Классификация химических элементов кратко

Обновлено: 03.07.2024

Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т. д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы — ничего общего с ними не имеющий титан.

Октавы Ньюлендса

Английский учёный Джон Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав. Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого.

Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам.

Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически. Однако в его основе лежала правильная мысль о периодическом изменении свойств элементов с увеличением их атомного веса

H Li Be B C N O
F Na Mg Al Si P S
Cl K Ca Cr Ti Mn Fe

Таблицы Олдинга и Мейра

В 1864 г. У.Олдинг опубликовал таблицу, в которой элементы были размещены согласно их атомным весам и сходству химических свойств, не сопроводив её, однако, какими-либо комментариями.

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

Ближе к истине оказался немецкий химик Лотар Мейер. Он предложил таблицу, в которой все известные химические элементы были разбиты на шесть групп, согласно их валентности. В каждой из них находятся элементы, сходные по их атомности (валентности). В эту таблицу Мейер поместил всего 27 элементов, то есть меньше половины известных в то время. Расположение остальных элементов: B, Al, Cu, Ag и др. оставалось неясным , а структура таблицы была неопределенной .

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием “Природа элементов как функция их атомного веса”, состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин “периодичность”, уже предложенный к тому времени Менделеевым.

Д.И. Менделеев

В конце 1870 г. он доложил РХО статью “Естественная система элементов и применение её к указанию свойств неоткрытых элементов”, в которой предсказал свойства нескольких не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы (то есть сверху и снизу) и одновременно двух соседних элементов в периоде (слева и справа).

В 1871 г . в итоговой статье “Периодическая законность химических элементов” Менделеев дал следующую формулировку Периодического закона: “Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса”. Тогда же Менделеев придал своей периодической таблице вид, ставший классическим (короткий вариант).

В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов.

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д.И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 г. помещать все РЗЭ в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона в было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Менделеев, Ньюлендс, Шанкуртуа, Мейер – двигались по одной и той же дороге научного исследования. Все они по очереди подходили к лежавшему на пути науки драгоценному, но не обработанному камню. Каждый из них держал его в руках и каждый чувствовал, что камень этот не прост. Но один лишь гениальный Д.И.Менделеев оказался настолько проницательным, что не отбросил его в сторону, а смело принялся шлифовать и отрабатывать до тех пор, пока в руках у него не засияло во всём блеске величайшая ценность – ПЕРИОДИЧЕСКИЙ ЗАКОН ХИМИЧЕСКИХ ЭЛЕМЕНТОВ (определение)– фундаментальный закон природы.


Одной из первых попыток систематизации химических элементов была их классификация, т. е. распределение по классам на основе общих свойств и признаков. Еще в конце XVIII в. элементы стали делить на две группы — металлы и неметаллы. Такая классификация была основана на различии свойств простых веществ.

Вспомним общие свойства простых веществ металлов и неметаллов. Металлы хорошо проводят электрический ток и теплоту, имеют характерный металлический блеск. Многие из них пластичны, т. е. легко расплющиваются, вытягиваются, поддаются обработке, особенно в нагретом состоянии. Все металлы (кроме ртути) — твердые кристаллические вещества.

Неметаллы, как правило, плохие проводники тока, не обладают блеском и пластичностью. При обычных условиях простые вещества неметаллы могут быть твердыми (сера, фосфор), жидкими (бром), газообразными (кислород, азот).

Эти две группы простых веществ существенно различаются и по химическим свойствам. Металлы взаимодействуют с кислородом и другими неметаллами, кислотами, солями, но газообразных соединений не образуют.

Неметаллы образуют с водородом летучие соединения; взаимодействуют с кислородом, часто с образованием газообразных оксидов. С разбавленными кислотами большинство из них не реагируют.

Как доказать, что оксид, соответствующий металлу, является основным его гидроксид проявляет свойства оснований?

Поместим в пробирку небольшое количество оксида кальция. Добавим к нему воды объемом 2 см3 и хорошо встряхнем. Внесем в полученный раствор 2—3 капли раствора фенолфталеина и по появлению окраски отметим наличие щелочи в растворе. Добавив 2 капли раствора соляной кислоты, отметим изменение окраски.

Не все основные оксиды взаимодействуют с водой, однако каждому из нисоответствует гидроксид, проявляющий свойства основания. Так, оксид FeOне реагирует с водой, но ему соответствует основание Fe(OH) 2. И оксид, и основание реагируют с кислотами:

FeO + 2HCl = FeCl2 + H2O;
Fe(OH) 2 + 2HCl = FeCl2 + 2H2O.

Кислородные соединения неметаллов обычно являются кислотными оксидами, а их гидроксиды — кислотами.

Доказательством кислотных свойств этих соединений неметаллов является их способность вступать в реакции со щелочами с образованием соли и воды:

Кислотные свойства гидроксидов неметаллов легко доказать с помощью индикаторов (лакмуса, метилоранжа или универсального индикатора) по характерной красной окраске.

Щелочны́е мета́ллы — это элементы 1-й группы главной подгруппы: литий Li, натрий Na, калий K…При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами.

Щё́лочноземе́льные мета́ллы — химические элементы II-й А группы периодической таблицы элементов: магний, кальций и тд.Их оксиды в воде сообщают щелочную реакцию.(Са,Мg)

Перехо́дные мета́ллы — элементы побочных подгрупп, в атомах которых появляются электроны на d- и f-орбиталях. Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.(Fe,Ni,Ag,Au)

Постпереходные металлы - элементы которые напоминают по своим свойствам металлы. Данные металлы располагаются справа от переходных металлов в периодической таблице.(Al)

Полумета́ллы (металлоиды, амфотерные металлы) — химические элементы, расположенные в периодической системе на границе между металлами и неметаллами. Для них характерно образование ковалентной кристаллической решётки и наличие металлической проводимости.(B,Si,Te)

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы, главные подгруппы.(C,N,P,S,O)

Галоге́ны- элементы главной подгруппы VII группы. Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. (F, Cl , Br, I)

Ине́ртные, или благоро́дные газы —элементы главной подгруппы VIII группы. К инертным газам относятся гелий, неон и тд. Инертные газы отличаются химической неактивностью.

Лантаноиды-14 редкоземельных элементов. с атомными номерами 57-71

Актино́иды (актини́ды) — семейство, состоящее из 14 радиоактивных химических элементов. . с атомными номерами 89-103

Суперактино́иды (суперактини́ды) — гипотетически возможные химические элементы с атомными номерами 121— 153

Вар

В зависимости от строения и заполненности электронных оболочек Спайс выделил шесть классов элементов:

2. Сильно электроположительные (катионы) металлы, которые имеют от одного до трех электронов сверх конфигурации инертных газов. Это щелочные элементы I и II группы (Li, Na, K, Rb, Cs, Fr; Be, Mg, Ca, Sr, Ba, Ra) и большая часть III группы (Al, Sc, Y, La, Ac).

3. Неметаллы (анионы) – у них недостает от одного до четырех электронов до конфигурации инертных газов: F, Cl, Br, I, At; O, S, Se,Te; N, P, As; C, Si.

4. Переходные металлы с переменной валентностью и ковалентной связью. Для химических связей используют d-электроны предпоследнего слоя: Ti, V, Cr, Mn, Fe, Co, Ni; Zr, Nb, Mo, Tc, Ru, Rh, Pd; Hf,Ta, W, Re, Os, Ir, Rt.

5. Лантаноиды и актиноиды, атомы которых имеют незаполненные d- и f-слои. Лантаноиды образуют трехвалентные катионы с электронной конфигурацией слоя 4 f n. Они дают устойчивые соли и слабо гидролизуются в растворах, подобны солям Sc, Y.

Щелочны́е мета́ллы — это элементы 1-й группы главной подгруппы: литий Li, натрий Na, калий K…При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами.

Щё́лочноземе́льные мета́ллы — химические элементы II-й А группы периодической таблицы элементов: магний, кальций и тд.Их оксиды в воде сообщают щелочную реакцию.(Са,Мg)

Перехо́дные мета́ллы — элементы побочных подгрупп, в атомах которых появляются электроны на d- и f-орбиталях. Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.(Fe,Ni,Ag,Au)

Постпереходные металлы - элементы которые напоминают по своим свойствам металлы. Данные металлы располагаются справа от переходных металлов в периодической таблице.(Al)

Полумета́ллы (металлоиды, амфотерные металлы) — химические элементы, расположенные в периодической системе на границе между металлами и неметаллами. Для них характерно образование ковалентной кристаллической решётки и наличие металлической проводимости.(B,Si,Te)




Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы, главные подгруппы.(C,N,P,S,O)

Галоге́ны- элементы главной подгруппы VII группы. Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. (F, Cl , Br, I)

Ине́ртные, или благоро́дные газы —элементы главной подгруппы VIII группы. К инертным газам относятся гелий, неон и тд. Инертные газы отличаются химической неактивностью.

Лантаноиды-14 редкоземельных элементов. с атомными номерами 57-71

Актино́иды (актини́ды) — семейство, состоящее из 14 радиоактивных химических элементов. . с атомными номерами 89-103

Суперактино́иды (суперактини́ды) — гипотетически возможные химические элементы с атомными номерами 121— 153

Вар

В зависимости от строения и заполненности электронных оболочек Спайс выделил шесть классов элементов:

2. Сильно электроположительные (катионы) металлы, которые имеют от одного до трех электронов сверх конфигурации инертных газов. Это щелочные элементы I и II группы (Li, Na, K, Rb, Cs, Fr; Be, Mg, Ca, Sr, Ba, Ra) и большая часть III группы (Al, Sc, Y, La, Ac).

3. Неметаллы (анионы) – у них недостает от одного до четырех электронов до конфигурации инертных газов: F, Cl, Br, I, At; O, S, Se,Te; N, P, As; C, Si.

4. Переходные металлы с переменной валентностью и ковалентной связью. Для химических связей используют d-электроны предпоследнего слоя: Ti, V, Cr, Mn, Fe, Co, Ni; Zr, Nb, Mo, Tc, Ru, Rh, Pd; Hf,Ta, W, Re, Os, Ir, Rt.

5. Лантаноиды и актиноиды, атомы которых имеют незаполненные d- и f-слои. Лантаноиды образуют трехвалентные катионы с электронной конфигурацией слоя 4 f n. Они дают устойчивые соли и слабо гидролизуются в растворах, подобны солям Sc, Y.

Химический элемент — совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева [1] . Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева. [2]

Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные) [3]

Содержание

История становления понятия


Символы химических элементов по Дж. Дальтону: 1 — водород; 2 — магний; 3 — кислород; 4 — сера; 5 — аммиак; 6 — диоксид углерода

Благодаря Джону Дальтону в начале XIX в. в химии возобладала атомно-молекулярная гипотеза, рассматривающая химический элемент как отдельный вид атомов и указывающая на природу простых и сложных веществ, как состоящих, соответственно, из атомов одного или различного видов. Дальтон же впервые указывает на атомный вес как важнейшее свойство элементов, определяющее его химическую природу. Благодаря усилиям Йенса Берцелиуса и его последователей были весьма точно определены атомные веса (атомные массы) известных элементов. Середина XIX в. ознаменовалась целым рядом открытий новых элементов. На международном съезде химиков в г. Карлсруэ в 1860 г. были приняты определения понятий молекулы и атома.

Однако с открытием изотопов стало ясно, что различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4 He имеет атомную массу больше, чем гелий космических лучей.

Современное понимание химического элемента как совокупности атомов, характеризующихся одинаковым положительным зарядом ядра, равным номеру элемента в Периодической таблице, появилось благодаря фундаментальным работам Генри Мозли (1915) и Джеймса Чедвика (1920) [7] .

Известные химические элементы

Не все из известных на сегодня 118 элементов имеют утвержденные ИЮПАК постоянные названия. Самым тяжёлым из официально признанных элементов, имеющих официальные постоянные названия, является 116-й, получивший в мае 2012 года имя ливерморий вместе со 114-м элементом флеровием.

Названия сверхтяжёлых элементов с номерами 113, 115, 117, 118, полученные в 2002—2010 годах в России и США, официально пока не утверждены. Они имеют временные систематические названия.

Символы химических элементов

Символы химических элементов используются как сокращения для названия элементов. В качестве символа обычно берут начальную букву названия элемента и в случае необходимости добавляют следующую или одну из следующих. Обычно это начальные буквы латинских названий элементов: Cu — медь (cuprum), Ag — серебро (argentum), Fe — железо (ferrum), Au — золото (aurum), Hg — ртуть (hydrargirum). Такая система химических символов была предложена в 1811 г. шведским химиком Я. Берцелиусом.

Цифрами меньшего размера возле символа элемента обозначаются: слева вверху — атомная масса, слева внизу — порядковый номер, справа вверху — заряд иона, справа внизу — число атомов в молекуле [7] :

атомная масса заряд иона
Символ элемента
порядковый номер число атомов в молекуле

Временные символы элементов состоят из трёх букв, представляющих аббревиатуру их атомного номера на латыни.

В Периодической таблице карточка химического элемента обычно включает следующие характеристики:

  • 1 — обозначение химического элемента.
  • 2 — русское название.
  • 3 — порядковый номер химического элемента, равный количеству протонов в атомном ядре.
  • 4 — атомная масса: среднее значение атомной массы устойчивых изотопов в земной коре или атомная масса наиболее долгоживущего изотопа (для радиоактивных элементов).
  • 5 — распределение электронов по энергетическим уровням.
  • 6 — электронная конфигурация.

Распространённость химических элементов в природе


Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U (порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.

Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.

Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.

Классификация химических элементов

Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Химические элементы как составная часть химических веществ

Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение).

Химические элементы образуют около 500 простых веществ [10] . Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. [10]

В обычных условиях 11 элементов существуют в виде газообразных простых веществ (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn), 2 — жидкости (Br и Hg), остальные элементы образуют твёрдые тела.

См. также

Ссылки

  • Kедров Б. M. Эволюция понятия элемента в химии. M., 1956
  • Химия и Жизнь (Солтеровская химия). Ч.1. Понятия химии. М.: изд-во РХТУ им. Д. И. Менделеева, 1997
  • Азимов А. Краткая история химии. СПб, Амфора, 2002

Примечания

  • Химические элементы
  • Основные положения и определения в химии

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Химический элемент" в других словарях:

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — совокупность атомов, имеющих одинаковый заряд ядра и, следовательно, одинаковое число электронов в электронной оболочке. Многие из них имеют несколько (см.). Хим. элементы обозначают знаками химическими (см. (9)), а их закономерную взаимосвязь… … Большая политехническая энциклопедия

химический элемент — совокупность атомов с одинаковым зарядом ядра Z (одинаковым порядковым, или атомным, номером в периодической системе химических элементов). В таблицу химических элементов, издаваемую ИЮПАК, на 1998 внесено 109 элементов, имеющих названия (имеются … Энциклопедический словарь

химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element; element rus. химический элемент; элемент ryšiai: sinonimas – elementas … Chemijos terminų aiškinamasis žodynas

химический элемент — cheminis elementas statusas T sritis Standartizacija ir metrologija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas

химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Elektrocheminio elemento tipas. atitikmenys: angl. chemical element rus. химический элемент … Chemijos terminų aiškinamasis žodynas

химический элемент — cheminis elementas statusas T sritis fizika atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Fizikos terminų žodynas

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — вид атомов, обладающих одинаковым зарядом ядра. X. э. в свободном состоянии являются простыми (не разложимыми хим. методами на более простые) в вами. Мн. X. э. состоят из неск. изотопов. Взаимосвязь X. э. отражает периодическая система элементов… … Большой энциклопедический политехнический словарь

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — совокупность атомов с одинаковым зарядом ядра Z (одинаковым порядковым, или атомным, номером в периодической системе химических элементов). В таблицу X. э., издаваемую ИЮПАК, на 1998 внесено 109 элементов, имеющих названия (есть сведения о… … Естествознание. Энциклопедический словарь

Читайте также: