Классификация интегральных микросхем кратко

Обновлено: 05.07.2024

Интегральная микросхема – это конструктивно законченное микроэлектронное изделие, выполняющее определенную функцию преобразования информации, содержащее некоторое количество электрически связанных между собой электрорадиоэлементов (транзисторов, диодов, конденсаторов, резисторов и т.д.), изготовленных в едином технологическом цикле.

1. Микросхемы, элементы, компоненты.

Интегральная схема – микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала и/или накапливания информации и имеющее высокую плотность упаковки электрически соединенных элементов и кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.

Элемент интегральной микросхемы – часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (транзистора, диода, резистора, конденсатора), которая выполнена нераздельно от кристалла или подложки и не может быть выделена как самостоятельное изделие.

Компонент интегральной микросхемы - часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента, которая может быть выделена как самостоятельное изделие. Компонент является частью гибридной микросхемы.

Цифровая интегральная микросхема – микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции.

Аналоговая микросхема – микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции.

2. Элементы конструкции микросхем.

Корпус – часть конструкции интегральной микросхемы, предназначенная для защиты микросхем от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Типы и размеры корпусов, расположение и количество выводов стандартизированы.

Подложка – заготовка из диэлектрического материала, предназначенная для нанесения на нее элементов гибридных и пленочных интегральных микросхем межэлементных и/или межкомпонентных соединений, а также контактных площадок.

Плата – часть подложки на поверхности которой нанесены пленочные элементы микросхемы, межэлементные и/или межкомпонентные соединения, а также контактные площадки.

Полупроводниковая пластина – заготовка из полупроводникового материала, предназначенная для изготовления полупроводниковых интегральных микросхем.

Кристалл – часть пластины, в объеме и на поверхности которой сформированы элементы полупроводниковой микросхемы, межэлементные и/или межкомпонентные соединения, а также контактные площадки.

Базовый матричный кристалл – кристалл интегральной микросхемы с регулярным, в виде матрицы, расположением не соединенных и/или соединенных между собой элементов, без межэлементных соединений.

Контактная площадка – металлизированный участок на плате или кристалле или корпусе интегральной микросхемы, служащий для присоединения выводов компонентов и кристаллов, перемычек, а также контроля ее электрических параметров и режимов.

Бескорпусная интегральная микросхема – кристалл микросхемы, предназначенный для монтажа в гибридную интегральную микросхему или микросборку. Для соединения с внешними электрическими цепями бескорпусная микросхема имеет собственные выводы, а ее полная защита обеспечивается корпусом устройства, в которое эта микросхема установлена.

Вывод – проводник, соединенный электрически с контактной площадкой кристалла и механически с его поверхностью. Могут быть жесткими (шариковые, столбиковые, балочные) или гибкими (лепестковые, проволочные).

Микросхемы изготавливают групповым методом по материалосберигающей технологии, тиражирую одновременно в одной партии от нескольких десятков до нескольких десятков тысяч микросхем. По конструктивно–технологическому принципу микросхемы делятся на три группы: полупроводниковые, пленочные и гибридные.

В полупроводниковой интегральной микросхеме все элементы и межэлементные соединения выполняются в объеме и на поверхности полупроводниковой подложки.

В пленочной интегральной микросхеме все элементы и соединения между ними выполняются в виде пленок. В настоящее время методом пленочной технологии изготавливают только пассивные элементы – резисторы, конденсаторы и индуктивности. В зависимости от толщины пленки и способа создания элементов пленочные микросхемы делят на тонко– и толстопленочные. К первому типу относятся микросхемы толщина пленки в которых не превышает 1 мкм, а толщина пленки в толстопленочной микросхеме составляет 10…70 мкм.

В гибридных интегральных схемах в качестве активных элементов используются навесные дискретные полупроводниковые приборы или полупроводниковые интегральные микросхемы, а в качестве пассивных элементов используют пленочные резисторы, конденсаторы, индуктивности и соединяющие их пленочные проводники.

3. Простые и сложные микросхемы

- Степень интеграции микросхемы определен как показатель степени сложности, характеризуемы числом содержащихся в ней элементов и компонентов

Где К – коэффициент, показывающий степень интеграции

N – число элементов, входящих в состав интегральной микросхемы.

Степень интеграции (К) Количество элементов (N)
До 10
11-100
101 – 1000
1001 – 10 000
10 001 – 100 000
И т.д. 100 001 – 1 000 000

- количественную меру сложности цифровых микросхем определяют числом логических элементов, из которых состоит интегральная микросхема. Под логическим элементом в этом случае поднимают устройства, выполняющие операции булевой алгебры в двоичной системе счисления.

Классификация полупроводниковых микросхем по уровню интеграции

Уровень число элементов и компонентов в одной микросхеме
интеграции Цифровые микросхемы Аналоговые
на МДП транзисторах на биполярных транзисторах микросхемы
МИС £ 100 £ 100 £ 30
СИС 100…1000 100…500 30…100
БИС 1000…10 000 500…2000 100…300
СБИС ³ 10 000 ³ 2000 ³ 300

По степени интеграции микросхемы делятся на:

малые интегральные схемы (МИС) – это схемы 1…2 степени интеграции, в состав которых входят один или несколько видов функциональных аналоговых или логических элементов (логические элементы И, ИЛИ, НЕ, триггеры, усилители, фильтры и т.д.);

средние интегральные схемы (СИС) – схемы 2…3 степени интеграции, в состав которых входят один или несколько одинаковых функциональных узлов электронных устройств (регистр, дешифратор, счетчик, постоянно запоминающие устройство);

большие интегральные схемы (БИС) схемы 3…4 степени интеграции, в состав которых входят один или несколько функциональных устройств (арифметико–логическое устройство, оперативное запоминающие устройство и т.д.)

сверхбольшие интегральные схемы (СБИС) – это интегральные схемы 5…7 степени интеграции, представляющие собой законченные микроэлектронные изделия, способные выполнять функции аппаратуры (однокристальные ЭВМ, микропроцессоры).

Наибольшей степенью интеграции обладают полупроводниковые микросхемы, затем тонкопленочные и, наконец толстопленочные и гибридными. Классификация полупроводниковых микросхем по уровню интеграции представлена в табл. 1.

Логические микросхемы на основе биполярных транзисторов по схемотехническому и конструктивно–технологическому исполнению разделяют на типы:

– резистороно–транзисторная логика (РТЛ) и ее модификация (с непосредственной связью, с емкостной связью и т.д.);

– транзисторно–транзисторная логика (ТТЛ) и ее модификация ( ТТЛ с диодами Шотки (ТТЛШ));

– эмиттерно–связанная логика (ЭСЛ);

– интегральная инжекционная логика (И 2 Л);

– инжекционно–полевая логика (ИПЛ).

Логические микросхемы на МДП транзисторах подразделяются на:

p–канальные (p–МДП);

n–канальные (n–МДП);

– комплементарные на взаимодополняющих p– и n–канальных транзисторах (КМДП).

В настоящее время промышленность выпускает множество серий интегральных микросхем. Каждая из этих серий характеризуется следующими параметрами: быстродействие (задержка переключения); потребляемая мощность, произведение мощности на время задержки, запас помехоустойчивости, коэффициент разветвления по выходу, требования к напряжению питания, диапазон рабочих температур, плотность размещения элементов на кристалле, степень интеграции, стоимость и др. Сведения об этих характеристиках приведены в табл. 2.

4. Система условных обозначений микросхем

Аналоговые и цифровые микросхемы разрабатываются и выпускаются предприятиями изготовителями в виде серий. Каждая серия отличается степенью комплектности и содержит несколько микросхем, которые в свою очередь, подразделяются на типономиналы.

К серии микросхем относят совокупность типов микросхем, которые могут выполнять различные функции, но имеют единое конструктивно – технологическое исполнение и предназначены для совместного применения. С течением времени состав серий расширяется.

Тип микросхемы – микросхема конкретного функционального назначения и определенного конструктивного и схемотехнического решения, имеющая свое условное обозначение.

Типономинал – микросхема конкретного типа, отличающая от других микросхем однаим или несколькими параметрами.

Сканировать таблицу 1.2. стр. 11 Справочник цифровые и аналоговые интегральные микросхемы.

Условное обозначение полупроводниковых микросхемы

Группа (по конструктивно-технологическому исполнению) Порядковый номер данной серии подгруппа Вид (по функциональному назначению) Условный номер разработки в данной серии по функциональному признаку

схема синхронизации МПК с порядковым номером серии 800 и номером разработки микросхемы в данной серии по функциональному признаку 1.

полупроводниковая микросхема И-НЕ с порядковым номером серии 33 и номером разработки микросхемы в данной серии по функциональному признаку 1.


Интегральная (микро)схема (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, ммикрочип (англ. microchip, silicon chip, chip — тонкая пластинка — первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки.

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).

Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:

-толстоплёночная интегральная схема;

-тонкоплёночная интегральная схема.

Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции, разная для цифровых и аналоговых микросхем (указано количество элементов для цифровых схем):

-малая интегральная схема (МИС) — до 100 элементов в кристалле,

-средняя интегральная схема (СИС) — до 1000 элементов в кристалле,

-большая интегральная схема (БИС) — до 10000 элементов в кристалле,

-сверхбольшая интегральная схема (СБИС) — до 1 миллиона элементов в кристалле,

-ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле,

-гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле.

В настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).

Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:

-толстоплёночная интегральная схема;

-тонкоплёночная интегральная схема.

Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В — логической единице; а для микросхем ЭСЛ-логики при наприяжении питания −5,2 В диапазон −0,8…−1,03 В — логической единице, а −1,6…−1,75 В — логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы.

В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

Микросхемы на униполярных (полевых) транзисторах — самые экономичные (по потреблению тока):

-МОП-логика (металл-окисел-полупроводник логика) — микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа;

-КМОП-логика (комплементарная МОП-логика) — каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП).

Микросхемы на биполярных транзисторах:

-РТЛ — резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);

-ДТЛ — диодно-транзисторная логика (устаревшая, заменена на ТТЛ);

-ТТЛ — транзисторно-транзисторная логика — микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;

-ТТЛШ — транзисторно-транзисторная логика с диодами Шоттки — усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки;

-ЭСЛ — эмиттерно-связанная логика — на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, — что существенно повышает быстродействие;

-ИИЛ — интегрально-инжекционная логика.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света, и даже ближнего ультрафиолета, при засветке давно отказались.

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

В конце 1990-х фирма Texas Instruments создала новую ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. По состоянию на 2009 год технологии удалось обеспечить уровень производства вплоть до 90 нм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 45 нм. Есть и другие микросхемы, давно достигшие и превысившие данный уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung — 40 нм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы Intel по переходу на уровень 30 нм уже к 2006 году так и не сбылись.

По состоянию на 2009 год альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 32 нм.

В 2010-м в розничной продаже уже появились процессоры, разработанные по 32-х нм тех. процессу.

Ожидается, что, следующим, наверное, будет тех. процесс 22 нм.

Здесь действителен Закон Мура (Мур высказал предположение, что число транзисторов на кристалле будет удваиваться каждые 24 месяца).

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Фильтры (в том числе на пьезоэффекте).

Аналоговые аттенюаторы и регулируемые усилители.

Стабилизаторы источников питания: стабилизаторы напряжения и тока.

Микросхемы управления импульсных блоков питания.

Различные датчики (например, температуры).

(Микро)процессоры (в том числе ЦП для компьютеров)

Микросхемы и модули памяти

ПЛИС (программируемые логические интегральные схемы)

Цифровые интегральные микросхемы

Они имеют ряд преимуществ по сравнению с аналоговыми:

Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

Аналогово-цифровые схемы

цифро-аналоговые (ЦАП) и аналогово-цифровые преобразователи (АЦП).

Цифровые вычислительные синтезаторы (ЦВС).

Трансиверы (например, преобразователь интерфейса Ethernet).

Модуляторы и демодуляторы.

Декодеры телетекста, УКВ-радио-текста

Трансиверы Fast Ethernet и оптических линий

Приёмники цифрового ТВ

Сенсор оптической мыши

Преобразователи напряжения питания и другие устройства на переключаемых конденсаторах

Схемы фазовой автоподстройки частоты (ФАПЧ) с последовательным интерфейсом.

Генераторы и восстановители частоты тактовой синхронизации

Базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые первичные элементы.

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату). Корпус микросхемы — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями.

В российских корпусах расстояние между выводами (шаг) измеряется в миллиметрах и наиболее часто это 2,5 мм и 1,25 мм. У импортных микросхем шаг измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах (20 и более выводов) соответствующие корпуса уже достаточно конструктивно несовместимы: для штыревых выводов — обламывание выводов при монтаже, для планарных — спайка соседних.

В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Пример корпусной микросхемы:


Назначение выводов микросхемы К174УН7:
1 — питание (+ Un);
4 — вольтодобавка, питание (+Un);
5—коррекция;
6—обратная связь;
7—фильтр;
8—вход;
9— общий (— Un);
10—эмиттер выходного каскада;
12—выход.

Специфические названия микросхем

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами. Примерами могут служить современные процессоры Intel со встроенными контроллерами ОП, видео и т.д.

Интегральная схема – это изделие из микроэлементов с высокой миниатюризацией. Эти элементы преобразуют и обрабатывают сигналы. Сама схема имеет высокую плотность самих элементов. Такие элементы называются компонентами и выполняют ту или иную задачу. Эти схемы могут быть разной сложности и типов – от самых простых до сложнейших.

Используются ИС в создании компьютеров, различной вычислительной техники и другом оборудовании, в том числе промышленном и бытовом. Более подробно о строении, использовании, а также развитии интегральных схем будет рассказано в данной статье. В качестве информационного дополнения, в материале содержатся два подробных видеоролика и один скачиваемые файл о строении ИС.

По научному определению, интегральные микросхемы – это отдельные высокотехнологичные устройства (с огромным количеством электронных компонентов, заключенных в маленьком корпусе), которые выполняют какую-то функцию или действие. Этих функций может быть или одна или несколько. Вот список некоторых основных функций, которые выполняют интегральные микросхемы:

  • Преобразование сигнала (например, из аналогового в цифровой и обратно).
  • Обработка сигнала (например, усиление и очистка звука)
  • Действия вычитания, сложения, умножения и деления сигнала (логические микросхемы)

Интегральные микросхемы представляют собой изделие, выполненное в герметизированном (металлическом, пластмассовом, керамическом, металлокерамическом и так лале) корпусе. Микросхемы бывают различного исполнения (прямоугольные, треугольные, круглые) с разным количеством выводов: от трех (например, на стабилизаторе LM7805, до нескольких сотен на процессорах).

Интегральные микросхемы (и аппаратура на них) обладают неоспоримыми преимуществами:

  • Высокой технологичностью и надежностью. Ведь все микросхемы производят на специализированных заводах и фабриках с современной технологией производства. На линиях (полностью или частично) автоматизированных. При производстве микросхемы (особенно в юго-восточных странах) применяют и живую рабочую силу, так как это дешевле, чем покупать дорогостоящие линии. Интегральные компоненты позволяют снизить на два-три порядка затраты труда на производство, монтаж и сборку различной аппаратуры. При конструировании и создании такой аппаратуры уменьшается количество разных паяных соединений, которые зачастую являются причиной отказа аппаратуры. Микросхемы являются более надежными, чем дискретные элементы, так как ошибки при монтаже уменьшаются на 3-4 порядка. Легче и намного быстрее запаять интегральные компоненты (например, один логический элемент с 16 выводами), чем паять более 20 дискретных элементов (которые выполняют ту же функцию) с 60 выводами. Только микросхемы обеспечивают надежность систем управления в различных системах управления, в компьютерах, в околоземном пространстве на космических станциях и так далее.
  • Интегральные компоненты (и аппаратура на них) малогабаритны и имеют маленький вес.
  • Микросхемы намного сокращают процесс разработки нового изделия (аппарата), так как можно использовать готовые, уже опробованные, миниатюрные блоки и узлы. И поэтому внедрение нового изделия в производство резко сокращается.
  • Многие интегральные элементы выпускаются массово (например, микросхемы в домашних звонках, в игрушках, в клавиатурах и мышках компьютеров и т. п.). Это намного снижает себестоимость микросхемы и всего изделия в целом.
  • Интегральные элементы сокращают число комплектующих создаваемого изделия, уменьшают количество проводимых операций, что (в конечном счете) ведет к упрощению организации современного производства.

Микросхемы разделяют на два вида: 1 – полупроводниковые интегральные схемы; 2 – гибридные интегральные схемы.

Транзисторы, диоды, магнитные элементы, конденсаторы более 103 пФ и электролитические выполняют с помощью навесного монтажа. Гибридные интегральные схемы имеют более высокую точность параметров (на один или два порядка выше), чем полупроводниковые аналоги. Количество элементов внутри каждого класса микросхем может достигать несколько тысяч.

Интегральная схема SMD

Степень интеграции

  • В зависимости от степени интеграции применяются следующие названия интегральных схем:
  • малая интегральная схема (МИС) — до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) — до 10000 элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) — более 10 тысяч элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Элемент интегральной схемы

Часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации. Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.

По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

  • полупроводниковые;
  • гибридные;
  • пленочные.

В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.

Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника. В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов. По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).

Краткая историческая справка

Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большей степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов в одном кристалле.

Что такое интегральная микросхема

В 1971 г. были разработаны микропроцессоры, а в 1975 г. — интегральные схемы сверхбольшой степени интеграции (сверхбольшие интегральные схемы, СБИС), содержащие более 10000 элементов в одном кристалле. Полезно отметить, что предельная частота биполярных транзисторов в полупроводниковых интегральных схемах достигает 15 ГГц и более.

К 2000 г. ожидается появление интегральных схем, содержащих до 100 млн МОП транзисторов в одном кристалле (речь идет о цифровых схемах). Система обозначений. Условное обозначение интегральных микросхем включает в себя основные классификационные признаки.

  • Первый элемент — цифра, соответствующая конструктивно-технологической группе. Цифрами 1, 5, 6 и 7 в первом элементе обозначаются полупроводниковые интегральные микросхемы. Гибридным микросхемам присвоены цифры 2, 4 и 8. Пленочные, вакуумные и керамические интегральные микросхемы обозначаются цифрой 3.
  • Второй элемент, определяющий порядковый номер разработки серии, состоит из двух (от 00 до 99) или трех (от 000 до 999) цифр.
  • Третий элемент, обозначающий подгруппу и вид микросхемы, состоит из двух букв.
  • Четвертый элемент, обозначающий порядковый номер разработки микросхемы данной серии, состоит из одной или нескольких цифр.

К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки.

Строение интегральной схемы

Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения:

В начале обозначения для микросхем, используемых в условиях широкого применения, приводится буква К.

Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии.

Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения:

  • 1 — с гибкими выводами;
  • 2 — с ленточными (паучковыми) выводами, в том числе на полиамидном носителе;
  • 3 — с жесткими выводами;
  • 4 — на общей пластине (неразделенные);
  • 5 — разделенные без потери ориентировки (наклеенные на пленку);
  • 6 — с контактными площадками без выводов.

Как создаются интегральные схемы?

Как изготовить чип памяти или процессор компьютера? Процесс производства начинается с химического элемента — кремния, который химически обрабатывается (легируется) для придания различных электрических свойств.

Современное исполнение интегральной схемы (одна из многочисленных форм), установленной на электронной плате устройства. Это далеко не самый продвинутый вариант, а лишь один из многих

Традиционно для нужд электроники используются материалы двух категорий:

Что такое интегральная микросхема

Но технически всё сложнее, особенно когда дело касается определенных элементов середины таблицы Менделеева (группы 14 и 15), в частности, кремния и германия. Что примечательно — материалы изоляторы способны переходить в разряд проводников, если к этим материалам добавить некоторое количество примесей. Процесс, известный как легирование.

Принцип легирования химических элементов

  • диодов,
  • транзисторов,
  • запоминающих устройств и других.

Увеличенное фото интегральных схемУвеличенное фото интегральных схем

Структурная интегральная схема внутри чипа

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Что такое интегральная микросхема

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.


Содержание

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

Первая советская полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Первая в СССР полупроводниковая интегральная микросхема была разработана (создана) на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ "Пульсар") коллективом, который в дальнейшем был переведён в НИИМЭ (Микрон). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились НИИ-35 (директор Трутко) и Фрязинским заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).[1]

Уровни проектирования

  • Физический — методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
  • Электрический — принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.).
  • Логический — логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.).
  • Схемо- и системотехнический уровень — схемо- и системотехническая схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.).
  • Топологический — топологические фотошаблоны для производства.
  • Программный уровень (для микроконтроллеров и микропроцессоров) — команды ассемблера для программиста.

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

  • Малая интегральная схема (МИС) — до 100 элементов в кристалле.
  • Средняя интегральная схема (СИС) — до 1000 элементов в кристалле.
  • Большая интегральная схема (БИС) — до 10000 элементов в кристалле.
  • Сверхбольшая интегральная схема (СБИС) — до 1 миллиона элементов в кристалле.
  • Ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле.
  • Гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле.

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

  • Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).
  • Плёночная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.

    Вид обрабатываемого сигнала

    • Аналоговые
    • Цифровые
    • Аналого-цифровые

    Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

    Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ-логики при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В.

    Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

    Технологии изготовления

    Типы логики

    Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

      Микросхемы на униполярных (полевых) транзисторах — самые экономичные (по потреблению тока):
        -логика (металл-окисел-полупроводник логика) — микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа; -логика (комплементарная МОП-логика) — каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП).
        — резисторно-транзисторная логика (устаревшая, заменена на ТТЛ); — диодно-транзисторная логика (устаревшая, заменена на ТТЛ); — транзисторно-транзисторная логика — микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе; — транзисторно-транзисторная логика с диодами Шотки — усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шотки. — эмиттерно-связанная логика — на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, — что существенно повышает быстродействие. — интегрально-инжекционная логика.

      КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распротранёнными логиками микросхем. Где небходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

      Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но наиболее энергопотребляющими и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

      Технологический процесс

      При изготовлении микросхем используется фотопроцесс, при этом схему формируют на подложке, обычно из диоксида кремния, полученной термическим оксидированием кремния. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.

      В 70-х годах ширина полосы составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.

      В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню, совершенствуя второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.

      Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,045 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung — 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы 2006 году так и не сбылись.

      Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.

      Контроль качества

      Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

      Назначение

      Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

      Аналоговые схемы

      Цифровые схемы

      • Логические элементы
      • Буферные преобразователи
      • Модули памяти
      • (Микро)процессоры (в том числе ЦПУ в компьютере)
      • Однокристальные микрокомпьютеры
      • ПЛИС - программируемые логические интегральные схемы

      Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

      Аналогово-цифровые схемы

        и АЦП
      • Трансиверы (например, преобразователь интерфейса RS422)
      • Модуляторы и демодуляторы
        • Радиомодемы
        • Декодеры телетекста, УКВ-радио-текста
        • Трансиверы Fast
        • Dial-Up модемы
        • Приёмники цифрового ТВ
        • Сенсор оптической мыши

        Серии микросхем

        Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

        Корпуса микросхем

        Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.
        Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку.
        Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
        В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы.
        В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

        Специфические названия микросхем

        Из большого количества цифровых микросхем изготавливались процессоры. Фирма Intel 4004, которая выполняла функции процессора. Такие микросхемы получили название микропроцессор. Микропроцессоры фирмы Intel совершенствовались: Intel 8008, Intel 8080, Intel 8086, Intel 8088 (на основе двух последних микропроцессоров фирма персональные компьютеры).

        Микропроцессор выполняет в основном функции АЛУ (арифметико-логическое устройство), а дополнительные функции связи с периферией выполнялись с помощью специально для этого изготовленных наборов микросхем. Для первых микропроцессоров число микросхем в наборах исчислялось десятками, а сейчас это набор из двух-трех микросхем, который получил термин чипсет.

        Микропроцессоры со встроенными контроллерами памяти и ввода-вывода, ОЗУ и ПЗУ, а также другими дополнительными функциями называют микроконтроллерами.

        Интегральные микросхемы

        Интегральные микросхемы часто называют просто интегральными схемами. По определению интегральная схема (ИС) — микроэлектронное изделие (т. е. изделие с высокой степенью миниатюризации), выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.

        Элемент интегральной схемы

        — часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации.

        Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.

        По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

        • полупроводниковые;
        • гибридные;
        • пленочные.

        В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.

        Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника.

        Абрамян Евгений Павлович

        В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов.

        По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).

        Краткая историческая справка.

        Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большей степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов в одном кристалле.

        Васильев Дмитрий Петрович

        В 1971 г. были разработаны микропроцессоры, а в 1975 г. — интегральные схемы сверхбольшой степени интеграции (сверхбольшие интегральные схемы, СБИС), содержащие более 10000 элементов в одном кристалле. Полезно отметить, что предельная частота биполярных транзисторов в полупроводниковых интегральных схемах достигает 15 ГГц и более.

        К 2000 г. ожидается появление интегральных схем, содержащих до 100 млн МОП транзисторов в одном кристалле (речь идет о цифровых схемах).

        Система обозначений интергальных схем

        Условное обозначение интегральных микросхем включает в себя основные классификационные признаки.

        • Первый элемент — цифра, соответствующая конструктивно-технологической группе. Цифрами 1, 5, 6 и 7 в первом элементе обозначаются полупроводниковые интегральные микросхемы. Гибридным микросхемам присвоены цифры 2, 4 и 8. Пленочные, вакуумные и керамические интегральные микросхемы обозначаются цифрой 3.
        • Второй элемент, определяющий порядковый номер разработки серии, состоит из двух (от 00 до 99) или трех (от 000 до 999) цифр.
        • Третий элемент, обозначающий подгруппу и вид микросхемы, состоит из двух букв.
        • Четвертый элемент, обозначающий порядковый номер разработки микросхемы данной серии, состоит из одной или нескольких цифр.

        К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки.

        Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения:

        В начале обозначения для микросхем, используемых в условиях широкого применения, приводится буква К.

        Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии.

        Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения:

        Читайте также: