Круговорот меди в природе кратко

Обновлено: 05.07.2024

Медь (лат.Cuprum) - химический элемент. Один из семи металлов,из-
вестных с глубокой древности. По некоторым археологическим данным -
медь была хорошо известна египтянам еще за 4000 лет до Р.Хр. Знакомс-
тво человечества с медью относится к более ранней эпохе,чем с железом;
это объясняется с одной стороны более частым нахождением меди в сво-
бодном состаянии на поверхности земли, а с другой - сравнительной лег-
костью получения ее из соединений. Древняя Греция и Рим получали медь
с острова Кипра (Cyprum),откуда и название ее Cuprum. Особенно важна
медь для электротехники.
По электропроводности медь занимает второе место среди всех ме-
таллов, после серебра. Однако в наши дни во всем мире электрические
провода, на которые раньше уходила почти половина выплавляемой меди,
все чаще делают из аллюминия. Он хуже проводит ток, но легче и доступ-
нее. Медь же, как и многие другие цветные металлы, становится все де-
фицитнее.Если в 19 в. медь добывалась из руд, где содержалось 6-9%
этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми,
а промышленность многих стран перерабатывает руды, в которых всего
0,5% меди.
Медь входит в число жизненно важных микроэлементов. Она участвует
в процессе фотосинтеза и усвоении растениями азота, способствует син-
тезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в
почву в виде пятиводного сульфата - медного купороса. В значительных
количествах он ядовит, как и многие другие соединения меди, особенно
для низших организмов. В малых же дозах медь совершенно необходима
всему живому.


_Химические и физические свойства элемента,определяющие его миграцию.

Среднее содержание меди в различных геосферах.

в земной коре составляет 5,5*10 5-3 0(вес %)
литосфере континентальной 2*10 5-3
гранитной оболочки 3*10 5-3
в живом веществе 3,2*10 5-4
в морской воде 3*10 5-7
хондриты 1*10 5-2
ультраосновные 2*10 5-3
(дуниты и др.)
основные 1*10 5-2
(базальты,габбро и др.)
средние 3,5*10 5-3
(диориты,андезиты)
кислые 2*10 5-3
(граниты,гранодиориты)
щелочные 5*10 5-4

Среднее содержание меди в осадочных породах.

глины - 4,5*10 5-3
сланцы - 4,5*10 5-3
песчаники - 0,1*10 5-3
карбонатные породы - 0,4*10 5-3

Среднее содержание меди в глубоководных осадках.


известковистые - 3*10 5-3
глинистые - 2,5*10 5-2

Вывод:содержание меди больше в основных породах,чем в кислых.

Медь входит более чем в 198 минералов, из которых для промышленнос-
ти важны только 17,преимущественно сульфидов, фосфатов, силикатов,кар-
бонатов,сульфатов. Главными рудными минералами являются халькопирит
CuFeS 42 0,ковеллин CuS,борнит Cu 45 0FeS 44, 0халькозин Cu 42 0S.

Окислы: тенорит ,куприт
Карбонаты: малахит ,азурит
Сульфаты: халькантит ,брошантит
Сульфиды: ковеллин ,халькозин ,халькопирит,
борнит

Чистая медь - тягучии,вязкий металл красного, в изломе розового
цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голу-
бой. Эти же цвета, характерны и для многих соединений меди, как в
твердом состаянии, так и в растворах.
Понижение окраски при повышении валентности видно из следующих двух
примеров:

CuCl - белый Cu 42 0O - красный
CuCl 42 0+H 42 0O - голубой CuO - черный

Карбонаты характеризуются синим и зеленым цветом при условии содер-
жания воды, чем намечается интересный практический признак для поис-
ков.
Практическое значение имеют: самородная медь, сульфиды, сульфосо-
ли,и карбонаты(силикаты).
С.С.Смирнов так характеризует парагенетические ряды меди:
при окислении сульфид - куприт + лимонит (кирпичная медная руда)
- мелаконит (смоляная медная руда) - малахит + хризоколла.

Из приведенной характеристики ионов вытекает общии тип миграции ме-
ди: слабая миграция ионов w=1 и очень сильная - ионов w=2 с рядом до-
вольно легко растворимых солей галоидов и аниона(So 44 0); равным образом
осаждаемость благодаря активной поляризации ионами:
(Co 43 0),(SiO 44 0),(PO 44 0), (AsO 44 0).
Типы распределения и концентрации меди весьма многочисленны и раз-
нообразны. Мы можем выделить шесть главных типов, причем в основе бу-
дут лежать следующие гохимические положения:
1) легкое отщепление меди из магм с переходом в пневматолиты еще
при дифференцации основных пород и даже может быть при ликвации уль-
траосновных;
2) при гидротермальном процессе главное осаждение меди в геофазы
прцессов G-H, т.е. около 400-300 50 0;
3) в гипергенной обстановке фиксация меди преимущественно анионами
(So 43 0),(SiO 43 0) при общей большой миграционной способности меди (особенно
в виде легкорастворимого сульфата).
С.С. Смирнов характеризует миграцию так: "миграция меди тем более
облегчается, чем выше в рудах отношение серы к меди, чем менее активна
обстановка, чем менее влажен климат и чем более проницаема рудная мас-
са".

Рассмотрим более подробно геохимическую миграцию элемента.

В гидротермах Cu мигрирует в форме различных комплексов Cu 5+ 0и Cu 52+
и концентрируется на геохимических барьерах в виде халькопирита и дру-
гих сульфидов (меднопорфировые,медноколчеданные и др. месторождения).
В поверхностных водах обычно содержится n*10 5-6 0г/л Cu, что соот-
ветствует коэффиценту водной миграции 0,n. Большая часть Cu мигрирует
с глинистыми частицами, которые энергично ее адсорбируют. Наиболее
энергично мигрирует в сернокислых водах зоны окисления сульфидных руд,
где образуется легко растворимый CuSO 44 0. Содержание Cu в таких водах
достигает n г/л, на участках месторождений возникают купоросные ручьи
и озера.
Однако такая миграция непродолжительна: при нейтрализации кислых
вод на барьере Д1 осождаются вторичные минералы Cu, она адсорбируется
глинами, гидроксидами марганца, гумусом, кремнеземом. Так образуется
повышенное содержание меди в почвах и континентальных отложениях ланд-
шафтов на участках месторождений. Медь здесь активно вовлекается в би-
ологический круговорот, появляются растения, обогощенные медью, круп-
ные размеры приобретают моллюски и другие животные с голубой
кровью.Многие растения и животные плохо переносят высокие концентрации
меди и болеют.
Значительно слабее миграция Cu в ландшафтах влажного климата со
слабокислыми водами. Медь здесь частично выщелачивется из почв. Из-
вестны болезни животных а растений, вызванные недостатком меди. Осо-
бенно бедны Cu пески и трфянники, где эффективны медные удобрения и
подкормка животных.
Медь энергично мигрирует и в пластовых водах, откуда она осаждается
на восстановительном сероводородном барьере. Эти процессы особенно ха-
ракткрны для красноцветной формации, к которым приурочены месторожде-
ния и рудопроявления типа "медистых песчаников".


_Основные типы генезиса наиболее крупных месторождений.


1) В ультраосновных породах и наритах вместе с пирротином и, следова-
тельно, в ассоциации с никелем, кобальтом, частично с палладием. Обыч-
но халькопирит является последним сульфидом в этом ряду кристаллизации
и следовательно приурочен преимущественно или к эндоконтактовым или
даже к экзаконтактовым зонам.
2) Выделение меди в пустотах мелафиров и вообще в основных эффузивах
вместе с циолитами в начале геофазы H.
3) Выделение пирита вместе с халькопиритом из дериватов гранодиорито-
вой магмы и связанных с ними альбитофиров.Колчиданные линзы с цинком и
золотом (например Урал).
4) Медно-жильный комплекс в связи с кислыми гранитами, с выделением
меди в геофазах G-H, между комплексами Au-W-B и B-Zn-F. К этому типу
относятся ивзрывные месторождения меди в парфировых рудах и во вторич-
ных кварцитах. В этом случае интересна связь с молебденом и бором.Ок-
варцевание с выносом всех катионов, очевидно, перегретыми гидролизиру-
ющими водами и эманациями. Генетический тип представляет огромный ин-
терес, но самый ход процесса остается не ясным. Большое промышленное
значение, несмотря на низкое содержание (1-2%)Cu.
5) Контактный тип кислых и гранодиоритовых магм обычно во вторую фазу
коктактового процесса накопления гранато-пироксенного скарна;медь
обычно накапливется в геофазы G-H с молебденитом, пиритом, шеелитом,
иногда гематитом среди магнитита более ранней кристаллизации. Этот тип
в небольших количествах всегда присутствует в контактных магнетитах.
Очень типичен для Срдней Азии (Тянь-Шань).
6) Очень многочисленна и своеобразна осадочные скопления меди в пес-
чаниках, сланцах, песках, битуминозных осадках. Весьма возможен в от-
дельных случаях билогический процесс образования (Мансфильд в Тюрин-
гии,пермские песчаники в Приуралье). Геохимически изучен плохо. Инте-
ресна связь с молебденов, хромом, ванадий, обуславливающие особые руд-
ные концетрации. Иногда наблюдаются корелляция между Cu и С; однако,
далеко не всегда и, как показали исследования А.Д.Архангельского, наи-
большие концентрации меди вызваны чисто химическими процессами.

Четыре типа колчеданных месторождений:

1. Месторождения Кипорского и Уральского типа

отношение Pb:Zn:Cu - 1:10:50

2. Рудно-Алтайский - 1:3:1

3. Малый Кавказ - 1:5:10

(схема строения колчеданного месторождения см. рис 1)
К зонам химического выветривния относятся медно-сульфидные место-
рождения (строение зоны окисления медно-сульфидных месторождений см.
рис 2)

Читайте также: