Классификация композиционных материалов кратко

Обновлено: 05.07.2024

Композицио́нный материа́л - неоднородный материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие материалы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Композицио́нный материа́л - неоднородный материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие материалы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов. Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними.

В результате образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металла, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

  • высокая удельная прочность
  • высокая жесткость (модуль упругости 130…140 ГПа)
  • высокая изнсостойкость
  • высокая усталостная прчность

Недостатки композиционных материалов:

  • высокая стоимость
  • анизотропия свойств (различие свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др. )
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства.

По структуре наполнителя композиционные материалы подразделяют:

  • волокнистые (армированы волокнами и нитевидными кристаллами);
  • слоистые (армированы пленками, пластинками, слоистыми наполнителями);
  • дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц).

Матрица обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;

Композиционный материал (композит, от латинского compositio - составление) - представляет собой, сложную многокомпонентную искусственную структуру, состоящую из матрицы (связующего) и армирующего наполнителя, с четко разделяющей их границей, при этом полученный материал характеризуется свойствами, которых нет ни у одного, взятого в отдельности, используемого компонента и использует преимущества каждого из них.

Армирующие компоненты обеспечивают необходимые механические характеристики материала, а матрица как связующее вещество, обеспечивает их совместную работу, объединяя прочностные свойства обоих компонентов, а также их защиту от механических повреждений и агрессивных сред. Путем подбора состава и свойств наполнителя и матрицы, их соотношения, ориентации наполнителя, можно получить материал с требуемым сочетанием эксплуатационных и технологических характеристик.

По механизму упрочнения композиты можно разделить на две группы. В основу упрочнения композитов первой группы положен принцип армирования матрицы высокопрочными, несущими нагрузку элементами (железобетон, стеклопластик и др.). Ко второй группе относятся дисперсно-упрочненные материалы. Ведущую роль в них играет структурный фактор. Роль упрочняющей фазы сводится к облегчению формирования субструктуры в процессе получения композита.

Композит отличается от сплава тем, что в готовом композите отдельные компоненты сохраняют присущие им свойства. Компоненты должны взаимодействовать на границе раздела композита, проявляя только положительные новые свойства. Такой результат можно получить лишь в том случае, если в композиционном материале успешно объединены свойства компонентов, т.е. при эксплуатации композита должны проявляться только требуемые свойства компонентов, а их недостатки полностью или частично уничтожаться.

Например, если биметаллические полоски латунь-железо, используемые в термостатах, сварены друг с другом, то при нагреве такого композита за счет внутренних напряжений, возникающих из-за большого различия в коэффициентах линейного расширения, полоска изгибается. Такую полоску, сделав ее элементом выключателя, можно применять для регулирования температуры.

Таким образом:
1) получаемый композит приобретает новые, лучшие свойства и, следовательно, может выполнять дополнительные функции (многофункциональный материал);
2) характиристики композита лучше, чем у его компонентов, взятых по отдельности или вместе без учета граничных процессов;
3) действия отдельных компонентов композита всегда проявляются в их совокупности с учетом процессов процессов, происходящих на границе раздела фаз.

Активное применение композитов началось с начала 70-х годов, хотя идея применения двух и более исходных материалов в качестве компонентов, образующих композиционную среду, существует с тех пор, как люди стали иметь дело с материалами.

Цель создания композита - достичь комбинации свойств, не присущих каждому из исходных материалов в отдельности. Таким образом, композит может изготавливаться из материалов, которые сами по себе не удовлетворяют предъявляемым требованиям. Так как эти требования могут относиться к физическим, химическим, технологическим и другим свойствам, то наука о композитах находится на стыке различных областей знания и требует участия исследователей различных специальностей.

Классификация композиционных материалов

Классификация композитов может осуществляться по разным признакам:

1) по природе компонентов (обычно материала матрицы): металлические; полимерные; жидкокристаллические; керамические; другие неорганические материалы (углерод, оксиды, бориды и др.).

Если один из компонентов композита непрерывен во всем объеме, а другой является прерывистым, разъединенным, то первый компонент называют матрицей, а второй - армирующим наполнителем. Матрица в композите обеспечивает монолитность материала, передачу и распределение напряжений в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость. Есть композиты, для которых понятие матрицы и арматуры неприменимо, например, для слоистых композитов, состоящих из чередующихся слоёв, или для псевдосплавов, имеющих каркасное строение. Псевдосплавы получают пропиткой пористой заготовки более легкоплавкими компонентами, их структура представляет собой два взаимопроникающих непрерывных каркаса. Обычно композиты получают общее название по материалу матрицы.

2) по структуре композита: каркасная; матричная; слоистая; комбинированная.
К композитам с каркасной структурой относятся, например, псевдосплавы, полученные методом пропитки; с матричной структурой дисперсно-упрочненные и волокнистые композиты; со слоистой структурой - композиты, составленные из чередующихся слоев фольги или листов материалов различной природы или состава; с комбинированной структурой - включающие комбинации первых трех групп (например, псевдосплавы, каркас которых упрочнен дисперсными включениями - каркасно-матричная структура и др.).

3) по геометрии армирующих компонентов (наполнителя): порошковые и гранулированные (армированы частицами); волокнистые (армированы волокнами, нитевидными кристаллами, делятся на непрерывные и дискретные); слоистые (армированы пленками, пластинами, слоистыми наполнителями).

4) по расположению компонентов - изотропные или квазиизотропные (порошковые, дисперсно-упрочненные, хаотично армированные дисперсными частицами, дискретными или непрерывными волокнами и др.); анизотропные (волокнистые, слоистые с определённой ориентацией армирующих элементов относительно матрицы).

Изотропные материалы имеют одинаковые свойства во всех направлениях, анизотропные - разные. К числу изотропных композитов относятся псевдосплавы и хаотично армированные материалы. Упрочнение хаотично армированных композитов осуществляется короткими (дискретными) частицами игольчатой формы, ориентированными в пространстве случайным образом. В качестве таких частиц используют отрезки волокон или нитевидные кристаллы (усы), при этом композиты получаются квазиизотропными, т.е. анизотропными в микрообъемах, но изотропными в макрообъеме всего изделия.

Анизотропия композита является конструкционной, она закладывается специально для изготовления конструкций, в которых наиболее рационально ее использовать. Возможность управления свойствами вновь создаваемых материалов, особенно хорошо реализуемая при проектировании гибридных (армированных несколькими типами наполнителей) композитов, оказывает существенное влияние на совершенствование технологического проектирования. Например, композиты с матричной структурой, упрочненные армирующими элементами, ориентированными определенным образом в пространстве, относятся к упорядоченно армированным. Они подразделяются на одноосноармированные или однонаправленные (с расположением арматуры вдоль одной оси), двухосноармированные (с плоскостным расположением арматуры) и трехосноармированные (с объемным расположением арматуры).

Часто композит представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Однако каждый слой можно армировать также непрерывными волокнами, сотканными в ткань определенного рисунка, которая представляет собой исходную форму, по ширине и длине соответствующую исходному материалу. Разработанные к настоящему времени геометрии армирования позволили отказаться от послойной сборки материала: волокна сплетают в трехмерные структуры. В некоторых случаях уже на этой стадии можно задать форму изделию из композита. Выбор среди возможных типов армирования осуществляется на основе экономических соображений и требований, предъявляемых к работе изделий.

Традиционно выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.

Контроль микроструктуры композита позволяет наилучшим образом учесть распределение нагрузок, которым будет подвергаться изделие. В то же время в конструкции изделия отразятся и отличительные свойства композита: зависимость от ориентации и сложности формы, которую им можно придать в процессах формования - при прессовании, прокатке, намотке, армировании и др. Трудности, возникающие при одновременном конструировании изделия и его материала, предполагают, что промышленный дизайн будет все больше зависеть от совместных разработок специалистов разных областей, а также от компьютерного моделирования этих работ. Только такой подход обеспечит полное использование потенциальных возможностей композитов в технологиях будущего.

Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.

5) по количеству компонентов: полиматричные - использование в одном материале нескольких матриц; гибридные (полиармированные) - использование наполнителей различной природы.

Композиты, которые содержат два или более различных по составу или природе типа армирующих элементов, называются полиармированными или гибридными. Гибридные композиты могут быть простыми, если армирующие элементы имеют различную природу, но одинаковую геометрию (например, стеклоуглепластик - полимер, армированный стеклянными и углеродными волокнами), и комбинированными, если армирующие элементы имеют и различную природу, и различную геометрию (например, бороалюминий с прослойками из титановой фольги).

6) по методу получения: искусственные; естественные.
К искусственным относятся все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным - сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путем в процессе направленной кристаллизации.

Композиционные материалы

Композиционные материалы (композиты) – многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Компонентами композитов являются самые разнообразные материалы – металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы – полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.

Полимерные композиционные материалы

Композиты, в которых матрицей служит полимерный материал, являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000 долларов. В качестве наполнителей ПКМ используется множество различных веществ.

Стеклопластики

Полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Использование стеклопластиков началось в конце Второй мировой войны для изготовления антенных обтекателей – куполообразных конструкций, в которых размещается антенна локатора. В первых армированных стеклопластиках количество волокон было небольшим, волокно вводилось, главным образом, чтобы нейтрализовать грубые дефекты хрупкой матрицы. Однако со временем назначение матрицы изменилось – она стала служить только для склеивания прочных волокон между собой, содержание волокон во многих стеклопластиках достигает 80% по массе. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом. Стеклопластики – достаточно дешевые материалы, их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

Углепластики

Наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Термическая обработка волокна проводится, как правило, в три этапа (окисление – 220° С, карбонизация – 1000–1500° С и графитизация – 1800–3000° С) и приводит к образованию волокон, характеризующихся высоким содержанием (до 99,5% по массе) углерода. В зависимости от режима обработки и исходного сырья полученное углеволокно имеет различную структуру. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков – чаще всего – термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики – очень легкие и, в то же время, прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения. Все углепластики хорошо проводят электричество, черного цвета, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

Боропластики

Композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30% стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики.

Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Органопластики

Композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров – полиэтилена, ПВХ, полиуретана и т.п. – варьируется в значительно больших пределах – от 2 до 70%. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.

Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.

Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал.

Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители – древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.

Текстолиты

Слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.

Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, иногда даже применяются и неорганические связующие – на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Читайте также: