Классификация измерительных средств и методов измерений кратко

Обновлено: 30.06.2024

Составитель: доцент, канд. пед. наук М.А.Черепанов

В методических указаниях приведены краткие теоретические сведения и методика выполнения контрольной работы. Представлены варианты заданий.

Обсуждены на заседании кафедры материаловедения, технологии контроля в машиностроении и методики профессионального обучения.

Протокол от 13 января 2012 г., № 7.

Заведующий кафедрой Б.Н. Гузанов

комиссии МаИ РГППУ А.В. Песков

© ФГАОУ ВПО «Российский государственный

© Черепанов М.А., 2012

Введение

Знания в области метрологии необходимы работникам производственной сферы, а также специалистам по реализации продукции, менеджерам, экономистам, которые должны использовать достоверную измерительную информацию в своей деятельности [10].

С помощью измерений получают информацию о состоянии производственных, экономических и социальных процессов. Измерительная информация служит основой для определения качества продукции, для принятия решений при внедрении систем качества, используется в научных экспериментах и т.д. И только ее достоверность и точность обеспечивают правильность решений на всех уровнях управления, а недостоверная информация приводит к снижению качества продукции, авариям, неверным решениям.

Для количественного определения (измерения) того или иного параметра, характеристики продукции, процесса (т.е. любого объекта) необходимо: выбрать параметры, которые характеризуют интересующие нас свойства объекта; установить степень достоверности, с которой следует определять выбранные параметры, а также допуски, нормы точности и т.д.; выбрать методы и средства измерений для достижения требуемой точности; обеспечить готовность средств измерений выполнять свои функции измерений (посредством периодической поверки, калибровки средств измерений по соответствующим эталонам); обеспечить учет или создание требуемых условий для проведения измерений, обработку результатов измерений и оценку характеристик погрешностей [12].

Как правило, требования, предъявляемые к объекту (детали или процессу), отражаются в нормативно-технологических документах, основными из которых являются чертежи и операционные карты технического контроля с указанием в последних предельных значений или допусков контролируемых размеров, средств измерений и времени на проведение операций контроля. От исполнителей контроля требуется знание средств измерений и методик выполнения измерений конкретным измерительным средством.

При выполнении контрольной работы необходимо:

- провести анализ требований к точности контролируемой (измеряемой) детали;

- учитывая имеющийся парк средств измерений, назначить методы и средства измерений заданных размеров детали;

- предложить методику проведения поверки выбранного средства измерения;

- формировать умения пользоваться справочной литературой, ГОСТами, правилами, рекомендациями и другой технической литературой.

Теоретическая часть

Основы технических измерений

Классификация измерительных средств и методов измерения

Измерением (РМГ 29-99) называется совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения измеряемой величины. Результатом измерения является значение величины, полученное путем ее измерения. Основное уравнение измерения: Q = q×[Q], где Q – значение физической величины; q – числовое значение данной физической величины в принятых единицах; [Q] – единица данной физической величины.

Единство измерений – это состояние измерений, характеризующееся тем, что их результаты выражены в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы. Без единства измерений невозможно сопоставление результатов измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений.

Точность измерений – качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных.

Правильность – качество измерений, отражающее близость к нулю систематических погрешностей в их результатах. Результаты измерений правильны постольку, поскольку они не искажены систематическими погрешностями.

Сходимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях (одним и тем же средством измерений, одним и тем же оператором). Для методик выполнения измерений это одна из важнейших характеристик.

Воспроизводимость – качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в разных местах, разными методами и средствами измерений). В процедурах испытаний продукции воспроизводимость является одной из важнейших характеристик.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений происходит из-за несовершенства метода измерений, непостоянства условий наблюдений, а также из-за недостаточного опыта наблюдателя.

Средство измерений (СИ) по РМГ 29-99 – это техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспринимающее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течении известного интервала времени. В зависимости от поставленной задачи или от отличительных признаков, имеющихся в средствах измерения, их подразделяют на меры, стандартные образцы, измерительные приборы, измерительные преобразователи, измерительные установки, измерительные системы.

- на однозначные, т.е. воспроизводящие физическую величину одного размера (например, колбочка);

- многозначные, т.е. воспроизводящие физические величины разных размера (например, линейка, мерный сосуд, шприц и т.д.);

- набор мер – комплект мер разного размера одной и той же физической величины, предназначенных для применения на практике как в отдельности, так и в различных сочетаниях (например, набор концевых мер длины);

- на магазин – набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений).

Стандартные образцы (СО) – это образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величин, характеризующими свойство или состав этого вещества (материала). Стандартные образцы утверждены ГОСТ 8.315-97.

Измерительный прибор – средство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Другими словами, прибор должен выдать информацию о значении измеряемого размера. Примерами измерительных приборов являются штангенприборы, микрометрические приборы, оптиметры, инструментальные микроскопы и т.д.

Измерительные приборы по способу индикации подразделяются:

- на показывающие (показывают отсчитываемые показания);

- регистрирующие (предусматривают регистрацию показаний).

Показывающие измерительные приборы в свою очередь подразделяются:

- на приборы прямого действия (например, амперметр, микрометр);

- приборы сравнения (например, весы, компараторы).

Для измерительных приборов обязательно должны быть нормированы их метрологические характеристики.

По способу определения значений измеряемой величины измерительные приборы подразделяют на две группы: приборы прямого действия и приборы сравнения.

Измерительный прибор прямого действия – прибор с одним или несколькими преобразователями сигнала измерительной информации в одном направлении, т.е. без применения обратной связи (без возвращения к выходной величине). Например, перемещения измерительного наконечника индикатора часового типа или измерительной головки в зависимости от размера контролируемого изделия преобразуются в перемещения указателя прибора относительно неподвижной шкалы.

Измерительный прибор сравнения – прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно. Сравнение осуществляется с номинальными размерами плоскопараллельных концевых мер длины при измерении линейных размеров изделий и с номинальными размерами угловых мер при измерении плоских углов изделий. К приборам сравнения относятся рычажные скобы, оптиметры, индикаторные нутромеры и др.

По назначению приборы делятся на универсальные предназначенные для измерения одинаковых физических величин различных объектов, и специализированные, используемые для измерения параметров однотипных изделий (например размеров резьбы или зубчатых колес) или одного параметра различных изделий (например шероховатости или твердости).

По принципу действия, который положен в основу измерительной системы, приборы подразделяют на механические, оптические, оптико-механические, пневматические, электрические, рентгеновские и др.

Универсальные средства измерений для линейных и угловых измерений в зависимости от конструкции и принципа действия подразделяются на следующие группы:

1) механические (штриховые приборы с линейным нониусом: штангенприборы, универсальные угломеры и т.д.; микрометрические приборы: микрометры гладкие, микрометрические нутромеры и глубиномеры и т.д.);

2) рычажно-механические (рычажные, зубчатые, рычажно-зубчатые, пружинные);

3) оптические (инструментальные и универсальные измерительные микроскопы, проекторы и т.д.);

4) оптико-механические (оптиметры, длиномеры и т.д.);

Измерительный преобразователь – это техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи. Измерительные преобразователи или входят в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.), или применяется с каким-либо средством измерений.

По характеру преобразования различают аналоговые, цифро-аналоговые, аналого-цифровые. По месту в измерительной цепи различают первичные и промежуточные преобразователи. Выделяют также масштабные и передающие преобразователи.

Измерительная установка – это совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте.

Измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п., с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях.

Для получения результата измерения средства измерений применяются с помощью определенного метода. Методом измерения (РМГ 29-99) называется прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений. К совокупности относятся: приборы с определенными метрологическими характеристиками, установочные меры или установочные образцовые детали с их точностными характеристиками, температурный режим измерения, базирование измеряемого объекта, характер измерительного контакта, количество и расположение выбранных для измерения точек или участков на поверхности контролируемых объектов, условия отсчета и использования результатов измерения.

Под принципом измерений понимают физическое явление или эффект, положенное в основу измерения.

По способу получения результатов измерения делят на прямые и косвенные, абсолютные и относительные.

Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно.

Косвенное измерение – определение искомого значения физической величины находят на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Примером служит определение плотности D тела цилиндрической формы по результатам прямых измерений массы m, высоты h и диаметра d цилиндра, связанных с плотностью уравнением .

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Относительное измерение – это измерение отношения величины к одноименной величины, играющей роль единицы, или измерение изменения величины по отношению к одноименной величины, принимаемой за исходную. Примером такого измерения может служить измерение диаметра отверстия индикаторным нутромером, настроенным по концевым мерам.

Основные методы прямых измерений:

- метод непосредственной оценки основывается на том, что значение измеряемой величины определяют непосредственно по показывающему средству измерений (измерение диаметра отверстия микрометрическим инструментом);

- метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение рычажной скобой, настроенной по концевым мерам длины).

Метод сравнения с мерой может быть реализован в частных разновидностях, таких как дифференциальный метод, метод совпадений, нулевой метод.

Дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Примером является измерение длины индикатором часового типа на стойке при настройке по блоку плоскопараллельных концевых мер длины.

При методе совпадений измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадения отметок шкал или периодических сигналов (измерение длины штангенциркулем).

Нулевой метод сравнения с мерой предполагает, что результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например измерение массы груза на весах.

По условиям, определяющим точность результата, измерения делят на три класса:

- эталонные и специальные измерения максимально возможной точности;

- контрольно-поверочные измерения, выполняемые государственными и заводскими измерительными лабораториями;

- технические измерения, выполняемые в процессе производства изделий. При технических измерениях погрешность результата определяется характеристиками средств измерений.

Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

Ненормированные – измерения при ненормированных метрологических характеристиках.

Технические – измерения при помощи рабочих средств измерений.

Метрологические – измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.

Можно выделить следующие виды измерений.

1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:

  • статические, при которых измеряемая величина остается постоянной во времени;
  • динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непо­средственно из опытных данных (например, измерение диаметра штан­генциркулем).

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).

Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.

3) По условиям, определяющим точность результата измерения, мето­ды делятся на три класса.

Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.

4) По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).

5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного пока­зателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

2. Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализо­ванным принципом измерений. Можно выделить следующие методы из­мерений.

По способу получения значения измеряемых величин различают два основных метода измерений.

Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.

Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Разновидности метода сравнения:

  • метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения;
  • дифференциальный метод, при котором измеряемую величину срав­нивают с известной величиной, воспроизводимой мерой;
  • нулевой метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (например, измерение электрического сопротивления по схеме моста с полным его уравнове­шиванием);
  • метод совпадений, при котором разность между измеряемой величи­ной и величиной, воспроизводимой мерой, определяют, используя совпа­дения отметок шкал или периодических сигналов (например, считывание размера по основной и нониусной шкалам штангенциркуля).

При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.

В зависимости от измерительных средств, используемых в процессе измерения, различают:

  • инструментальный метод;
  • экспертный метод, который основан на использовании данных не­скольких специалистов (например, в квалиметрии, спорте, искусстве, медицине);
  • эвристические методы, которые основаны на интуиции. Широко ис­пользуется способ попарного сопоставления, когда измеряемые величины сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения;
  • органолептические методы оценки, которые основаны на использо­вании органов чувств человека (осязания, обоняния, зрения, слуха, вкуса). Например, оценка шероховатости поверхности по образцу зрительно или на ощупь.

3. Понятие о точности измерений

Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.

Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).

Класс точности – обобщённая метрологическая характеристика средства измерения.

Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:

– относительно измеренного значения (относительная погрешность),

– относительно максимального значения шкалы (приведённая погрешность),

– относительно участка шкалы (приведённая к участку шкалы погрешность).

Рассмотрим эти три варианта.

Вариант 1. Относительная погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.

Вариант 2. Приведённая погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.

Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.

Вариант 3. Приведённая к участку шкалы погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.

Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.

Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.

Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.

Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.

Корректная запись результатов

Запись результатов измерений производится по следующим правилам.

1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.

Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.

2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.

Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.

1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.

2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.

Корректная запись: 10,646 ± 0,013.

Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.

4. Основы обеспечения единства измерений

Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.

Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.

Обеспечение единства измерений является задачей метрологических служб.

Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.

Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

5. Основные характеристики измерений

5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –

9. Средства измерений и их характеристики

9. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно—измерительные приборы (КИП), и

13. Погрешность измерений

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

16. Погрешности средств измерений

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную

18. Выбор средств измерений

18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в

2 Классификация измерений

2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой

3. Основные характеристики измерений

3. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений – это

8. Средства измерений и их характеристики

8. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и

13. Погрешность измерений

13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения

16. Погрешности средств измерений

16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.

18. Выбор средств измерений

18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в

21. Поверка и калибровка средств измерений

21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся

5.4.6 Оценка неопределенности измерений

5.4.6 Оценка неопределенности измерений 5.4.6.1 Калибровочная лаборатория или испытательная лаборатория, осуществляющая свои собственные калибровки, должна иметь и применять процедуру оценки неопределенности измерений при всех калибровках и типах калибровок.5.4.6.2

5.6 Прослеживаемость измерений

5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность

Общие вопросы измерений

Обработка результатов измерений

Средство измерения– это техническое устройство, используемое при измерениях и имеющее нормированные метрологические свойства. К средствам измерений отно­сятся, например, различные измерительные приборы и инструменты: штангенинструменты, микрометры и др.

Принцип действия средства измерения– физический принцип, положенный в основу построения данного сред­ства измерения. Часто принцип действия отражен непо­средственно в названии средства измерения, например оптиметр.

Средство измерения, предназначенное для воспроиз­ведения физической величины: заданного размера, назы­вают мерой. Различают однозначные меры, воспроизводя­щие физическую величину одного размера (например, концевые меры длины, гири, конденсаторы постоянной емкости и т. д.), и многозначныемеры, воспроизводящие ряд одноименных величин различного размера (например, рулетки, разделенные на миллиметры, конденсаторы пере­менной емкости).

Эталон единицы физической величины – средство изме­рения (или комплекс средств измерений), официально утвержденное эталоном для воспроизведения единицы физических величин с наивысшей достижимой точностью и ее храпения (например, комплекс средств измерений для воспроизведении метра через длину световой волны). Примером точности эталонов может служить государствен­ный эталон времени, погрешность которого за 30 тыс. лет не превысит 1 с.

Эталонные средства измерения– это меры, измери­тельные приборы или преобразователи, утвержденные в качестве эталонных. Они служат для контроля нижестоящих по поверочной схеме измерительных средств и в то же время сами периодически под­вергаются проверке по эталонам. Их точность имеет большое значение для обеспечения един­ства и правильности из­мерений,

Измерительное сред­ство и приемы его ис­пользования в совокуп­ности образуют метод измерения. По способу получения значений измеряемых величин различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки– метод измерения, пои котором значение величины определяют непосред­ственно по отсчетному устройству измерительного прибора прямого действия, например измерение длины с помощью линейки, размеров деталей микрометром, угломером и т. д.


Метод сравнения с мерой– метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения вы­соты Lдетали 1(рис. 4.1) миниметр 2закрепляют в стойке. Стрелку миниметра устанавливают на нуль по какому-либо образцу (набору концевых мер 3), имеющему высоту N, равную номинальной высоте Lизмеряемой детали. Затем приступают к измерению партии деталей. О точности размеров Lсудят по отклонению ±Δ стрелки миниметра относительно нулевого положения. При измерении линей­ных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений. Примером первого является измерение размера вала штангенциркулем, а второго – измерение того же вала с помощью проекционных приборов, например микроскопа.

В зависимости от взаимосвязи показании прибора с измеряемой физической величиной измерения подраз­деляют на прямыеи косвенные, абсолютные и относительные.

При прямом измерении искомое значение величины находят непосредственно из опытных данных, например измерение угла угломером, диаметра ­– штангенцир­кулем.

При косвенномизмерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, например определение среднего диаметра резьбы с помощью трех проволочек на вертикальном длиномере, угла с помощью синусной линейки и т. д.

Абсолютноеизмерение основано на прямых измерениях величины и (или) использовании значений физических констант, например измерение размеров деталей штан­генциркулем или микрометром. Относительноеизмерение основано на сравнении измеряемой величины известным значением меры, например измерение отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной вели­чине, принимаемой за исходную. Размер в этом случае определяется алгебраическим суммированием размера установочной меры и показаний прибора. Например, высоту Lдетали 1 (см. рис. 4.1) находят по отклонению Δ от размера N, по которому построен миниметр:




L= N ± Δ.

Средство измерения– это техническое устройство, используемое при измерениях и имеющее нормированные метрологические свойства. К средствам измерений отно­сятся, например, различные измерительные приборы и инструменты: штангенинструменты, микрометры и др.

Принцип действия средства измерения– физический принцип, положенный в основу построения данного сред­ства измерения. Часто принцип действия отражен непо­средственно в названии средства измерения, например оптиметр.

Средство измерения, предназначенное для воспроиз­ведения физической величины: заданного размера, назы­вают мерой. Различают однозначные меры, воспроизводя­щие физическую величину одного размера (например, концевые меры длины, гири, конденсаторы постоянной емкости и т. д.), и многозначныемеры, воспроизводящие ряд одноименных величин различного размера (например, рулетки, разделенные на миллиметры, конденсаторы пере­менной емкости).

Эталон единицы физической величины – средство изме­рения (или комплекс средств измерений), официально утвержденное эталоном для воспроизведения единицы физических величин с наивысшей достижимой точностью и ее храпения (например, комплекс средств измерений для воспроизведении метра через длину световой волны). Примером точности эталонов может служить государствен­ный эталон времени, погрешность которого за 30 тыс. лет не превысит 1 с.

Эталонные средства измерения– это меры, измери­тельные приборы или преобразователи, утвержденные в качестве эталонных. Они служат для контроля нижестоящих по поверочной схеме измерительных средств и в то же время сами периодически под­вергаются проверке по эталонам. Их точность имеет большое значение для обеспечения един­ства и правильности из­мерений,

Измерительное сред­ство и приемы его ис­пользования в совокуп­ности образуют метод измерения. По способу получения значений измеряемых величин различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки– метод измерения, пои котором значение величины определяют непосред­ственно по отсчетному устройству измерительного прибора прямого действия, например измерение длины с помощью линейки, размеров деталей микрометром, угломером и т. д.


Метод сравнения с мерой– метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения вы­соты Lдетали 1(рис. 4.1) миниметр 2закрепляют в стойке. Стрелку миниметра устанавливают на нуль по какому-либо образцу (набору концевых мер 3), имеющему высоту N, равную номинальной высоте Lизмеряемой детали. Затем приступают к измерению партии деталей. О точности размеров Lсудят по отклонению ±Δ стрелки миниметра относительно нулевого положения. При измерении линей­ных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений. Примером первого является измерение размера вала штангенциркулем, а второго – измерение того же вала с помощью проекционных приборов, например микроскопа.

В зависимости от взаимосвязи показании прибора с измеряемой физической величиной измерения подраз­деляют на прямыеи косвенные, абсолютные и относительные.

При прямом измерении искомое значение величины находят непосредственно из опытных данных, например измерение угла угломером, диаметра ­– штангенцир­кулем.

При косвенномизмерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, например определение среднего диаметра резьбы с помощью трех проволочек на вертикальном длиномере, угла с помощью синусной линейки и т. д.

Абсолютноеизмерение основано на прямых измерениях величины и (или) использовании значений физических констант, например измерение размеров деталей штан­генциркулем или микрометром. Относительноеизмерение основано на сравнении измеряемой величины известным значением меры, например измерение отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной вели­чине, принимаемой за исходную. Размер в этом случае определяется алгебраическим суммированием размера установочной меры и показаний прибора. Например, высоту Lдетали 1 (см. рис. 4.1) находят по отклонению Δ от размера N, по которому построен миниметр:

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей или шкалой в соответствии с реализованным принципом измерений.

По общим приемам получения результатов измерений методы различают на:

  • прямой метод измерений – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Прямые измерения не требуют методики проведения измерений и проводятся по эксплуатационной документации на применяемое средство измерений;
  • косвенный метод измерений – измерение, результат которого определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Косвенные измерения применяются в случаях, когда невозможно выполнить прямые измерения, например при определении плотности твердого тела, вычисляемой по результатам измерений объема и массы.

По условиям измерения:

  • контактный метод измерений – основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром);
  • бесконтактный метод измерений – основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают:

  • метод непосредственной оценки – метод при котором значение величины определяют непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
  • метод сравнения с мерой – метод при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует три разновидности этого метода:
    • нулевой метод – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерения электрического сопротивления мостом с полным его уравновешиванием;
    • метод замещения – основан на сравнении с мерой, при котором измеряемую величину замещают измвестной величиной, воспроизводимой мерой, сохраняя все условия неизменными, например взвешивание c поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов;
    • метод совпадений – метод сравнения с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов, например при измерении с использованием штангенциркуляс нониусом наблюдают совпадение меток на шкалах штангенциркуля и нониуса;

    Поскольку погрешность определяется не только метрологическими характеристиками средств измерений, но и погрешностью отбора и приготовления проб, условиями проведения измерений, ошибкой оператора и другими причинами, это определение означает, что методики выполнения измерений могут разрабатываться и быть аттестованными только применительно к конкретным условиям проведения измерения с использованием конкретных средств.

    Данное утверждение не означает, что для каждой измерительной или испытательной лаборатории должны разрабатываться собственные методики. Но если лаборатория использует тип средства измерения, приведенный в аттестованной методике, влияющие факторы (температура и влажность окружающего воздуха и измеряемой среды, напряжение и частота электрической сети, вибрация, внешнее магнитное поле и др.) находятся в определенном данной методикой диапазоне, а оператор соответствует установленной в ней квалификации, то физические величины будут измеряться в этой лаборатории с известной погрешностью.

    Читайте также: