, Млечного Пути, Треугольника и, возможно, 50 меньших карликовых галактик, находится на окраине сверхскопления Ланиакея. Наше местоположение помещает нас примерно в 50 000 000 световых лет от основного источника массы: массивного скопления Девы, которое содержит более тысячи галактик размером с Млечный Путь. По пути можно найти много других галактик, групп галактик и небольших скоплений.


    Млечный Путь окружают другие, более мелкие галактики.

    Если мы посмотрим на наше собственное окружение, то обнаружим, что существует большая коллекция из более чем 3000 галактик, которая составляет крупномасштабную структуру, включающую нас, Деву, Льва и многие другие окружающие группы. Плотное скопление Девы – самая большая его часть, составляющая чуть более трети общей массы, но в нем есть много других концентраций массы, включая нашу собственную локальную группу, соединенных вместе невидимой силой гравитации и невидимыми нитями темной материи.

    Великая тайна

    Здорово, правда? Вот только на самом деле эти структуры не настоящие. Они не связаны друг с другом и никогда не станут таковыми. Однако сама идея существования сверхскоплений и название для нашего – Ланиакея – будут сохраняться в течение длительного времени. Вот только назвав объект, реальным его не сделаешь: через миллиарды лет все различные компоненты будут просто разбросаны все дальше и дальше друг от друга, и в самом отдаленном будущем нашего воображения они исчезнут из поля зрения. Все это из-за того простого факта, что сверхскопления, несмотря на их названия, вовсе не являются структурами, а просто временными конфигурациями, которым суждено быть разорванными расширением Вселенной.

    Читайте также: