Космический ядерный взрыв кратко

Обновлено: 03.07.2024

Я́дерный взры́в — взрыв ядерного взрывного устройства (ядерного боеприпаса), огромной мощности и разрушительной силы, вызванный высвобождением ядерной энергии, либо при быстро развившейся цепной реакции деления тяжелых ядер ( 235 U или 239 Pu), либо при термоядерной реакции синтеза. Принципиальное отличие от взрыва обычного снаряда заключается в скорости (ядерный взрыв происходит в миллионные доли секунды, т.е. в тысячу раз быстрее, чем взрыв тротила) и сопровождается выделением колоссального количества энергии в виде тепла и радиоактивных излучений.

Ядерные взрывы природного происхождения происходят в космосе и связаны с гибелью и рождением новых звезд.

Ядерные взрывы искусственного происхождения проводятся на земле или околоземном пространстве и вызываются применением стратегического ядерного оружия. Кроме того, ядерные взрывы могут проводиться и в мирных целях.

История

К возможности управления ядерной энергией и осуществления ядерных взрывов современная ядерная физика подошла сравнительно недавно - в начале Второй мировой войны. Первое ядерное взрывное устройство (его назвали атомной бомбой) была создано в США, группой ученых, в которую входили и европейские ученые, эмигрировавшие в США из-за гитлеровского режима. Первый испытательный ядерный взрыв был произведён 16 июля 1945 близ Аламогордо (штат Нью-Мексико, США).

Единственное в истории человечества боевого применения ядерного оружия было проведено вооружёнными силами США в конце Второй мировой войны. Стратегические бомбардировщики США сбросили две атомные бомбы на японские города: 6 августа 1945 года – на город Хиросима и 9 августа 1945 на город Нагасаки.

Физические явления во время ядерного взрыва

В момент ядерного взрыва возникает яркая ослепительная вспышка, видимая на десятки километров. Вслед за вспышкой образуется огненный шар (при воздушном взрыве, а при наземном — полушарие), который, в свою очередь, образует светящуюся область. Светящаяся область является источником мощного светового излучения, многократно превосходящего яркость солнца.

Температура в центре взрыва за доли секунды повышается до нескольких миллионов градусов, в результате чего вещество заряда переходит в газообразное состояние. Давление газов мгновенно достигает нескольких миллиардов атмосфер. Расширяясь, раскаленные газы сжимает прилегающие слои воздуха и создают резкий перепад давления на границе сжатого слоя, образуя тем самым ударную волну, которая распространяется в различные направления от центра взрыва.

Одновременно с ударной волной из зоны ядерного взрыва распространяется мощный поток гамма-лучей и нейтронов, которые образуются в ходе ядерной реакции и в процессе распада радиоактивных осколков деления. Испускание гамма-лучей и нейтронов при ядерном взрыве называется проникающей радиацией.

Светящаяся область (огненный шар) через 1-2 сек после взрыва достигает своих максимальных размеров и из-за уменьшения плотности газов в ней начинает подниматься вверх, при этом постепенно остывая и утрачивая яркость свечения, превращаясь в клубящееся облако.

Из-за большой разности температур мощные восходящие потоки воздуха поднимают с поверхности земли в районе взрыва большое количество пыли и грунта и образуют пылевой столб, который при наземном взрыве соединяется с клубящимся облаком взрыва и приобретает характерную для ядерного взрыв форму в виде гриба..

Пыль, которая втягивается в облако с поверхности земли, содержит радиоактивные вещества, состоящие из осколков деления части ядерного заряда, которое не прореагировало и искусственных радиоактивных изотопов. При остывании радиоактивные вещества в облаке частично смешиваются с расплавленным грунтом, и частично оседают на поверхности с пылинками и капельками конденсирующихся паров воды, содержащихся в воздухе, и под влиянием силы тяжести выпадают вместе с ними на землю как в районе взрыва, так и по пути движения по воздействием ветра облака взрыва. Выпавшие на поверхность земли и на различные объекты радиоактивные вещества создают радиоактивное заражение местности и объектов.

В результате воздействия гамма-излучения ядерного взрыва на атомы окружающей среды и образования в этой среде потока электронов и положительных ионов возникают мощные электрические и магнитные поля, которые вызывают повреждения радиоэлектронной аппаратуры, нарушают работу радио – и радиоэлектронных средств. Образование электрических и магнитных полей происходит в очень короткий промежуток времени и это явление называют электромагнитный импульс.

Образующиеся в процессе ядерного взрыва мощная ударная волна, интенсивное световое излучение и проникающая радиация, электромагнитный импульс, а также возникающее впоследствии радиоактивное заражение местности и объектов называют поражающими факторами ядерного взрыва.

Классификация ядерных взрывов

  • по местоположению центра ядерного взрыва (точки нахождения заряда в момент подрыва боеприпаса)
  • по мощности ядерного заряда

Классификация по мощности

Мощность ядерного взрыва характеризуется тротиловым эквивалентом (массе тринитротолуола, при взрыве которого выделится столько же энергии, сколько при ядерном взрыве). Единицами измерения мощности ядерного взрыва являются 1 килотонна (кт) или 1 мегатонна (Мт) тротилового эквивалента.

5 августа 1963 года в Москве был подписан международный договор о запрещении ядерных испытаний в космосе, на Земле, в атмосфере и под водой. С того времени никаких ядерных взрывов в космосе не устраивалось, однако до этой даты в СССР и США было проведено несколько интересных экспериментов в военных и научных целях. О них и пойдет речь, а ведущий этого блога — экскурсовод Александр Яровитчук.

Сама ракетно-космическая история берет начало из желания военных иметь носитель ядерной бомбы, который мог бы доставить заряд в любую точку планеты. Однако первые полеты ракет в космос были мирными: первый спутник, первое животное, первый человек.


Макет ракеты-носителя, предназначенный для запуска как ядерных боеголовок, так и человека в космос

Первую же ядерную бомбу на большой высоте взорвали США 27 августа 1958 года. Эксперимент назывался Argus. Боеголовку мощностью 1,7 килотонны в тротиловом эквиваленте подорвали на высоте 170 км над поверхностью Земли.

Было известно, что ядерный взрыв порождает не только выброс энергии и взрывную волну, но и электромагнитный импульс, который может привести к сбоям в связи и электрических системах приборов, а также радиоактивные частицы, которые влияют на здоровье человека.

В космосе, где нет атмосферы, взрывная волна не образуется, а вот электромагнитная волна могла стать отличным способом выводить из строя электрические устройства ракет потенциального противника.

Таким образом, ядерный взрыв в космосе позволил бы перехватывать и выводить из строя советские ракеты, глушить переговоры противника и при этом не создавать разрушений на Земле.

Эта гипотеза подтвердилась. Приборы ломались, и не было связи на расстоянии 80 км от взрыва. Правда, эффект был не таким сильным, как ожидали военные.

Далее в ходе того же эксперимента были подорваны с перерывами в три дня еще две боеголовки на разных высотах (300 и 800 км) для сравнения поражающих факторов.

Схема распространения радиации после ядерного взрыва в космосе

Взрыв — необычайно красивое зрелище: сполохи, как у фейерверка, красные и фиолетовые, с прожилками и вихрями. Вид совсем не похож на привычный ядерный гриб.


Фотография вспышки ядерного взрыва, снятая с расстояния 1200 км

Эта красота вызвала опасения, что яркость вспышки может даже привести к слепоте.

В том же 1958 году после серии наземных и атмосферных взрывов США присоединились к временному мораторию о прекращении ядерных испытаний. Он продлился 33 месяца. Руководство СССР после конфликта на Кубе в 1961 году вышло из договора и начало свои испытания.

Первая бомба из СССР взорвалась в космосе 27 октября 1961 года. Баллистическая ракета Р-12 вывела на высоту 150 км заряд в 1,2 килотонны в тротиловом эквиваленте.

Через час такую же бомбу подорвали на высоте 300 км.

Это был чудовищный взрыв, превышающий по силе все остальные космические взрывы, как прошлые, так и будущие, в пять раз. При этом никаких звуков, тряски и дрожания не было. Зато вспышку от взрыва видели даже на расстоянии 6 тыс. км. На Гавайях отключились все электрические приборы. Почти над всей территорией Тихого океана еще несколько дней были видны полярные сияния. Радиационные пояса фиксировались еще пять лет.

Есть несколько научных работ, которые утверждают, что последствия этих испытаний наблюдаются и сейчас в виде электрических разрядов в ионосфере и резкого увеличения радиационного фона в высоких слоях атмосферы. В этих местах фиксируется и повышение концентрации кадмия Cd-109, который использовался в бомбах.

Планировался еще похожий взрыв, но на высоте 1000 км, однако во избежание больших проблем со спутниками этот проект под названием Urraca был отменен.

Следующий успешный ядерный взрыв США назывался Checkmate. Это был меньший заряд — всего 7 килотонн. Его подорвали 20 октября 1962 года на высоте 147 км.

Особенностью этого взрыва было его проведение над степной областью Казахстана.


Полоса предполагаемого ядерного взрыва над Казахстаном

Чтобы избежать ожогов глаз местных жителей, взрыв решили проводить не в ночное время, как в США, а в дневное и при облачной погоде. Вспышка была заметна даже сквозь облака, но визуального исследования не проводилось. Хотя мощность бомбы была меньше, чем в американском эксперименте, из-за места взрыва повреждений от испытания было больше. В приборах с керамическими изоляторами на воздушных линиях электропередач возникали короткие замыкания и от этого возгорания.

Даже силовой кабель, зарытый на глубине 1 м, полностью вышел из строя. Связи не было на расстоянии 1000 км.

Такое же взрыв, но на вдвое большей высоте, был произведен 28 октября.

Последний взрыв, который можно с натяжкой назвать космическим, произошел 1 ноября.

Он имел мощность 410 килотонн и назывался Kingfish. Его провели на границе атмосферы, на высоте 97 км.


Фотография взрыва Kingfish

С тех пор ядерных испытаний не было, но их последствия иногда регистрируются и сейчас. Мы же должны помнить историю, чтобы разумно пользоваться силой атомного ядра.




Всем современникам давно известна та ужасающая гонка вооружений, устроенная американцами и Советским Союзом после окончания Второй Мировой Войны. И главным объектом в этом действии являлся космос, используемый далеко не в благих и мирных целях.

Так, к концу пятидесятых годов прошлого века все мировые СМИ трубили не только о запусках спутников, но о прогремевших ядерных взрывах в ближайшем к Земле космическом пространстве. Разумеется, Союз тоже был в курсе подобных экспериментов, но вот про советские испытания не знал в мире никто. "Железный занавес" закрыл доступ к секретной информации о ядерных опытах СССР. Впрочем, она не разглашается и по сей день, а все имеющиеся рассказы о советских военно-космических операциях - это неофициальная информация.

Безусловно, и СССР, и США занимались сбором данных о том, как влияет ядерный взрыв и радиация, "вылупляющаяся" из него, как цыпленок из яйца, на рабочее состояние спутниковой аппаратуры, ракет и системы, связывающие Землю с "космосом". Закончилась эта вакханалия только в 1963 году, благодаря подписанию договора между тремя странами, включая Великобританию. Данный документ ставил под запрет все дальнейшие испытания ядерного оружия как в космосе, так и в земной атмосфере, а также под водой.

Эксперименты американцев

Ядерный взрыв в космосе, устроенный американцами, между прочим, не раз и не два, с одной стороны, носил научный характер, с другой - все уничтожающий. Ведь никто не знал, как поведет себя радиационный фон после взрыва. Ученые могли лишь строить догадки, но такого шокирующего материала, который они в итоге получили не ожидал никто. Ниже будет рассказано о влиянии ядерного взрыва в космосе на обычную земную жизнь и их жителей.

Первой и самой известной стала операция под названием "Аргус", проведенная одним сентябрьским днем в 1958 году. Причем район для подготовки взрыва ядерной бомбы в космосе подбирали очень тщательно.

Подробности операции "Аргус"

Итак, в начале осени 1958 года южная Атлантика превратилась в настоящий испытательный полигон. Операция заключалась в испытаниях ядерного взрыва в космосе в пределах радиационных поясов Ван-Аллена. Обозначенной целью являлось выяснение всех последствий для средств связи, а также электронной начинки спутниковых "тел" и баллистических ракет.

Второстепенная цель была не менее интересна: ученым нужно было подтвердить, либо опровергнуть факт образования искусственного радиационного пояса в пределах нашей планеты посредством ядерного взрыва в космосе. Поэтому американцы выбрали очень предсказуемое место, в котором имеется особая аномалия: именно на юге Атлантического региона радиационные пояса подступают ближе всего к земной поверхности.

запуск баллистической ракеты

Для такой глобальной операции американское руководство создало из второго флота страны специальное соединение, назвав его числом 88. В его состав входило девять судов с более, чем четырьмя тысячами сотрудников. Такое количество было необходимо из-за масштабности самого проекта, ведь после ядерного взрыва в космосе американцам надо было собирать полученные данные. Для этих целей на кораблях находились особенные ракеты, предназначенные для геодезических запусков.

В этот же период в космическое пространство был выведен спутник Explorer-4. Его задачей являлось вычленение из общей космической информации данных о радиационном фоне в поясе Ван-Аллен. Был еще и его брат - Explorer-5, запуск которого провалился.

Каким же образом происходило испытание взрыва ядерной бомбы в космосе? Первый запуск был осуществлен еще 27 августа. Ракета была доставлена на высоту 161 км. Второй - 30 августа, тогда ракета поднялась до 292 км, а вот третий, проведенный 6 сентября, вошел в историю как самый высотный и самый большой ядерный взрыв в космосе. Сентябрьский запуск ознаменовался высотой в 467 км.

Мощность взрыва была определена в одну 1,7 килотонны, а одна боеголовка имела вес в почти 99 кг. Для выяснения того, что будет от ядерного взрыва в космосе, американцы отправляли боеголовки, используя баллистическую ракету Х-17А, предварительно модифицированную. Она имела длину 13 м и диаметр 2 м.

В итоге, после сбора всех исследовательских данных операция "Аргус" доказала, что из-за электромагнитного импульса, полученного в последствии взрыва, аппаратура и связь может не просто повредиться, но и окончательно выйти из строя. Правда, помимо данной информации, была выявлена сенсационная новость, подтверждающая возникновение искусственных радиационных поясов на нашей планете. Американская газета, используя фото ядерного взрыва из космоса, описала "Аргус" как самый крупномасштабный научный опыт за всю историю современного человечества.

А то самое соединение 88, попавшее в непосредственную гущу событий, расформировали и, согласно достоверным источникам, умерших от рака людей среди них было больше, чем в группах, занимавшихся контролем и учетом данных.

Советские секретные операции

Советский Союз тоже интересовался поражающими факторами от ядерного взрыва в космосе, поэтому, согласно неподтвержденным данным, была проведена целая серия экспериментов под кодовым названием "Операция К". Испытания проводились уже после американских. Эксперименты по выяснению вопроса, возможен ли ядерный взрыв в космосе, советские ученые проводили на ракетном полигоне, что расположен в поселении Капустин Яр.

Всего было проведено пять испытаний. Первые два в 1961-м, осенью, а через год почти в это же время - остальные три. Все они отмечались буквой "К" с порядковой цифрой запуска. Для того чтобы понять, как выглядит ядерный взрыв из космоса, запускалось две баллистических ракеты. Одна была оснащена зарядом, а другая имела особые датчики, следившие за процессом.

Невероятный взрыв вид из космоса

Во время проведения первых двух операций заряды достигли отметки 300 и 150 км, соответственно, а остальные три имели схожие данные, кроме "К-5" - она взорвалась на высоте 80 км. Со слов испытателя Бориса Чертока, написавшего книгу "Ракеты и люди", вспышка от взрыва светилась всего малую долю секунды, она была похожа на второе солнце. СССР выяснил ту же информацию, что и американцы - все радиоприборы работали с заметными нарушениями, а радиосвязь вообще на некоторое время была прервана в радиусе ближайшего района.

Взрывы в космосе

Но помимо указанных выше испытаний, в промежутке между американской и советской операциями, США успели проделать еще два ядерных взрыва в космосе, последствия от которых были куда трагичнее.

Один из запусков, совершенный в 1962 году, носил название "Фишбол", но среди военных был известен как "Рыба-звезда". Взрыв должен был произойти на 400-километровой высоте, а его мощность должна была быть равна 1,4 мегатонн. Однако, данная операция оказалась безуспешной. 20 июня 1962 года с ракетного полигона, расположенного на тихоокеанском атолле Джонстон, отправилась баллистическая ракета с технической неисправностью, о которой заведомо известно не было. Таким образом, через 59 секунд после старта ее двигатель просто отключился.

Тогда для предотвращения глобальной катастрофы, офицер по безопасности отдал ракете команду самоликвидироваться. Ракета была взорвана на высоте всего в 11 км, данная высота является крейсерской для многих гражданских самолетов. В итоге, к счастью для американцев, взрывчатое вещество уничтожило ракету, что позволило обезопасить острова от ядерного взрыва. Правда, часть обломков, упавшая на рядом расположенный атолл Сэнд, смогла заразить местность радиацией.

9 июля эксперимент решили повторить. Но в этот раз запуск прошел успешно и, судя по сделанным фото ядерного взрыва в космосе, красное зарево было видно даже со стороны Новой Зеландии, расположенной в 7 000 км от Джонсона. Данное испытание быстро предали огласке, в отличие от первых экспериментальных опытов.

самый высокий ядерный взрыв

Космические аппараты СССР и США наблюдали за успешным запуском. Союз, благодаря спутнику "Космос-5", смог зафиксировать увеличение гамма-излучения на приличное количество порядков. А ведь спутник плавал в космическом пространстве на 1 200 м ниже взрыва. После было отмечено появление мощного радиационного пояса, и три спутника, прошедшие через его "тело", практически вышли из строя из-за повреждения солнечных батарей. Поэтому в 1962 году СССР сверялся с координатами нахождения данного пояса при запуске ракет "Восток-3" и "Восток-4". Ядерное загрязнение магнитосферы отмечалось в течение нескольких последующих лет.

Следующий американский запуск был совершен 20 октября того же года. Его кодовое название было "Чикмэйт". Боеголовка взорвалась на высоте в 147 км, а местом проведения испытания было само космическое пространство.

Как происходит ядерный взрыв в космосе?

Со всеми испытаниями мы ознакомились, благо никакая другая страна мира не поддержала подобные советско-американские эксперименты. А теперь давайте разберем, какой у ядерного взрыва вид из космоса, согласно научному объяснению. Какая последовательность событий происходит после доставления ядерной боеголовки в космическое пространство?


Первые десятки наносекунд из нее с высокой скоростью выбрасываются гамма-кванты. На высоте 30 км в земной атмосфере гамма-кванты сталкиваются с нейтральными молекулами, впоследствии образуют электроны, наделенные высокой энергией. Развивая огромную скорость, уже заряженные частицы рождают мощное электромагнитное излучение, выводящее из строя абсолютно любые чувствительные электронные приборы, расположенные в зоне излучения на земле.

Поражающий фактор ядерного взрыва

Следующие пара секунд выброшенная энергия из боеголовки сработает как излучение рентгена. Правда, такой рентген состоит из очень мощных волн и электромагнитных потоков. Именно они создают напряжение внутри спутника, из-за чего вся его электронная начинка попросту перегорает.

Что происходит с оружием в космосе после взрыва?

Но на этом взрыв не заканчивается, его итоговая часть выглядит в форме разрозненных ионизированных останков от боеголовки. Они преодолевают сотни километров пока не вступают во взаимодействие с земным магнитным полем. После такого соприкосновения создается низкочастотное электрическое поле, волны которого постепенно распространяются вокруг всей планеты и отражаются от нижних краев ионосферы, а также от земной поверхности.

взрыв по программе

Но даже низкие частоты могут нести разрушительные последствия для электрических цепей и линий, расположенных под водой далеко от места взрыва. Последующие месяцы электроны, попавшие в магнитное поле, постепенно выводят из рабочего состояния всю электронику и авионику земных спутников.

Противоракетная система США

Благодаря наличию фото из космоса с ядерным взрывом и всей прилагающийся информацией по изучению запусков, Америка начала формировать противоракетный оборонительный комплекс. Однако, создать что-то противостоящее ракетам дальнего действия достаточно сложно и, скорее, невозможно. То есть, если против летящей ракеты с ядерной боеголовкой применить ракету из ПРО, то получится настоящий высотный взрыв ядерного характера.

Повреждение космического спутника

В начале XXI века специалисты из Пентагона провели оценочную работу, связанную с последствиями от ядерных космических испытаний. Согласно их отчету, даже небольшой ядерный заряд, например, равный 20 килотоннам (бомба в Хиросиме имела именно такую цифру) и взорванный на высоте до 300 км, всего за пару недель выведет из строя абсолютно все спутниковые системы, не защищенные от радиационного фона. Таким образом, примерно на месяц страны, имеющие на низкой орбите спутниковые "тела", останутся без их помощи.

Последствия

Согласно данным все того же отчета Пентагона, из-за высотного ядерного взрыва многие точки околоземного пространства впитывают повышенную на несколько порядков радиацию, сохраняют такой уровень на протяжении ближайших двух-трех лет. Несмотря на изначальную антирадиационную защиту, предполагаемую в проектировании спутниковой системы, накапливание радиации происходит гораздо быстрее, чем ожидалось.


В таком случае, первоначально прекратят работу ориентационные приборы и связь. Отсюда следует, что срок жизни спутника сократится в разы. Плюс ко всему, повышенный радиационный фон сделает невозможным отправку бригады для осуществления ремонтных работ. Режим ожидания составит от года и более, пока радиационный уровень не снизится. При повторном запуске ядерной боеголовки в космос замена всех аппаратов выльется в сто миллиардов долларов, и это без учета нанесенного вреда экономической сфере.

Какая защита может быть от радиации?

Долгие годы Пентагон пытается разработать правильную программу для создания защиты своим спутниковым аппаратам. Большинство военных спутников перевели на более высокие орбиты, которые считаются наиболее безопасными в отношении выделяемой радиации при ядерном взрыве. Некоторые спутники снабдили специальными экранами, которые могут защитить электронные приборы от радиационных волн. В целом, это что-то наподобие Фарадеевых клеток: своеобразные оболочки из металла, не имеющие доступа извне, а также не допускающие попадания внутрь наружного электромагнитного поля. Оболочка изготавливается из алюминия толщиной до одного сантиметра.

Спутник НАСА

Но глава проекта, разрабатываемого в лабораториях ВВС США, Грэг Джинет, утверждает, что если сейчас американские космические аппараты не полностью защищены от радиации, то в будущем появится возможность устранить ее намного быстрее, чем с этим справляется сама природа. Группа ученых разбирают пошаговую возможность выдувания радиационного фона с низких орбит благодаря искусственному созданию низкочастотных радиоволн.

Что такое HAARP

Если рассматривать вышеотмеченный момент в теоретическом плане, то есть возможность создавать целые флотилии особых спутников, работа которых заключалась бы в производстве этих самых низкочастотных радиоволн вблизи с радиационными поясами. Проект называется HAARP или "Программа исследований высокочастотных активных авроральных областей". Работа ведется на территории Аляски в поселении Гакона.

Здесь занимаются исследованиями активных мест, возникающих в ионосфере. Ученые пытаются добиться результатов в управлении их свойствами. Помимо космического пространства, данный проект направлен и на исследования новейших технологий связи с подлодками, а также другими машинами и объектами, расположенными под землей.


В начале XX века благодаря усилиям Альберта Эйнштейна человечество впервые узнало о том, что на атомном уровне из небольшого количества вещества при определенных условиях можно получить огромное количество энергии. В 30-е годы работу в этом направлении продолжили немецкий физик-ядерщик Отто Хан, англичанин Роберт Фриш и француз Жолио-Кюри. Именно им удалось на практике отследить результаты деления ядер атомов радиоактивных химических элементов. Смоделированный в лабораториях процесс цепной реакции подтвердил теорию Эйнштейна о способности вещества в малых количествах выделять большое количество энергии. В таких условиях рождалась физика ядерного взрыва – наука, поставившая под сомнение возможность дальнейшего существования земной цивилизации.

Ядерный взрыв

Рождение ядерного оружия

Еще в 1939 году французу Жолио-Кюри стало понятно, что воздействие на ядра урана в определенных условиях может привести к взрывной реакции огромной мощности. В результате цепной ядерной реакции начинается спонтанное экспоненциальное деление ядер урана, происходит выделение энергии в огромном количестве. В одно мгновение радиоактивное вещество взрывалось, при этом образующийся взрыв обладал огромным поражающим эффектом. В результате опытов стало ясно, что уран (U235) можно превратить из химического элемента в мощную взрывчатку.

Физики-ядерщики

В мирных целях, при работе ядерного реактора, процесс ядерного деления радиоактивных компонентов носит спокойный и контролируемый характер. При ядерном взрыве основным отличием является то, что колоссальный объем энергии выделяется мгновенно и это продолжается до тех пор, пока не иссякнет запас радиоактивной взрывчатки. Впервые человек узнал о боевых возможностях новой взрывчатки 16 июля 1945 года. В то время, когда в Потсдаме проходила заключительная встреча Глав государств победителей войны с Германией, на полигоне в Аламогордо штата Нью-Мексико состоялось первое испытание атомного боевого заряда. Параметры первого ядерного взрыва были достаточно скромными. Мощность атомного заряда в тротиловом эквиваленте равнялась массе тринитротолуола в 21 килотонну, однако сила взрыва и его воздействие на окружающие объекты произвели на всех, кто наблюдал за испытаниями, неизгладимое впечатление.

Классификация ядерных взрывов

Ядерные взрывы принято классифицировать по двум признакам:

  • по местоположению центра ядерного взрыва (точки нахождения заряда в момент подрыва боеприпаса)
  • по мощности ядерного заряда

Классификация по мощности

Мощность ядерного взрыва характеризуется тротиловым эквивалентом (массе тринитротолуола, при взрыве которого выделится столько же энергии, сколько при ядерном взрыве). Единицами измерения мощности ядерного взрыва являются 1 килотонна (кт) или 1 мегатонна (Мт) тротилового эквивалента.

Диаметр огненного шара, м

Максимум свечения, сек

Время свечения, сек

Высота облака, км

Диаметр облака, км

Сверхмалая (менее 1кт)

Классификация по местоположению центра ядерного взрыва

В зависимости от задач, решаемых с применением ядерного оружия, ядерные взрывы подразделяются на следующие виды:

  • космические
  • воздушные (атмосферные);
  • наземные
  • надводные
  • подземные
  • подводные.

Космический ядерный взрыв

Космическим называется ядерный взрыв, осуществляемых на высотах свыще 100 км.

Воздушный ядерный взрыв и его особенности

Отличие воздушного ядерного взрыва от других видов взрыва состоит в том, что светящаяся область ядерного взрыва не касается поверхности земли. Еще одним признаком воздушного взрыва является то, что пылевой столб, как правило, не соединяется с облаком взрыва. Воздушный взрыв может быть высоким воздушным и низким воздушным.

Высокий воздушный взрыв вызывает поражение людей на большей площади по сравнению с наземным взрывом, и не создает сколько-нибудь значительного радиоактивного заражения местности, поэтому он применяется для нанесения поражения живой силе и боевой технике войск противника, расположенных на открытых местностях.

Низкий воздушный взрыв применяется для поражения войск и боевой техники противника, укрытых в различного рода защитных сооружениях (окопах, траншеях и убежищах).

Ядерные взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (УКВ-диапазона) и нарушать работу радиотехнических средств. На высотах до 25 км основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение и проникающая радиация. Ввиду уменьшения плотности воздуха с высотой зона поражающего действии проникающей радиации увеличивается. Основную долю суммарной дозы излучения на этой высоте составляет нейтронный поток (в 1, 5-2 раза больше доли гамма-излучения).

Высотный взрыв применяется для поражения летательных аппаратов: самолетов, реактивных снарядов, ракет и пр. На высотах до 25 км их поражение происходит от действия унарной волны и светового излучения, а пилотируемых средств, кроме того, и от действия проникающей радиации. Взрывы на высоте 50 км и более применяются для поражения баллистических ракет, головных частей, системы автоматики и корпуса которых разрушаются под действием рентгеновского излучения, газового потока или потока нейтронов, создаваемых взрывом.

Наземный ядерный взрыв и его особенности

Наземным называется взрыв, происходящий непосредственно на земной поверхности (контактный) или на таком удалении от нее, когда огненный шар (светящаяся область) касается поверхности земли.

При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. В зоне соприкосновения светящейся области с землей поверхностный слой грунта под действием огромных давлений и высокой температуры размельчается, расплавляется, испаряется и, перемешиваясь при этом с радиоактивными продуктами взрыва, превращается в радиоактивный шлак и пыль, которые покрывают поверхность земли в радиусе нескольких сотен метров от центра взрыва.

Основным отличием наземного взрыва от воздушного является то, что при наземном взрыве образуется большая конусообразная воронка, размеры которой зависят от мощности взрыва, а также от типа грунта.

Характерной особенностью наземного взрыва является сильное радиоактивное заражение местности как в районе взрыва, так и по пути движения радиоактивного облака Масштабы и степень заражения местности зависят главным образом от мощности и высоты взрыва, времени, прошедшего с момента взрыва, расстояния от центра взрыва и метеорологических условий. Наиболее сильное заражение местности наблюдается при контактных наземных взрывах.
Основными поражающими факторами наземного взрыва являются: ударная волна, проникающая радиация и радиоактивное заражение местности и объектов.
В силу перечисленных выше особенностей наземный взрыв применяется для поражения объектов. состоящих из сооружений большой прочности, и войск, находящихся в прочных укрытиях.

Подземный ядерный взрыв и его особенности

Подземным взрывом называется ядерный взрыв, произведенный на некоторой глубине от земной поверхности. Чем больше глубина подземного взрыва, тем большее количество энергии взрыва расходуется на испарение и плавление грунта. Часть энергии взрыва расходуется на выброс грунта и образование воронки. Огненный шар и грибовидное облако при подземном взрыве имеют небольшие размеры и могут вообще отсутствовать. Если взрыв производится на достаточной глубине, то воздушная ударная волна не образуется, а энергия светового излучения поглощается грунтом. Интенсивность проникающей радиации по мере увеличения глубины взрыва также быстро снижается и теряет практическое значение. Степень радиоактивного заражения местности по следу облака с увеличением глубины взрыва сначала увеличивается, а затем вследствие осаждения все большего количества радиоактивных продуктов в непосредственной близости от места взрыва уменьшается.

Такие взрывы осуществляются для разрушения особо важных подземных хорошо защищенных сооружений и создания завалов в горах.

Основным поражающим фактором является волна сжатия, распространяющаяся в грунте. Ударная волна при таком взрыве в воздухе незначительна.

Надводный ядерный взрыв и его особенности

Надводный ядерный взрыв по своим характеристикам и параметрам имеет сходство с наземным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается только в том. что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли. Характерной особенностью этого вида взрыва является образование поверхностных волн.

Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны.

Радиоактивное: заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва.

Подводный ядерный взрыв и его особенности

Подводный ядерный взрыв характеризуется образованием султана, базисной волны и поверхностных волн. Султаном называется образуемый при взрыве водяной столб правильной цилиндрической формы, полый внутри и увенчанный вверху большим клубящимся облаком, состоящим из прорвавшихся через полый столб радиоактивных паров и газов. При достижении высоты, соответствующей мощности взрыва, водяной столб обрушивается и образует кольцевое клубящееся облако водяных брызг, называемое базисной волной. По мере удаления от центра взрыва базисная волна все больше поднимается в воздух, и слившись с султаном, приобретает вид слоисто-кучевого облака, из которого выпадает радиоактивный дождь. Поверхностные волны, образующиеся при подводном (и надводном) взрывах, представляют собой серию концентрических расходящихся волн, от высоты и длины которых зависит степень их воздействия на корабли и береговые сооружения. Размеры и характер волн определяются мощностью и глубиной взрыва. Световое излучение при подводном взрыве отсутствует.

Основным поражающим фактором подводного взрыва является подводная ударная волна. Радиоактивное заражение акватории, местности и объектов происходит в результате выпадении радиоактивных частиц из облака взрыва и базисной волны. Форма зараженного участка в районе зрыва лизка к кругу, радиус которого определяется радиусом распространения базисной волны.

Свет и удар

Коллаж © L!FE. Фото: © Pixabay

Коллаж © L!FE. Фото: © Pixabay

Самое страшное проявление взрыва — вовсе не гриб из поднятой пыли, а быстротечная вспышка и ударная волна. Именно они наносят максимум разрушений. Всё начинается со светового излучения, которое представляет собой поток лучистой энергии. Его источником является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. Если боеприпас взорвался в воздухе, вы увидите шар, если на земле, то полусферу.

Именно световое излучение, температура которого достигает 7700 градусов, может сжечь попавших в зону поражения, оставив лишь тени на стенах. Чёрноюморный анекдот советует в случае попадания в зону поражения светового излучения сделать из пальцев собачку, оставив на стене загадку для следующих поколений. Область поражения световым излучением самая маленькая, но самая разрушительная, в ней не останется ничего живого по определению. Холодильник, в который прятался Индиана Джонс, также не поможет.

Кстати, длительность огненного шара очень невелика. Для тактического ядерного взрыва она и вовсе составляет три сотых секунды. Вы просто увидите мгновенную вспышку, и придёт очередь ударной волны. Большинство разрушений вызывается как раз ею. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 метров в секунду). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха.

Вот от ударной волны бомбоубежища помогают очень хорошо. Даже обычный подвал многоквартирного дома даст вам шанс выжить в случае попадания в зону поражения. Однако для начала нужно оказаться в подвале до того, как взрыв произойдёт, а вероятность этого велика только в том случае, если вы там квартируете.

Механизм атомного заряда и принцип действия

Если не вдаваться в подробные описания и технологию создания атомной бомбы, кратко описать ядерный заряд можно буквально тремя фразами:

  • имеется докритическая масса радиоактивного вещества (уран U235 или плутоний Pu239);
  • создание определенных условий для начала цепной реакции деления ядер радиоактивных элементов (детонация);
  • создание критической массы делящегося вещества.

Весь механизм можно изобразить на простом и понятном рисунке, где все части и детали находятся в сильном и тесном взаимодействии друг с другом. В результате подрыва химического или электрического детонатора, запускается детонационная сферическая волна, сжимающая делящееся вещество до критической массы. Ядерный заряд представляет собой многослойную конструкцию. Уран или плутоний используется в качестве основной взрывчатки. Детонатором может служить определенное количество тротила или гексогена. Далее процесс сжатия приобретает неуправляемый характер.

Схема ядерного заряда

Скорость протекающих процессов огромна и сравнима со скоростью света. Промежуток времени от начала детонации до запуска необратимой цепной реакции занимает не более 10-8 с. Другими словами, чтобы привести в действие 1 кг обогащенного урана, потребуется всего 10-7 секунд. Этой величиной обозначается время ядерного взрыва. С аналогичной скоростью протекает реакция термоядерного синтеза, лежащего в основе термоядерной бомбы с той разницей, что ядерный заряд приводит в действие еще более мощный — термоядерный заряд. Термоядерная бомба имеет другой принцип действия. Здесь мы имеем дело с реакцией синтеза легких элементов в более тяжелые, в результате которых опять же выделяется огромное количество энергии.

В процессе деления ядер урана или плутония возникает огромное количество энергии. В центре ядерного взрыва температура составляет 107 Кельвина. В таких условиях возникает колоссальное давление — 1000 атм. Атомы делящегося вещества превращаются в плазму, которая и становится главным результатом цепной реакции. Во время аварии на 4-м реакторе Чернобыльской АЭС ядерного взрыва не было, так как деление радиоактивного топлива осуществлялось медленно и сопровождалось только интенсивным выделением тепла.

Руины 4-го энергоблока

Высокая скорость происходящих внутри заряда процессов приводит к стремительному скачку температуры и росту давления. Именно эти составляющие формируют характер, факторы и мощность ядерного взрыва.

Бежать ли в бомбоубежище?

Увы, но рассказы о бомбоубежищах как о хорошей защите от ядерного взрыва — скорее лишь сказки для самоуспокоения. Для того чтобы бомбоубежища действительно эффективно сработали, требуется, чтобы на момент взрыва люди уже находились там. Порождения Второй мировой войны, они по-прежнему эффективны при обычных артобстрелах и бомбёжках, в этом можно убедиться, посмотрев репортажи с Украины. Однако в случае полномасштабной ядерной войны система ГЗ, скорее всего, просто не успеет отработать, люди не добегут до укрытий, в конечном счёте это приведёт к ещё большему количеству смертей.

Кроме того, как показывают современные исследования, инвентаризацией было установлено наличие в казне Российской Федерации 16 271 объекта защитных сооружений, государственное финансирование на содержание которых не осуществлялось на протяжении более 20 лет. На данный момент большинство из них просто закрыты, не функционируют, там нет воды и запаса пищи, чтобы пересидеть положенное время для уменьшения влияния радиационного заражения. Надеяться на них просто нет смысла, да и, как уже говорилось, шанс попасть туда вовремя исчезающе мал.

Страх сильнее бомб

Также ещё раз хотим напомнить: самое губительное воздействие ядерного оружия — психологическое. По общему мнению специалистов, к наиболее серьёзным и продолжительным последствиям Чернобыльской катастрофы относятся последствия социально-психологического характера. Страх, тревожность, боязнь лучевой болезни убили гораздо больше людей, чем пострадало от радиации.

Боязнь ядерного взрыва, который, я надеюсь, никогда не произойдёт ни над одним из городов нашей уютной и небольшой Земли, убивает вас уже сейчас. А война с полномасштабным применением ядерного оружия, мы надеемся, не наступит никогда. Перестаньте волноваться и допивайте свой утренний чай. Здоровья и мирного неба над головой!

Читайте также: