Коллинеарность генетического кода кратко

Обновлено: 17.05.2024

Коллинеарность — свойство, обусловливающее соответствие между последовательностью кодонов нуклеиновых кислот и аминокислот полипептидных цепей. Иными словами, коллинеарность — свойство, благодаря которому в белке воспроизводится та же последовательность аминокислот, в какой соответствующие кодоны располагаются в гене. Это означает, что положение каждой аминокислоты в полипептидной цепи зависит от особого участка гена. Генетический код считается коллинеарным, если кодоны нуклеиновых кислот и соответствующие им аминокислоты в белке расположены в одинаковом линейном порядке.

Явление коллинеарности доказано экспериментально. Установлено, что серповидноклеточная анемия, при которой нарушено строение молекулы гемоглобина, обусловлено дефектами расположения нуклеотидов в гене, ответственном за синтез гемоглобина. Было установлено расстояние между аминокислотами, зависимыми от этих мутаций, и расположение мутонов на генетической карте гена триптофансинтетазы, совпадающее с расположением аминокислот в этом ферменте. Таким образом, аминокислоты заменялись в соответствии с изменением нуклеотидного состава соответствующих триплетов.

Гипотеза о том, что последовательность аминокислот в белке определяется последовательностью нуклеотидов в гене, была высказана Г.А. Гамовым. Данные о коллинеарности полипептидов подтвердили ее. Благодаря концепции коллинеарности можно определить примерный порядок нуклеотидов внутри гена и информационной РНК, если известен состав полипептидов. Наоборот, определив состав нуклеотидов ДНК, можно предсказать аминокислотный состав белка. Из этой концепции также следует, что изменение порядка нуклеотидов внутри гена (мутация) приводит к изменению аминокислотного состава белков.

Генетический код - это способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом —урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Свойства:

· Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

· Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

· Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся геноввирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

· Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты —цистеин и селеноцистеин)[11]

· Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

- Коллинеарность – линейное соответствие между последовательностью нуклеотидов в цепи ДНК и кодируемая ею последовательность аминокислот в молекуле белка.

- однонаправленность- считывания инфомации(5"=>3")

Генетический код - это способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом —урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Свойства:

· Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

· Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

· Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся геноввирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

· Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты —цистеин и селеноцистеин)[11]

· Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

- Коллинеарность – линейное соответствие между последовательностью нуклеотидов в цепи ДНК и кодируемая ею последовательность аминокислот в молекуле белка.

Генетика (греч. γενητως — порождающий, происходящий от кого-то) - наука о наследственности и изменчивости. Это определение отлично соответствует афоризму А.П. Чехова "Краткость - сестра таланта". В словах наследственность и изменчивость скрыта вся сущность генетики, к изучению которой мы приступаем.

Грегор Мендель

Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному распределению генетического материала.

Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей. Вследствие этого формируется материал для главного направленного фактора эволюции - естественного отбора, который отбирает наиболее приспособленных особей.

Мы с вами - истинное чудо генетики :) Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них. Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая чудо вновь и вновь.

Отец и сын в одинаковом возрасте

Ген и генетический код

Ген - участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

Ген

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК. Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта - ведь ДНК везде одинакова!

Это происходит потому, что в разных клетках одни гены "выключены", а другие "активны": транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Разнообразие клеток в организме

Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

Информация считывается непрерывно - внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы нецелесообразно разделять его на части. Стоп-кодоны - "знаки препинания" - есть между генами, которые кодируют разные белки.

Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)

Таблица генетического кода

Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.

Генетический код

Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

Аллельные гены

Аллельные гены (греч. allélon — взаимно) - гены, занимающие одинаковое положение в локусах гомологичных хромосом и отвечающие за развитие одного и того же признака. Такими признаками могут являться: цвет глаз (карий и голубой), владение рукой (праворукость и леворукость), тип волос (вьющиеся и прямые волосы).

Локусом (лат. locus — место) - в генетике обозначают положение определенного гена в хромосоме.

Аллельные гены

Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами - AA, Aa, aa. Писать только один ген было бы ошибкой.

Признаки бывают доминантными (от лат. dominus - господствующий), которые проявляются у гибридов первого поколения, и рецессивными (лат. recessus - отступающий) - не проявляющимися. У человека доминантный признак - карий цвет глаз (ген - А), рецессивный признак - голубой цвет глаз (ген - а). Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А - доминантный аллель подавляет a - рецессивный аллель.

Доминантные и рецессивные признаки

  • Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) - AA, aa
  • Гетерозиготный (в случае, когда один ген доминантный, а другой - рецессивный) - Аа

Понять, какой признак является подавляемым - рецессивным, а какой подавляющим - доминантным, можно в результате основного метода генетики - гибридологического, то есть путем скрещивания особей и изучения их потомства.

Гаметы

Гамета (греч. gamos - женщина в браке) - половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом - n, при слиянии двух гамет набор восстанавливается до диплоидного - 2n.

  • В гаметах представлены все гены, составляющие гаплоидный набор хромосом - n
  • В каждую гамету попадает только одна хромосома из гомологичной пары
  • Число возможных вариантов гамет можно рассчитать по формуле 2 i = n, где i - число генов в гетерозиготном состоянии в генотипе

К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитываться исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 2 4 = 16 гамет.

Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa. При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет - это ошибка.

К примеру, у особи "AA" мы напишем только одну гамету "А" и не будем повторяться, а у особи "Aa" напишем два типа гамет "A" и "a", так как они различаются между собой.

Образование гамет

Гибридологический метод

Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов генетики, предложенный самим Грегором Менделем - гибридологический.

Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания. С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных генов.

Гибридологический метод

Цитогенетический метод

С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии наследственных заболеваний.

Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера, Клайнфельтера).

Цитогенетический метод исследования

Генеалогический метод (греч. γενεαλογία — родословная)

Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных. Человек, с которого начинают составление родословной - пробанд. В результате изучения родословной врач-генетик может предположить вероятность возникновения тех или иных заболеваний.

Правила написания родословной

По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: "рецессивный он или доминантный?", "сцеплен с полом или не сцеплен?"

Генеалогический метод

На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного) рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:

  • Заболевание проявляется только у гомозигот
  • Родители клинически здоровы
  • Если больны оба родителя, то все их дети будут больны
  • В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
  • Оба пола поражаются одинаково

Сейчас это может показаться сложным, но не волнуйтесь - решая генетические задачи вы сами "дойдете" до этих правил, и через некоторое время они будут казаться вам очевидными.

Близнецовый метод

Применение близнецового метода в генетике - вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи "один в один": такими являются однояйцевые близнецы, их появление подчинено случайности.

Близнецовый метод

Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа - совокупности внешних и внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности строения внутренних органов и т.д.

Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство - шизофрения - развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.

Гебефреническая шизофрения

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Многообразие живых организмов на планете Земля обуславливается наличием огромного количества разных белковых соединений. Специфичность устройства белков определена числом и порядком расположения разных аминокарбоновых кислот, которые входят в их составы. А последовательность аминокислот, представляющих состав пептида, шифруется в ДНК биологическим или генетическим кодом.

Генетический код

Способы кодирования

Шифрование аминокарбоновых кислот в биологии осуществляется нуклеотидами — полимерами, являющимися составной частью ДНК и РНК (нуклеиновых кислот). В ДНК нуклеотиды по отдельности могут входить в состав одного из азотистых оснований:

  1. Аденина.
  2. Гуанина.
  3. Цитозина.
  4. Тимина.

Если взять РНК, тимин будет заменён урацилом.

Нуклеотиды

Обозначения азотистых оснований кратко записываются в виде заглавных букв их названий как в русском, так и английском вариантах:

  1. А, en: A.
  2. Г, en: G.
  3. Ц, en: C.
  4. Т, en: T.
  5. У. en: U.

Во время анализирования генетического кода изначально обращают внимание на азотистые основания. Вследствие этого цепочка ДНК и комплиментарный ей участок иРНК обретают вид определённых линейных последовательностей:

  • …AAATGAACTTCA… — ДНК.
  • …UUUACUUGAAGU… — иРНК.

Аминокарбоновые кислоты являются составной частью белков (полипептидов). При образовании последних используются в основном 20 кислот.

В краткой записи их обозначают либо одной, либо тремя буквами, представляющих сокращение от названия.

Учитывая, что аминокарбонки в полипептидах образуют линейные связи, информация об участке белка записывается таким образом: …MLFRSRWIMVPQHE… Каждая аминокислота кодируется в этом случае одной заглавной буквой.

Коллинеарность или линейность

Последовательности нуклеотидов, как и цепочки аминокислот в белках, записываются в линейном виде. Из этого по логике напрашивается очевидный вывод, что размещённым в ряд нуклеотидам ДНК линейно соответствуют аналогично расположенные, но в полипептиде аминокарбонатные кислоты.

Доказательством коллинеарности или линейности генетического кода служит характерная линейность генетических карт.

При их расшифровке и детальном анализе просматриваются очевидные совпадения между расположениями мутаций на картах генетического кода и аминокислотных замещений внутри белков организмов, подвергшихся мутационным изменениям.

Свойство триплетности

Свойство триплетности биологического кода следует из способа непосредственной кодировки аминокислот. При шифровании 20 аминокарбоновых кислот применяют комбинации из 4 нуклеотидов по 3. Этот вариант представляется оптимальным, так как обеспечивает возможность закодировать 64 комбинации триплетов (кодонов). Такого количества более чем достаточно для зашифрованной записи 20 единиц аминокислот.

Однозначность и вырожденность

Однозначность биологического шифра подразумевает, что одному конкретному триплету ставится в соответствие единственная аминокарбоновая кислота. К примеру, если взять триплет AGU, он кодирует исключительно серин. И нельзя больше таким же триплетом зашифровать какую-нибудь другую аминокислоту. Аналогично и с остальными: один кодон — кодовое определение только одной конкретной составляющей.

Свойства генетического кода

Но количество кодонных комбинаций больше, чем количество аминокислот (64 и 20 соответственно), поэтому одной аминокарбонке можно сопоставить несколько вариантов триплетов. Например, серин представляется как AGU либо AGС. Это свойство генетического кода получило название вырожденность.

Большинство мутаций, благодаря свойству вырожденности, остаются для живых организмов вполне безвредными. Причиной является, что замена одного нуклеотида не приводит к радикальному изменению самого значения кодона. При детальном изучении таблицы генетического кода, где записаны возможные соответствия аминокарбоновых кислот определённому количеству триплетов, можно заметить, что отличия наблюдаются исключительно в последних нуклеотидах. То есть они, по сути, не влияют на триплетное значение и могут быть любыми.

Неперекрываемость и универсальность

Несомненно, довольно ценным свойством биологического кода считается неперекрываемость. Это означает, что когда нуклеотид уже вошёл составной частью в один триплет, в остальных его быть не должно. При записи последовательной цепочки неперекрываемость выглядит следующим образом:

  • AGU-GАА (правильная запись).
  • AGU-GUG-GAA (невозможный вариант).

Пара GU, если вошла в один триплет в остальных не может использоваться.

Наряду с неперекрываемостью генетического кода, ещё одним важным свойством представляется его универсальность. Из теоретического предположения, что все живые организмы на Земле имеют одного общего предка, был сделан вывод об одинаковом генетическом коде. В результате последующих исследований это утверждение получило доказательную базу.

Генетический код диаграмма

На практике свойство универсальности биологического шифра играет огромную роль, так как благодаря ему есть возможность заставлять гены одного живого организма производить функциональные изменения в другом. Разработаны методики генной инженерии, позволяющие белки человеческого организма получать в бактериях и использовать в медицинских целях (инсулин, гормон роста).

Но универсальность генетического шифра не является абсолютным свойством. Науке известны некоторые генетические системы с незначительными отличиями кода от универсального. К ним относятся митохондрии, некоторые инфузории и паразитические бактерии. Учёные предполагают, что подобные отклонения от нормы возникли в результате вторичных изменений на основе универсального кода.

Читайте также: